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High-dimensional quantum channel estimation using classical light

Chemist M. Mabena
CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa and School of Physics, University of the Witwatersrand,

Johannesburg 2000, South Africa

Filippus S. Roux*

National Metrology Institute of South Africa, Meiring Naudé Road, Brummeria, Pretoria, South Africa
and School of Physics, University of the Witwatersrand, Johannesburg 2000, South Africa

(Received 13 October 2017; published 28 November 2017)

A method is proposed to characterize a high-dimensional quantum channel with the aid of classical light. It
uses a single nonseparable input optical field that contains correlations between spatial modes and wavelength to
determine the effect of the channel on the spatial degrees of freedom. The channel estimation process incorporates
spontaneous parametric up-conversion (sum frequency generation) to perform the necessary measurements.
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I. INTRODUCTION

Quantum communication offers a fundamentally secure
form of communication [1,2]. Some of the quantum com-
munication protocols are based on quantum entanglement [3].
In an ideal world, these protocols offer perfect security, but in
practice the channel could introduce noise and distortions that
would limit the operation of these schemes.

Different degrees of freedom are used for the photonic
implementations of quantum communication. In the paraxial
limit, the angular momentum of an electromagnetic field can
be decomposed into the spin angular momentum (SAM) and
orbital angular momentum (OAM) degrees of freedom [4–6].
An extensive amount of literature has focused on the use
of SAM (polarization) [7–10]. However, a disadvantage of
polarization is being limited to a two-dimensional Hilbert
space. On the other hand, the OAM degrees of freedom
define an infinite dimensional Hilbert space [11–16]. Such
a high-dimensional Hilbert space provides better security and
more information capacity [17–19]. Photons can be prepared in
an OAM entangled state with the aid of spontaneous parametric
down-conversion (SPDC) [20,21].

Free-space optical and quantum communication involve
transmission through a turbulent atmosphere. If the infor-
mation or entanglement of the photons is encoded in terms
of the spatial (OAM) degrees of freedom, the turbulence,
which causes scintillation that distorts the optical field [22],
would result in a loss of information or entanglement [23–31].
For instance, in a free-space quantum channel, where the
entangled state is carried by a pair of photons propagating
through turbulence, the distortions due to the scintillation may
cause the protocol to fail. The success of such a free-space
communication system may thus require the use of an active
correction system that compensates for the distortions. Such
a correction system involves two parts. One is a channel
characterization process that determines the detailed nature of
the distortions. The other is a process to remove the distortions
based on the information obtained from the characterization
process. An example of such a system is an adaptive optical
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system [32–34]. It measures the distortions of the wave front
using a wave-front sensor and then removes these distortions
with a deformable mirror. For a quantum channel, it is more
natural to use quantum process tomography to determine the
distortions of the channel [35–37]. However, the implementa-
tion of quantum process tomography is resource intensive [38].
Another approach is to use quantum error correction [39–41].

Recently, a method was proposed to use classical light for
the characterization of a quantum channel [42]. The spatial
degrees of freedom of classical light are affected in the
same way as those of single photons when they propagate
through turbulence. Therefore, correlations that exist between
the spatial degrees of freedom and polarization, which is
not affected by turbulence, gives the classical light the same
capability as one would have with entangled photons passing
through a one-sided channel. As a result, one can exploit the
same quantum process tomography formalism to analyze the
quantum channel even though one uses classical light for
the assessment. It is assumed that the channel retains the
purity of the state. When the correlation exists between the
spatial modes and polarization, the implementation is limited
to two-dimensional spaces (qubits).

