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Optical spin-to-orbital angular momentum conversion in the near field of a highly
nonparaxial optical field with hybrid states of polarization
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The conversion of the spin-to-orbital optical angular momentum (AM) of an optical field with hybrid states of
polarization (SOP) in the near-field region is studied based on the angular spectrum method. The spin-to-orbital
optical AM conversion occurs in the longitudinal component of an optical field with hybrid SOP under a highly
nonparaxial circumstance. The longitudinal component exhibits different phases and intensity distributions
compared to that of the transverse component and it depends sensitively on the initial SOP. Our study reveals
that the density distribution of the converted orbital AM can be spatially manipulated by controlling the initial
state of polarization.

DOI: 10.1103/PhysRevA.96.053862

I. INTRODUCTION

Light carries angular momentum (AM) that comprises of
both a spin component associated with the circular polarization
and an orbital component arising from the spatially spiral
profile of the phase in the field cross section [1,2] has
attracted immense attention due to their fundamental interest
and potential applications [3–6]. The interplay between the
spin AM and the orbital AM, especially the conversion and
interaction of spin and orbital AMs in different materials
[7–18], remains a challenging topic in the corresponding fields
with many applications such as the surface plasmon optical
tweezers [13] and the light-driven plasmonic motors [14]. The
conversion of the spin-to-orbital AM has been extensively
studied using the especially designed optical devices such
as the q-plate devices [15], nanostructure materials [16], the
interferometric schemes [17], and nonlinear optic techniques
[18]. The spin-to-orbital AM conversion in a strongly focusing
circularly polarized beam has been reported [19]. As a special
case of a highly nonparaxial beam, a strongly focusing
beam can redirect the circular polarization and generate the
longitudinal component. Furthermore, the spiral phase created
in the longitudinal component leads to the formation of orbital
AM since there is a phase difference of π/2 between the x

and y components in the circular polarization. In the near
field, however, the evanescent wave [20–22] component cannot
be neglected; it even dominates the field under a highly
nonparaxial circumstance, and it attenuates exponentially
with increasing distance. The nonparaxial property of the
evanescent wave can redirect the polarizations and generate
the longitudinal component. Compared to a scalar beam with
uniform polarization distribution in the field cross section, the
vector optical field with hybrid stats of polarization (SOP)
exhibits various polarizations such as linear, circular, and
elliptical polarization that are located at different positions
of the field cross section [23–28]. Since the spin-to-orbital
AM conversion can occur in a nonparaxial beam with a
circular polarization [19], the spin-to-orbital AM conversion
is expected to occur in the longitudinal component in the
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near field of a nonparaxial light field with hybrid SOP. A
three-dimensional (3D) polarization structure or a 3D intensity
structure may also appear in the near field of a highly
nonparaxial beam with hybrid SOP. Although the manipulation
and application of the evanescent wave have been reported in
many works [29–33], the studies pertaining to the variety of
the longitudinal component profile distribution in the near field
resulting from the hybrid SOP is still scarce. Nonetheless, the
spin-to-orbital optical AM conversion and its manipulation in
the near field of a highly nonparaxial beam with hybrid SOP
are scarcely known and its exploration is still in its infancy.

In this work, the spin-to-orbital AM conversion in the near
field of a highly nonparaxial beam with hybrid SOP is studied
within the framework of the angular spectrum method [32–34].
In particular, the longitudinal component of an evanescent
wave plays an important role in the spin-to-orbital AM
conversion in near field. The propagation dynamics of a highly
nonparaxial beam with hybrid SOP in the near field are studied
analytically by including the propagating and the evanescent
waves. The propagating and evanescent waves are decomposed
into transverse and longitudinal components. The spatial shape
of these components and the ratios between their respective
contributions are numerically obtained. The intensity distri-
butions of the vector optical field in the near-field region are
found to be strongly dependent on the spatial distribution of
SOP in the cross section of the field. In particular, the shapes
of the intensity distribution of the longitudinal components
are different from that of the transverse components, and they
depend sensitively on the spatial distribution of SOP in the
field cross section. The evanescent wave dominates the field
in the near field, giving rise to a variety of shapes in the field
distribution. It is found that the spin-to-orbital AM conversion
always occurs in the longitudinal component of both the
evanescent and propagating waves. This work may provide
useful information on how to spatially manipulate the spin-to-
orbital AM conversion in the near field of a highly nonparaxial
beam by choosing the initial SOPs in the field’s cross section.

