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Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas:
Pairing gaps and dynamical response functions from ab initio computations
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Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique
opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with
strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially
difficult are excitation and dynamical properties, which are often the most directly relevant to experiment.
We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater
determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying
state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin
structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for
a direct comparison with experiments.
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It is truly unusual when, starting from a microscopic
Hamiltonian, theory can achieve an exact description of a
strongly correlated fermionic system which, at the same time,
can be realized in a laboratory with great precision and
control. Experiments with ultracold atoms [1,2] have provided
a possibility to realize such a scenario. The accuracy that can
be reached in experiments with Fermi atomic gases and optical
lattices is exceptional, thus offering a unique setting to explore
highly correlated quantum fermion systems. In this Rapid
Communication, we demonstrate that, from the theoretical
side, advances in computational methods now make it feasible
to obtain numerically exact results for not only equilibrium
properties but also excited states. We compute the pairing gap,
spectral functions, and dynamical response functions in the
two-dimensional Fermi gas across the range of interactions,
which will allow direct comparisons with spectroscopy or
scattering experiments. The dynamical properties provide a
powerful tool to probe the behavior of the system and to
visualize the crossover from a gas of molecules to a BCS
superfluid.

We study the Fermi gas with a zero-range attractive
interaction, which has generated a great deal of research
activity [1–15]. The interest of the system is very wide, ranging
from condensed matter physics [6,16] to nuclear physics,
with possible important applications also in the study of
neutron stars [17,18]. This system describes experiments with
a collection of atoms, for example 6Li, which are cooled to
degeneracy in an equal mixture of two hyperfine ground states,
labeled |↑〉 and |↓〉. Feshbach resonances allow the tuning of
the interactions by varying an external magnetic field, making
the system a unique laboratory to explore many-body physics
[19,20]. Starting from a weakly interacting BCS regime, where
the attraction between particles induces a pairing similar to
the one observed in ordinary superconductors, a crossover is
observed as the interaction strength is increased, leading to a
BEC regime where the Cooper pairs are tightly bound such
that the system behaves as a gas of bosonic molecules. While
both the BCS and the BEC regimes are well understood, the
crossover regime provides an excellent example of a strongly
interacting quantum many-body system [1,2].

We focus in particular on the two-dimensional (2D) Fermi
gas, which has recently been realized experimentally using a
highly anisotropic trapping potential [4,5]. The 2D system
is important, since some of the most interesting physical
phenomena, such as high-temperature superconductivity [21],
Dirac fermions in graphene [22] and topological superconduc-
tors [23], and nuclear “pasta” phases [24] in neutron stars, are
two-dimensional in nature. Quantum fluctuations are known
to be enhanced in 2D, making it even more important to have
quantitative results beyond mean-field approaches.

Experiments are just beginning to measure properties in the
2D gas [8,11,13,25,26]. An array of calculations [16,27–34]
has been performed, including for spectral functions [35–39]
(mostly for above the critical temperature). Numerical results
free of any uncontrolled approximations would provide an un-
ambiguous benchmark for theory and allow direct comparison
with experiments as lower temperatures are reached. As is
the case across a variety of systems in condensed matter and
cold atoms, dynamical properties and spectral information are
crucial, since they provide the most direct connection with
experiments. However they are much more challenging to
compute than static properties [40].

In this Rapid Communication, we develop the capabilities
to obtain unbiased results for imaginary-time correlation func-
tions in spin-balanced Fermi gas systems, using first-principles
auxiliary-field quantum Monte Carlo (AFQMC) [41–44]
methods. This provides a unique approach to excitations and
dynamical response functions. Focusing on the BEC-BCS
crossover regime, we compute the pairing gap as a function
of the interaction strength, the spectral function, which can
be measured experimentally in photoemission spectroscopy
[25], and the density and spin structure factors, which can be
measured in two-photon scattering experiments [45].

As the range of the interaction in the Fermi gas system
of cold atoms is much smaller than the average interparticle
distance, the system can be modeled using a lattice
Hamiltonian [46]:

Ĥ = t
∑
�k,σ

ε(�k) ĉ
†
�k,σ

ĉ�k,σ
+ U

∑
i

n̂i,↑n̂i,↓, (1)
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where the label i runs over a square lattice with Ns = L × L

sites hosting a total of Np fermions, half with each spin σ (=↑
or ↓). The momentum �k = (kx,ky) is defined on the reciprocal
lattice with units 2π/L and kx,ky ∈ [−π,π ). The dispersion is
ε(k) = k2

x + k2
y and t = h̄2/(2mb2), with b the lattice parame-

ter. The attractive on-site interaction U/t is tuned [29,46] for
each lattice density n = Np/Ns and Fermi momentum kF =√

2πn/b to produce the desired scattering length a, defined
as the position of the node of the zero-energy s-wave solution
of the two-body problem. In the dilute limit, Eq. (1) provides
a regularization of the fundamental Hamiltonian of the dilute
atomic gas in the continuum. We ensure that proper diluteness
conditions are met in the computations, and then apply a
careful extrapolation procedure to the continuum limit [29,47].