The assumption that the channel retains the purity of the
state is not a limitation, but rather a benefit. The reason
is as follows. A short optical pulse propagating through a
turbulent medium experiences a varying refractive index that
is effectively frozen in time. The varying refractive index
imparts random-phase modulations on the optical field, which
means that the scintillation caused by the turbulent medium is a
unitary process. Viewed as a quantum channel, it maintains the
purity of the state. However, turbulence changes with time. So,
if the measurements require an integration period that is longer
than the time scale over which the turbulence changes, then it
would cause mixing of the state and a loss of purity. It also
implies a loss of information, preventing one from being able
to correct the channel to the same level as in the unitary case.
Therefore, if the scheme allows one to do the characterization
of the channel while it maintains purity, one can do a better
correction of the channel.

Here, we generalize the classical characterization of
quantum channels to higher dimensions by using frequency
(wavelength) instead of polarization. As with polarization,
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frequency is not affected by turbulence; it does not cause
cross talk among different wavelengths. The reason is that
turbulence is a linear system that is shift invariant in time.
The amount of scintillation that a turbulent medium imparts
on an optical beam propagating through it depends on the
wavelength. However, if the bandwidth within which these
wavelengths are chosen is small enough, the difference would
be negligible.

By implication, we need to replace the polarization optics
used in the measurement process with appropriate optical
methods that can manipulate the frequency degrees of freedom.
To this end, we propose to use spontaneous parametric
up-conversion (SPUC), also called sum-frequency generation
[43]. The measurements are made by sending the output after
the channel, together with a specially prepared optical field
(the measurement “state”) through a nonlinear crystal. The
idea is that the measurement state will select a specific part
of the output state to produce a successful up-conversion that
would lead to photon detection. In this way, all the different
measurements required for the tomography process can be
obtained. To show that this scheme works, we first provide a
heuristic discussion in Sec. II. This discussion covers all the
aspects of the process, based on assumptions about the nature
of the SPUC process. In Sec. III we then focus on the SPUC
process by performing a more detailed calculation to show
that the process does indeed work as we propose. We conclude
with a few pertinent aspects that are discussed in Sec. IV.

For the spatial degrees of freedom, we’ll consider an OAM
basis, such as the Laguerre-Gauss (LG) modes [11]. However,
we’ll only consider the azimuthal degrees of freedom and
ignore the radial degrees of freedom of these modes. It is
readily possible to generalize the analysis to incorporate the
radial degrees of freedom, but it makes the analysis more
complex. The detailed analysis in Sec. III uses the LG modes
expressed in terms of generating functions, but with the radial
index set to zero.

II. CLASSICAL ESTIMATION OF A QUANTUM CHANNEL

A. Principle

The general approach to estimate a quantum channel with
the use of classical light assumes that one can use two different
degrees of freedom of light, one of which is affected by the
channel and another which is not affected. It is also assumed
that the channel maintains the purity of any quantum state that
propagates through it. One would then prepare an input state
(optical field) that contains correlations between these different
degrees of freedom. Although a classical optical field, the input
field is represented here in terms of Dirac notation,

|ψin〉 =
∑

n

|An〉|Bn〉αn, (1)

where An and Bn represent two different degrees of freedom
denoted by separate kets, the n indicates different basis
elements in these degrees of freedom, and αn denotes the
expansion coefficients, such that

∑
n |αn|2 = 1. It is assumed

that the channel only affects the B degree of freedom. The
output after the channel is obtained by replacing each |Bn〉 in
terms of a superposition of several of them to represent the
scattering process.

One can now use tomography measurements to determine
the channel. For this purpose, projective measurements are
made on both degrees of freedom in terms of the basis given by
the original kets and in terms of mutually unbiased basis with
respect to these original kets. The benefit of using classical
light is that one does not need to do these measurements
sequentially. Instead, one can use one bright light pulse with
the optical field given by Eq. (1) and then divide the output
into separate channels where all the different measurements
are performed simultaneously.

In the previous implementation [42], the B degree of
freedom is the spatial modes, which are affected by turbulence
in a free-space channel, and the A degree of freedom is
polarization, which is not affected by the turbulence. Here,
we still have the B degree of freedom as the spatial modes, but
the A degree of freedom is the wavelength (frequency), which
is also not affected by turbulence.