II. THEORY

We consider the propagation dynamics of a Gaussian beam
with a hybrid SOP in the field cross section in the Cartesian
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FIG. 1. Hybrid SOP distributions in the cross sections of an
optical field for different numbers of polarization topological charge:
(a) m = 1; (b) m = 2. The initial phase θ0 = 0 and the intensity
distributions have been normalized to the peak intensity.

coordinate system. The z axis is taken to be the propagation
axis [23–25]

E(r,θ ) = exp(−r2/w2)[cos(mθ + θ0)ex

+ exp(i�θ ) sin(mθ + θ0)ey], (1)

where r =
√

x2 + y2 and θ = arctan(y/x) represent the polar
radius and azimuthal angle in the polar coordinate system,
respectively. w is the beamwidth. ex and ey are the unit
vectors in the x and y direction, respectively. If �θ = 0,
the x and y components have the same phase. In this case,
the SOP depends only on the azimuthal angle θ and the
vector optical field which is linearly polarized in different
directions in the field cross section. For the case of m = 1
with θ0 = 0 and π/2, the vector fields describe the radially
and azimuthally polarized fields, respectively. Equation (1)
degenerates to the linearly polarized fields, if m = 0. However,
for the case with �θ �= 0 [Eq. (1)], the x and y components
possess different phases, implying a hybrid-polarized vector
field with the linear, circular, and elliptical polarization states
located at different positions in the field’s cross section. In
Fig. 1, we show the hybrid SOP distributions in the cross
sections of an optical field for different numbers of polarization
topological charge with �θ = π/2. The structured hybrid
SOP has been experimentally generated [23–26]. It should
be noted that the hybrid SOP distributions are generated in
the cross section of an expanding incident beam (i.e., with
uniform amplitude) [23–26]. If the incident beam is replaced
by a Gaussian beam, the vector optical field described by
Eq. (1) will be generated. By using the Fourier transform,
the transverse components of the vector angular spectrum
Ẽx(ρ cos ϕ,ρ sin ϕ) and Ẽy(ρ cos ϕ,ρ sin ϕ) of the initial
field are given by [32,33]

(
Ẽx(ρ cos ϕ,ρ sin ϕ)
Ẽy(ρ cos ϕ,ρ sin ϕ)

)
=

(
k

2π

)2
(∫ ∞

0

∫ 2π

0 exp(−r2/w2) cos(mθ + θ0) exp[−ikrρ cos(θ − ϕ)]r dθ dr∫ ∞
0

∫ 2π

0 i exp(−r2/w2) sin(mθ + θ0) exp[−ikrρ cos(θ − ϕ)]r dθ dr

)
, (2)

where k is the wave number. ρ and ϕ are the Fourier plane coordinates in the polar coordinate representation. The relationship
of ρ and ϕ to the transverse Cartesian Fourier-transform variables μ and ν are μ = ρ cos ϕ, ν = ρ sin ϕ, and γ =

√
1 − ρ2,

where μ, ν, and γ denote the direction cosines. If ρ < 1, γ =
√

1 − ρ2 corresponds to propagating (homogeneous) plane waves
at angles cos−1γ (or sin−1ρ) with respect to the z axis, whereas γ = i

√
ρ2 − 1 gives evanescent plane waves, if ρ � 1. Thus the

angular spectrum is described by

A(ρ cos φ,ρ sin φ) =
(

k

2π

)2 √
πkw3ρπim

4
exp( − k2w2ρ2/8)[I(m−1)/2(k2w2ρ2/8) − I(m+1)/2(k2w2ρ2/8)][ cos(mφ + θ0)ex

+ i sin(mφ + θ0)ey − [cos(mφ + θ0) cos φ + i sin(mφ + θ0) sin φ]ρ/γ ez], (3)

where Iα(.) is the Bessel function of the second kind of order α; ez is the unit vector in z direction. The electric-field component
of the cylindrical vector optical field in z plane can be represented as