The ground-state wave function |�0 〉 of Ĥ is sampled
using the AFQMC method [29]. For Hamiltonian (1) with
U/t < 0, the sampling is not affected by the sign problem,
so that numerical results can be obtained free of any bias for
each set of parameters {Ns ,Np,U/t}. Accelerated sampling
techniques with force bias are used, together with other
technical improvements [48], which greatly improves the
efficiency of our calculations.

Our computation here relies on an algorithm which
improved the computational scaling in the calculation of
imaginary-time correlation functions [49] from O(N 3

s ) in
standard algorithms [50–55] to O(Ns N 2

p ). The algorithm
lets fluctuations related to creation and destruction operators
or density and spin operators propagate in imaginary time,
coupled to the stochastic evolution of the underlying AFQMC
random walk or path integral [49]. The dynamical correlation
functions are obtained as suitable combinations of matrix ele-
ments involving the Slater determinants [49]. In the Fermi gas
systems, the calculation is at the dilute limit, with Ns � Np,
so that a drastic speedup is achieved. This allows us to study
lattices of Ns ∼ 2000 sites in order to, as illustrated below,
reach proper convergence of the results to the continuum and
then to the thermodynamic limit.

The exact imaginary-time correlation functions allow one to
access a number of important physical quantities. We compute
the pairing gap � from the large imaginary-time behavior of
the dynamical Green’s functions:

Gp(�k,τ ) = 〈 ĉ�k e−τ (Ĥ−E0) ĉ
†
�k〉,

Gh(�k,τ ) = 〈 ĉ
†
�k e−τ (Ĥ−E0) ĉ�k〉, (2)

where the superscripts p and h indicate particle and hole,
and E0 is the ground-state energy. The usual definition of �,
involving the ground-state energies for systems with Np ± 1
particles,

E
Np+1
0 − E

Np

0 = μ + �, E
Np−1
0 − E

Np

0 = −μ + �, (3)

can be recast in terms of the Green’s functions, whose spectral
resolution yields the asymptotic behavior:

Gp(�k,τ ) � cp(�k)e−τE+(�k), Gh(�k,τ ) � ch(�k)e−τE−(�k). (4)

The relations in Eq. (4) define the quasiparticle energies E±(�k),
with

� = min
�k

[E+(�k) − μ], (5)

and a similar relation for the holes. Since we can compute
the chemical potential μ exactly [29], we do not need both
particle and hole correlation functions. We checked, however,
that the two always give compatible results for the pairing
gap. In order to compute the quasiparticle dispersion E+(�k)
from Gp(�k,τ ), we fitted Gp(�k,τ ) with a linear combination
of two exponentials on an interval [τ0,τmax], the lower-energy
exponent yielding E+(�k), while the higher-energy exponential
is meant to capture residual effects at finite τ besides the
asymptotic behavior of Eq. (4). We estimate the statistical
uncertainty on E+(�k) from a conservative combination of the
AFQMC error bars on Gp(�k,τ ), uncertainty on the fitting
parameters, and dependence on the choice of the interval
[τ0,τmax], randomly sampling τ0 in the large imaginary-time
tail of Gp(�k,τ ). We scan �k to locate the minimum and
maximum (for the particle and hole Green’s functions) or the
pairing gap, as shown in Fig. 2.

We comment that the standard approach to determine the
pairing gap, via addition or removal energies as defined in
Eq. (3), would require separate calculations corresponding to
different particle numbers. While the spin-balanced calcula-
tion is free of the sign problem, the (Np ± 1) calculations are
not. Our approach through imaginary-time Green’s functions
is advantageous, since the Monte Carlo sampling remains
at Np and thus sign-problem free [49]. In the Supplemental
Material [69] we further illustrate our procedure with figures.
A comparison with exact diagonalization is made. We also list
the values of the computed E±(�k) in a neighborhood of the
minimum, which will provide a valuable benchmark.