So, our input state is expressed by

|ψin〉 =
∑

n

|λn〉|�n〉αn, (2)

where λn represents the different wavelengths and �n is the
azimuthal index of different OAM modes. The channel is
a free-space channel and is represented by the effect of
turbulence on the OAM modes. The turbulence operation,
which is represented by a Kraus operator T̂ , would scatter
the OAM modes to other OAM modes,

T̂ |�n〉 =
∑
m

|�m〉Tmn. (3)

Here, Tmn is a matrix representation of the Kraus operator. It
is the purpose of this scheme to determine the matrix Tmn;
to measure the values of its matrix elements. The distortion
correction then involves the design of another matrix that
would compensate for the distortion caused by the Kraus
operator. Hence, after the channel, we obtain

|ψout〉 = T̂ |ψin〉 =
∑

n

|λn〉T̂ |�n〉αn

=
∑
mn

|λn〉|�m〉Tmnαn. (4)

Since the indices of Tmn are respectively contracted on the
basis elements of different degrees of freedom, judicious
measurements can uncover all the information (magnitudes
and phases) about Tmn (apart from an overall phase). Thus,
one can recover the Kraus operator for the channel and design
another operation that would compensate for it.

When the unaffected degree of freedom is polarization, one
can use polarization optics to perform the different projective
measurements that are needed to determine the Kraus operator
for the channel. In the case where we change the unaffected
degree of freedom to be the wavelength, we need a different
method to manipulate the wavelength degree of freedom.
SPUC provides us with such a method. The measurements
are made by preparing optical fields, which we call the
measurement states, in terms of combinations of the different
bases for the different degrees of freedom. These measurement
states are sent through a nonlinear crystal, together with the
output field to perform the up-conversion.
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FIG. 1. Optical setup used to prepare the input optical field.

The main issues concerned with the implementation of this
method are (a) the preparation of the input state; (b) the prepa-
ration of the measurement states; and (c) the measurement
process itself. We’ll start by discussing the preparation of the
input state.

B. Input state preparation

The input state, as generically expressed in Eq. (2), is by
design nonseparable in terms of the two chosen degrees of
freedom: wavelength and OAM. To prepare such an optical
field, one starts with light consisting of several discrete fre-
quencies, such as a frequency comb laser beam [44]. The
frequency comb laser beam consists of a sequence of laser
pulses that occur at a rate given by the pulse repetition
frequency. The spectral components of the frequency comb are
therefore separated by the pulse repetition frequency, which is
typically on the order of a 100 MHz to a few GHz.

The proposed setup to prepare the input optical field is
shown in Fig. 1. One can use a diffraction grating to separate
the different spectral components of the frequency comb and
some apertures to select out specific components. Note that
we select components that are separated by twice the pulse
repetition frequency. The reason for this is explained below
when we discuss the preparation of the measurement states.
With the aid of a lens in a 2-f setup, these components are then
incident side by side on a spatial light modulator (SLM) where
each spectral component is modulated with a specific OAM
mode—different OAM modes for different wavelengths.

The spectral components are then recombined using another
2-f system followed by another diffraction grating. The
resulting beam now contains correlations between spectral
components and the azimuthal indices. In contrast to the vector
modes that are used in the previous scheme [42], the current
method has no fundamental limitation in the dimensionality of
the Hilbert space. Apart from practical limitations such as the
size of the SLM, this approach can be used to generate states
that are nonseparable in an arbitrary number of dimensions.

The input optical field is sent through the channel to
produce the output field, as represented in Eq. (4). The Kraus
operator only acts on the spatial degrees of freedom and not
on the frequency or wavelength degrees of freedom. As a
result, the OAM modes are scattered into other OAM modes.
Based on the construction of the input state, the output state
now contains information about the Kraus operator of the
channel. Appropriate measurements on the output state can

now uncover the Kraus operator. The measurement process,
which employs SPUC, is explained next.