E(r) = (−1)m
k3w3√π

8

∫ ∞

0
e−k2w2ρ2/8P {Jm(−krρ)[cos(mθ + θ0)ex + i sin(mθ + θ0)ey]

− [Jm+1(−krρ) cos(mθ + θ + θ0)(i − 1) + Jm−1(−krρ) cos(mθ − θ + θ0)(1 + i)]ρ/(2γ )ez} exp(ikγ z)ρ2dρ, (4)

where Jβ(.) denotes the Bessel function of the first kind of order β; P = I(m−1)/2(k2w2ρ2/8) − I(m+1)/2(k2w2ρ2/8). When m = 0,
θ0 = π/4, thus P = 4 exp(−k2w2ρ2/8)/(π1/2kwρ); Eq. (2) is degenerated for a scalar optical field with the uniform circular
polarization in the field cross section:

E(r) = k2w2

2

∫ ∞

0
e−k2w2ρ2/4[J0(−krρ)(ex + iey) − iJ1(−krρ) exp(iθ )ρ/γ ez] exp (ikγ z)ρ dρ. (5)
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FIG. 2. Transverse, longitudinal, and total intensity distributions with different topological charge number of polarization. The waist size
w = 0.1λ and propagation distance z = 0.1λ. Here θ0 = 0 and �θ = π/2 for m = 1 and 2 for the hybrid SOP. Here the coordinate unit is
wavelength λ. The intensity distributions have been normalized to the initial peak intensity.

For the case of ρ < 1, Eq. (4) describes the propagating waves
Epr, whereas the equation gives the evanescent waves Eev, if
ρ � 1.

The numerical integration is taken for the distributions of
the intensity in Eq. (4). The results for the vector optical
field with a waist size of w = 0.1λ for a different topological
number of polarization m at the propagation distance z = 0.1λ

are depicted in Fig. 2. In the figure, θ0 = 0 and �θ = π/2 for
m = 1 and 2 for the hybrid SOP are as shown in the second and
third rows in Fig. 2. It should be noted that the distributions of
the longitudinal components are different from their transverse
components.

The transverse energy (TE) flow of the vector cylindrical
optical field in the xy plane where z = const can be written in
the following form:

S = 1

2
Re[E(r)×H ∗(r)] = 1

2μ0ω
Im[E(r)×(∇ × E(r)∗)],

(6)

where Re[.] and Im[.] represent the real and imaginary parts,
respectively, and the asterisk corresponds to its complex con-
jugation. μ0 and ω are the vacuum permeability and angular
frequency, respectively. The separation of the orbital and spin

AM from the total optical AM has been intensively demon-
strated in the context of both paraxial and nonparaxial beams
[35–41]. Recently, it has been pointed out by Bialynicki-
Birula [39,40] that the orbital and the spin AM cannot be
expressed as integrals of local densities. Their study reveals
that the orbital AM and the spin are intrinsically macroscopic
nonlocal objects. Here we separate the orbital and spin angular
momentum densities of the optical field as [38–41]

Jz ∝ Im[r × (E∗ · (∇)E)] · ez, (7)

Sz ∝ Im[E∗ × E] · ez, (8)

where Jz and Sz describe the z components of the orbital and
spin AM density, respectively.

The numerical results for the distributions of the TE flux
density, spin, and orbital AMs calculated by Eqs. (6) and (7)
with the waist size w = 0.1λ at a propagation distance of
z = 0.1λ for different topological number of polarizations m

are depicted in Fig. 3. The second and third rows in Fig. 3 are
respectively responsible for the hybrid SOP with m = 1 and 2
by setting θ0 = 0, �θ = π/2. It should be noted that the energy
flux density and orbital AM are induced by the longitudinal
components, as recognized from Eqs. (4) and (5). The results
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FIG. 3. Distributions of the spin momentum, energy flux density, and orbital momentum with different topological charge number of
polarization. In the calculation, the parameters adopted are similar to that in Fig. 2.

indicate that the spin-orbital AM conversion occurs in the
longitudinal components when the initial field is circularly
polarized, as shown in Fig. 3 (first row). If m = 1, it is seen
that there are four circular polarization components located
at four different azimuthal positions and the spin-to-orbital
AM conversions take place at the corresponding positions of
the longitudinal component, as shown in Fig. 3. On the other
hand, there are eight different azimuthal positions with the
circular polarization if m = 2. The superpositions of the orbital
AM converted from the spin AM in the longitudinal direction
lead to an irregular distribution of orbital AM. This can be
confirmed from the transverse energy flux density distribution,
as depicted in Fig. 3.