We compute the spectral function

A(�k,ω) = 〈 ĉ�k δ(ω − Ĥ ) ĉ
†
�k〉 + 〈ĉ†�k δ(ω + Ĥ ) ĉ�k 〉 (6)

and the density and spin dynamical structure factors

SÔ(�k,ω) = 〈 Ô�k δ(ω − Ĥ ) Ô−�k 〉, (7)

where the operator Ô is ρ�k = n̂�k,↑ + n̂�k,↓ for density and S�k =
(n̂�k,↑ − n̂�k,↓)/2 for spin, and the brackets indicate ground-state
expectations. These functions are obtained from analytic
continuation of the imaginary-time Green’s functions and
density-density or spin-spin correlation functions, using the
genetic inversion via falsification of theories (GIFT) method
[56–62]. It is important to note that while the computations
of the imaginary-time correlation functions, the quasiparticle
energies, and the pairing gaps are exact, the estimation of
the spectral function A(�k,ω) in the full (�k,ω) plane and
that of the (spin) density dynamical structure factors require
analytic continuation, which is ill posed and thus has intrinsic
limitations. Our tests indicate that the procedure here with
GIFT is quite robust; however there is no exactness property
in these quantities.

Figure 1 shows the computed pairing gap across different
interaction strengths. We also show the BCS mean-field
prediction, as well as the current best many-body results, from
recent diffusion Monte Carlo (DMC) calculations [30,31].
It is seen that our pairing gap is compatible with the DMC
results on the BEC side of the crossover, but is consistently
smaller for larger values of ln(kF a). The smaller gap value
is not surprising, since the DMC contains a fixed-node (FN)
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FIG. 1. Pairing gap as a function of interacting strength, ln(kF a).
The gap values have been shifted by the binding energy, εb. DMC
results are from Refs. [30] (circles) and [31] (triangles). BCS mean-
field result is also shown for reference.

approximation which gives an upper bound on the computed
energy. It is reasonable to expect that the trial wave function
used for FN is of higher quality for the spin-balanced system
compared to that for the (Np ± 1) systems, which would lead
to an overestimation of the pairing gap. Our results on the
BCS side are consistent with the rescaled BCS results �BCS/e

from the theory by Gorkov and Melik-Barkhudarov, which is
expected to be exact in the BCS limit ln(kF a) � 1 [63,64].

Figure 2 plots the computed quasiparticle peaks as a
function of k ≡ |�k|, together with the spectral function, for
four values of the interaction parameter. The zero of the
energy is set equal to the chemical potential, which we can
compute exactly [29]. We will refer to the function A(�k,ω) as
the particle and hole spectral function respectively for ω > μ

and ω < μ. The particle spectral function originates from
the first term on the right in Eq. (6), physically representing
states available for additional particles injected into the system,
while the hole spectral function, originating from the second
term, contains information about states occupied by the
particles in the system, which are thus accessible by the
creation of holes. In each panel, we show also the mean-
field prediction for the quasiparticle energies [65]: E±(�k) =
±

√
(h̄2k2/2m − μBCS)

2 + �2
BCS, where �BCS is the gap and

μBCS the chemical potential in BCS theory. The noninteracting
spectral function, A0(�k,ω) = δ(ω − (h̄2k2/2m − εF )), is also
shown for reference. In the AFQMC spectral functions
obtained from the GIFT analysis, shown in the color plot,
quasiparticle peaks are still visible, which are broadened from
many-body correlations, resulting in a nonzero imaginary
part of the self-energy, and are renormalized with respect
to the BCS dispersion relations. The quasiparticle peaks
computed directly from AFQMC are shown by symbols.
These were obtained following the procedure described above.
Results from different system sizes are shown, which indicate
convergence to the bulk limit within numerical resolution.
(Separate calculations were also carried out to verify that these
densities are indistinguishable from the dilute limit [29].)
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FIG. 2. Computed quasiparticle peaks and spectral functions. The
four panels are for different values of the interaction parameter:
ln(kF a) = 0 (top left), ln(kF a) = 0.5 (top right), ln(kF a) = 1 (bottom
left), ln(kF a) = 1.5 (bottom right). Energies are measured in units of
the Fermi energy εF = h̄2k2

F /2m and momenta in units of the Fermi
momentum kF . The zero of the energy is set to the chemical potential.
The BCS-theory predictions for the quasiparticle energies E±(�k) are
shown by solid lines, while the noninteracting spectral function is
given by the dotted line. The symbols are the quasiparticle peaks
directly computed by AFQMC at the given momentum, for systems
of 18 particles on a 25×25 lattice (orange filled squares), 26 particles
on a 35×35 lattice (pink empty circles), 42 particles on a 39×39
lattice (gold filled circles), and 50 particles on a 41×41 lattice (empty
triangles). Error bars are shown but some are smaller than symbol size.
The light dashed lines are interpolations in the neighborhood of the
minimum. The color plots give the computed spectral functions, in
arbitrary units.

The behavior of the spectral function provides a clear
visualization of the BEC-BCS crossover. In the BEC regime
at ln(kF a) = 0, a large gap, of the order of the energy
needed to break a molecule, separates the two branches,
which are roughly momentum-independent for k � kF . A
smooth evolution of the spectral function is observed. In
the BCS regime at ln(kF a) = 1.5, it starts to resemble the
noninteracting behavior, where a gap is still present at the
Fermi momentum, as in conventional superconductors. The
intermediate values of the interaction show a smooth crossover
between the two regimes. Viewed in the reverse direction,
gradual and significant departures from the BCS results are
seen as the interaction strength is increased.