C. Up-conversion measurements

Our proposal is to use the SPUC process to implement the
measurement scheme. The inspiration for this proposal comes
from studying the spontaneous parametric down-conversion
(SPDC) process. In an SPDC process, an input pump beam
is incident on a nonlinear crystal. Provided that the phase
matching condition is satisfied, there is a probability for a
photon from the pump beam to be down-converted to a pair
of photons with frequencies that add up to the pump beam
frequency. This process incorporates energy and momentum
conservation, which implies the creation of entanglement of
the respective degrees of freedom in the output photon pair.
It has been shown, both theoretically and experimentally, that
under general conditions, SPDC conserves OAM [20].

For a pump beam with a Gaussian profile, the output after
the SPDC process can be expressed as

|�SPDC〉 =
∑

�

∫
|�,ω〉s |�̄,ωp − ω〉i�(ω; |�|) dω, (5)

where ωp is the angular frequency of the pump, � represents
the azimuthal index, with �̄ = −�, the subscripts s and i denote
the signal and idler photons, respectively, and �(ω; |�|) is a
coefficient function.

Ideally, one would like the coefficient function to be
constant over a range of azimuthal indices and frequencies.
If the frequencies are selected to be relatively close to each
other, which is made possible using a frequency comb, one
may assume that the coefficient function is independent of
frequency over that range. However, it would in general depend
on the magnitudes of the azimuthal indices, especially for
the high-dimensional case. Based on this understanding, we’ll
assume that one can replace �(ω; |�|) → �(|�|).

The up-conversion process is now given by the dual of the
down-converted state 〈�SPUC| = (|�SPDC〉)†, provided that the
output that is measured after the up-conversion is a photon
with a Gaussian profile, analogous to that of the pump beam in
the down-conversion process. The tomography measurements
are then given by

Mmea = 〈�SPUC|ψout,ψmea〉, (6)

where |ψmea〉 is the measurement state and |ψout〉 is the output
state after the channel, given in Eq. (4). The probability for a
successful up-conversion (detection of an up-converted pho-
ton) is given by Pup = |Mmea|2. We’ll assume the measurement
state corresponds to the signal and the output state to the idler,
as defined in Eq. (5).

One way to look at this process, is to consider the effective
state with which the output state is overlapped, by first
considering the overlap of the measurement state with the
SPUC process,

〈ψeff| = 〈�SPUC|ψmea〉. (7)

Consider, for example, the case where the measurement state
contains superpositions in both the degrees of freedom,

|ψmea〉 = (|�1〉a + |�2〉b)(|ω1〉c + |ω2〉d), (8)
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FIG. 2. Diagrammatic representation of the measurement process.

where a, b, c, and d are complex coefficients. The effective
state then becomes

〈ψeff| = [�(|�1|)a〈�̄1| + �(|�2|)b〈�̄2|]
× (〈ωp − ω1|c + 〈ωp − ω2|d). (9)

One can choose the values of a and b to compensate for the
difference in magnitude between �(|�1|) and �(|�2|). The final
measurement is then given by

Mmea = 〈ψeff|ψout〉. (10)

We see that 〈ψeff| is the dual of a specific state that would
be selected by inner product from the output state. Since one
can design the measurement state |ψmea〉, one has control over
〈ψeff|.

The measurement can be made with the proposed setup
shown in Fig. 2. The output after the channel is optically com-
bined with a measurement state that is specifically prepared for
each measurement. The preparation of the measurement states
is discussed in more detail below. The combined beam is then
sent through a nonlinear crystal to perform up-conversion.
The output after the up-conversion process is coupled into
a single mode optical fiber, which selects out the Gaussian
beam profile. The photons that are coupled into the fiber are
detected with a single-photon detector, such as an avalanche
photon diode.