III. CONTRIBUTIONS OF THE LONGITUDINAL
COMPONENT OF EVANESCENT WAVES

IN THE NEAR FIELD

At a highly nonparaxial circumstance, the contribution
of the propagating and evanescent wave components can
be compared in terms to the plane-integrated intensity
(squared modulus) of the propagating Ipr and evanescent fields

Iev [32,33,42–44] as Ipr = ∫∫ |Epr|2dx dy = ∫ 1
0

∫ 2π

0 [|a|2 +
|b|2]ρ dρ dϕ, Iev = ∫∫ |Eev|2dx dy = ∫ ∞

1

∫ 2π

0 [|a|2 + |bev|2]

exp(−2kz
√

ρ2 − 1)ρ dρ dϕ, where a = Ẽ(ρ,ϕ) · e1, b =

Ẽ(ρ,ϕ) · e2, bev = Ẽ(ρ,ϕ) · eev and e1 = (sin ϕ, cos ϕ,0),
e2 = [(1 − ρ2)1/2 cos ϕ,(1 − ρ2)1/2 sin ϕ, − ρ], eev = [i(ρ2 −
1)1/2 cos ϕ,i(ρ2 − 1)1/2 sin ϕ, − ρ]/(2ρ2 − 1)1/2.

Integrations of Ipr and Iev over ϕ lead to a single variable ρ

integral as follows:

Ipr = 2π

∫ 1

0
|T |2|P |2(2 − ρ2)ρ/(1 − ρ2)dρ, (9)

Iev = 2π

∫ ∞

1

|T |2|P |2ρ(2ρ4−3ρ2+2) exp(−2kz
√

ρ2−1)

2ρ4−3ρ2+1
dρ,

(10)

where T = im(2π5/2ρw3/8λ3) exp(−k2ρ2w2/8). The ratio
Iev/(Ipr + Iev) for a highly nonparaxial case of w = 0.1λ with
a different number of topological charges m as a function
of the propagation distance z are illustrated in Fig. 4(a).
It is clearly seen that the evanescent wave component Iev

dominates the near field and it drastically decreases with
an increasing propagation distance. Upon further increase
in the propagation distance above z = 0.5λ, Iev continues
to decay and approaches zero. Thus the contribution of the
evanescent waves can be neglected for z > 0.5λ. As the
number of topological charge m increases, it is found that
Iev increases. This is because the inhomogeneous distributions
of x and y components [i.e., cos(mθ ) and sin(mθ )] lead to the

053862-4



OPTICAL SPIN-TO-ORBITAL ANGULAR MOMENTUM . . . PHYSICAL REVIEW A 96, 053862 (2017)

(a)

(b)

FIG. 4. Ratio of the plane-integrated intensity of different com-
ponents for different number of polarization topological charges
m: (a) Iev/(Ipr + Iev) as a function of the propagation distance z;
(b) (Iev)L/(Iev)T as a function of the waist size w in the interval
[0.01λ,λ].

spatial variations of evanescent wave in x and y components.
Furthermore, the coherent superposition of the evanescent
wave in x and y components gives rise to the increase of
Iev, as recognized from Eqs. (4) and (5).