We also compute two-body dynamical correlations in imag-
inary time, which can again be obtained using our method with
computational cost linear in Ns [49]. From these, we apply
analytic continuation to obtain the density and spin dynamical
structure factors, Sρ(�k,ω) and SS(�k,ω), which can be measured
experimentally using two-photon Bragg spectroscopy [45]. In
particular, the high-momentum behavior is very interesting as
it provides a highly sensitive probe of the BEC-BCS crossover.
We focus our attention on k = 4kF , close to the value recently
investigated experimentally in three dimensions [45].
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FIG. 3. Density (main graphs) and spin (insets) dynamical struc-
ture factors, in units of ε−1

F , at k = 4kF . The four panels show four
different values of the interaction parameter: ln(kF a) = 0 (top left),
ln(kF a) = 0.5 (top right), ln(kF a) = 1 (bottom left), ln(kF a) = 1.5
(bottom right). Solid red lines are AFQMC results, while dashed black
lines are obtained from dynamical BCS theory. The noninteracting
results are also shown (dotted magenta line) in each for reference. The
energies on the horizontal axes are measured in units of the atomic
recoil energy, ωR = h̄2k2/2m.

The results are plotted in Fig. 3 as functions of the frequency
ω for the four values of the interaction parameter. In addition to
AFQMC, we have also performed self-consistent dynamical
BCS theory calculations for the same system, following the
approach in Ref. [66] which studied the three-dimensional
Fermi gas. The results are shown in the figure for comparison.
Because the theory yields the response functions directly, it
helps to provide an additional gauge on the reliability of
analytic continuation analysis. We observe that the dynamical
BCS theory gives results on the response functions that are
qualitatively reasonable. Significant differences arise from the
AFQMC results, however, for example in the peak position
in the spin structure factor for strong interactions. Direct
comparisons of the imaginary-time correlation functions show
significant differences between AFQMC and dynamical BCS
theory as well [47], manifesting particle correlation effects
absent in the latter.

In the density response, a large peak is seen at ω � ωR/2
in the deep BEC regime. Since the particles are tightly paired
to form molecules in this regime, the response of the system at
high momentum is dominated by the recoil of the molecules
themselves, whose mass is twice the atomic mass. In contrast,
the response on the BCS side is simply a free-particle recoil
with the bare mass of the atoms. The behavior of the density

response in the crossover regime interpolates between the
two physical pictures, as is evident from Fig. 3. Starting
from ln(kF a) = 0, we observe a gradual shift of the spectral
weight from the dominant molecular contribution towards the
second peak at ω � ωR . At ln(kF a) = 1, the second peak
dominates, and the molecule peak almost disappears. By
ln(kF a) = 1.5, the response becomes qualitatively similar to
the noninteracting one.

The spin response, on the other hand, is not sensitive
to the molecular mode at ω � ωR/2, since the positive and
negative fluctuations on the spin-↑ and spin-↓ particles cancel
each other. However, we observe that, as it happens in
three-dimensions [45], the intensity of the peak is smaller
on the BEC side of the crossover, and the position of the
peak is shifted towards higher energies. This corresponds to a
suppression of the spin susceptibility, related to the increased
energy required to remove atoms from the molecules.

In summary, we have performed ab initio calculations of
the pairing gaps and dynamical correlation functions for the
two-dimensional interacting Fermi atomic gas. Numerically
exact AFQMC predictions are provided for the pairing
gap. From unbiased imaginary-time correlation functions
computed by AFQMC for the many-body ground state, the
spectral function and the density and spin dynamical structure
factors are obtained, via analytic continuation, across the
BEC-BCS crossover. Much larger system sizes are reached
in our simulations by the development and implementation
of several technical advances. Many internal validations
and self-consistency checks are performed and careful error
quantifications are carried out to maximize the robustness and
reliability of the results. The results will allow benchmarks
of further theoretical and computational developments, and
direct comparisons with experiments. The exact pairing gaps
will also be crucial as an input for formulating a functional
in 2D for density-functional theory calculations [67,68]. Exci-
tations and dynamical correlation functions provide excellent
tools for visualizing the BEC-BCS crossover. In interacting
many-fermion systems in general, they connect directly with
experimentally accessible measurements. Our approach opens
up many new possibilities for the computational studies
of strongly interacting fermionic cold-atomic systems. It is
hoped that the results presented here will also serve as
an illustration of state-of-the-art computational capabilities,
and will stimulate additional theoretical and experimental
activities. The feedback from such activities will in turn spur
further computations and additional developments.
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