D. Tomography

To determine the matrix elements of the Kraus operator, one
can make specific measurements on the output state, given in
Eq. (4). One can ignore αn under the assumption that one can
make these values all equal in the preparation of the input state.
So, we express the output state as

|ψout〉 =
∑
mn

|�m〉|ωn〉Tmn, (11)

where we converted wavelength into angular frequency.
Clearly, one can obtain the magnitude of every matrix

element by using a measurement state with a single frequency
and a single OAM mode. The measurement state

|ψmea〉 = |�̄u〉|ωp − ωv〉, (12)

where the subscripts u and v represent specific components,
leads to

〈ψeff| = 〈�u|〈ωv|. (13)

The projective measurement then gives

|〈�u,ωv|ψout〉|2 =
∣∣∣∣∣
∑
mn

〈�u,ωv|�m,ωn〉Tmn

∣∣∣∣∣
2

= |Tuv|2. (14)

repω

(a)

rep2ω

(b)

FIG. 3. Diagrammatic representation of modulation process,
using (a) pulse repetition frequency and (b) twice pulse repetition
frequency. The black dots denote those spectral components that are
chosen as part of the input state.

To obtain the relative phases of the elements, one needs to
produce superpositions of the frequencies and/or OAM modes.
If, for instance, the measurement state contains a superposition
of two frequencies,

|ψmea〉 = |�̄u〉(|ωp − ωv〉 + |ωp − ωw〉) 1√
2
, (15)

where the subscripts u, v, and w represent specific compo-
nents, then we get

〈ψeff| = 〈�u|(〈ωv| + 〈ωw|) 1√
2
. (16)

In this case, the projective measurement produces an interfer-
ence term

|〈ψeff|ψout〉|2 = 1
2 |〈�u,ωv|ψout〉 + 〈�u,ωw|ψout〉|2

= 1
2 |Tuv + Tuw|2

= 1
2 (|Tuv|2 + |Tuw|2 + T ∗

uvTuw + TuvT
∗
uw), (17)

which can be used to obtain the relative phase of the elements.

E. Measurement state preparation

Superpositions of OAM modes are readily produced by the
appropriate modulation performed on the SLM. To produce
superpositions of frequencies, one can use amplitude modula-
tion with a suppressed carrier. The modulation frequencies
need to be on the order of the pulse repetition frequency
of the frequency comb. Currently, electro-optical modulators
and acousto-optical modulators can perform modulation of
optical signals into the GHz range. The modulation processes
for two different cases are shown in Fig. 3. Remember that
the spectral components that are used in the preparation of
the input state are separated by twice the pulse repetition
frequency.

If the two components in the superposition lie next to each
other, separated by twice the pulse repetition frequency, one
would select a component between these two components
and modulate it by the pulse repetition frequency, as shown
in Fig. 3(a). This is made possible by the way we have
chosen spectral component for the preparation of the input
state.

On the other hand, if the spectral components of the
superposition are further apart (say four times the pulse
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FIG. 4. Diagrammatic representation of the complete channel
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repetition frequency), we select a spectral component halfway
between the two required components and modulate it by
half the separation frequency (two times the pulse repetition
frequency), as shown in Fig. 3(b).

The relative phase between the two components in the
superposition is determined by the phase of the modulation
signal. Since multiple measurements with different relative
phases need to be made simultaneously, it is necessary to
maintain coherence among the different modulation signals in
the different measurements.

After the temporal modulation, which produces the required
superposition in frequency components, the beam is spatially
modulated with a SLM to obtain the spatial profile for the
measurement state. This is done by producing a superposition
of the spatial mode on the SLM. Depending on the required
accuracy of the measurement, the fidelity of the spatial
mode can be improved with the aid of complex amplitude
modulation [45]. Note that the measurement state does not
have correlations between the bases elements of the different
degrees of freedom, as one has for the input state; the
measurement states are separable states in terms of these
degrees of freedom.