The longitudinal component cannot be neglected in the
near field for a highly nonparaxial case. Since the evanescent
wave component dominates the near field, we thus discuss the
contributions of the longitudinal and transverse components
in the evanescent wave part with the highly nonparaxial case
(w = 0.1λ). Their relative contributions can be compared by
the ratio of (Iev)L/(Iev)T . (Iev)T and (Iev)L are the transverse
and longitudinal plane-integrated intensities of the evanescent
wave, respectively, which are expressed as

(Iev)T = 2π

∫ ∞

1
|T |2|P |2 3ρ3 − 2ρ

2ρ2 − 1
dρ, (11)

(Iev)L = 2π

∫ ∞

1
|T |2|P |2 ρ5

2ρ4 − 3ρ2 + 1
dρ. (12)

As described in the above equations, the transverse and
longitudinal contributions are described by the plane-wave
spectrum. According to the Parseval theorem, the values (Iev)T
and (Iev)L keep invariant when propagating in free space.
By obtaining the (Iev)L/(Iev)T ratio of the initial plane, it
is therefore sufficient to compare the relative contributions

of the longitudinal and transverse components. The ratio
(Iev)L/(Iev)T versus the waist size w is shown in Fig. 4(b).
The ratio (Iev)L/(Iev)T is enhanced with the increase of w

and then is saturated at a certain value w as shown in
Fig. 4(b). Furthermore, the value w for the saturation shifts
to a higher value and the ratio (Iev)L/(Iev)T decreases when
the topological charge number of polarization m increases as
shown in Fig. 4(b).

In order to further explore the properties of the spin-orbital
AM conversion, an understanding of the vectorial structure in
the near field is important to gain insight into the properties
of the evanescent and propagating waves. The comparison
between the longitudinal and transverse components of the
propagating and evanescent waves, as well as the transverse
energy flux of the propagating and evanescent waves in the
near field is analyzed, as shown in Fig. 5. For the longitudinal
components, it is found that the reshaped intensity distributions
of the evanescent wave are the same as that of the propagating
wave component. In addition, the spatial size of the evanescent
wave is smaller than that of the propagating wave. It is
interesting to note that the longitudinal components of the
reshaped intensity distribution are different than that of their
corresponding transverse components. The reshaping of the in-
tensity distribution of the longitudinal components of the evan-
escent wave is attributed to the SOP distribution in the field
cross section. The evanescent waves dominate the field in near
field and sensitively depend on the distribution of SOP in the
field cross section as shown in Fig. 5. The transverse energy
flux induced by the longitudinal component of both evanescent
and propagating waves leads to the appearance of the orbital
angular momentum.

IV. CONCLUSION

The spin-to-orbital angular momentum conversion in the
longitudinal components of a vector optical field with hybrid
SOP in the near field is studied in detail. The underlying
physics are explored by examining the longitudinal compo-
nent with the 3D vectorial structure of a high nonparaxial
beam. The spatial shapes of the intensity distribution of
the longitudinal components are different than that of the
transverse components, and they depend sensitively on the
number of polarization topological charges and the SOP
distribution. The distribution of SOP in the field cross section
reshapes the intensity and the phase distributions of the
longitudinal component. The ability to manipulate the intensity
and the phase distributions of the longitudinal component by
controlling the SOP distributions leads to the more flexible
control of the spin-to-orbital angular momentum conversion
scenarios of a highly nonparaxial beam with hybrid SOP in
the near field. The spin-orbital AM conversion in the near field
of a highly nonparaxial vector beam discussed in the present
work is different from the usual method of spin-orbital AM
conversion by using a q-plate convertor [15]. Practically, to
obtain a highly nonparaxial vector beam with hybrid SOP is
the key to realize the spin-orbit AM conversion as described
in this present approach. However, it is difficult to obtain such
a highly nonparaxial vector optical field in subwavelength
scale. One possible approach is to generate the highly
nonparaxial vector optical field in nanoscale by designing a
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FIG. 5. Transverse component, longitudinal component, and transverse energy flux density distributions of the evanescent wave and
propagating wave for an optical field with (a) circular polarization and (b) m = 1, θ0 = 0, and �θ = π/2 for the hybrid SOP. The waist size
w = 0.1λ and propagation distance z = 0.1λ. Here the coordinate unit is wavelength λ. The intensity distributions have been normalized to the
initial peak intensity.

microstructure metasurface [45]. Another feasible approach
is to generate the highly nonparaxial vector field in electro-
magnetic wave regime [30,31]. Once the highly nonparaxial
beam with hybrid SOP is generated, the spin-orbital AM
conversion can occur in the longitudinal component in the near
field.
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