F. Complete process

Putting the different building blocks together, one obtains
an overall process that can be summarized as in Fig. 4. After
the input state is prepared, using the process shown in Fig. 1,
and sent through the channel, the output is divided by an array
of beam splitters. This allows all the different measurements
to be made simultaneously. Each measurement is made with a
setup as shown in Fig. 2 and it incorporates the preparation of
a measurement state that may require a temporal modulation,
as shown in Fig. 3.

The information that is obtained from the different measure-
ments is then used to reconstruct the Kraus matrix. This in turn
is used to produce a processing matrix that will compensate
for the distortions caused by the Kraus operator.

What remains to be done is to consider the up-conversion
process in more detail, to confirm the process represented in
Eqs. (6)–(9). In addition, we need to consider the nature of the
coefficient function �(|�|), so that we can understand its effect
in Eq. (9). For these purposes, we perform a more detailed
calculation next.

III. EXPLICIT CALCULATION

Here, we provide a detailed calculation of the up-conversion
process to show that it does produce the required measurement.
This calculation also reveals the nature of the coefficient
functions �(|�|) that appear in Eq. (5). The calculation can
be expressed as an integral representation of Eq. (6):

Mmea =
∫

�SPUC(a1,a2)ψout(a1)ψmea(a2) da2
1 da2

2, (18)

where a1 and a2 are two-dimensional spatial frequency vectors,
associated with the output state and the measurement state,
respectively.

To perform the calculation in Eq. (18) as effectively as
possible, we employ some careful considerations and make
a few simplifying assumptions. First, we assume that the
turbulence in the channel only causes weak scintillation. Under
such conditions, the scintillation process can be described by
a single phase screen. In turn, this implies that the result is
independent of the propagation distance; the propagation has
no effect. As a result, both the output state and the measurement
state are independent of the wavelength. In the calculation, the
wavelengths are determined by those in �SPUC(a1,a2).

The SPUC function �SPUC(a1,a2) serves as a kernel
function in Eq. (18). It is composed of the product of the phase
matching function S(a1,a2) and the mode that couples into
the single mode fiber g(a3), where a3 is the spatial frequency
of the up-converted photon. The transverse phase matching
conditions replace a3 with a linear combination of the spatial
frequencies a1 and a2. As a result, the kernel function for the
up-conversion process has the form

�SPUC(a1,a2) = g(a1,a2)S(a1,a2). (19)

The phase matching function is a sinc function, which one can
approximate with a Gaussian function in the limit where the
crystal is much shorter than the Rayleigh range of the coupled
mode (the thin crystal limit). Hence,

S(a1,a2) = sinc

[
L

2
	kz(a1,a2)

]

≈ exp

[
−L

2
	kz(a1,a2)

]
, (20)

where 	kz(a1,a2) is the mismatch in the longitudinal com-
ponents of the propagation vectors. Assuming paraxial beams
and collinear phase matching, with different wavelengths for
the output state and the measurement state, we obtain an
expression for 	kz, given by

	kz(a1,a2) = πn1n2|λ1a1 − λ2a2|2
λ1n2 + λ2n1

, (21)

where λ1 and λ2 are the wavelengths of the output state and
the measurement state, respectively, and n1 and n2 are the
refractive indices that are, respectively, experienced by the
output state and the measurement state in the nonlinear crystal.
The transverse phase matching condition gives

a3 = (n1a1 + n2a2)(λ1 + λ2)

λ1n2 + λ2n1
. (22)
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Combining all the above, we obtain an expression for the
SPUC kernel function, given by

�SPUC(a1,a2) = �(λ1,λ2) exp

[
−π2w2

c

n2
3

|n1a1 + n2a2|2

−πn1n2L|λ1a1 − λ2a2|2
2(λ1n2 + λ2n1)

]
, (23)

where wc is the size of the Gaussian mode that couples into
the fiber, � is an overall constant that may depend on the
wavelengths, and

n3 = λ1n2 + λ2n1

λ1 + λ2
(24)

is the refractive index seen by the up-converted photon in
the nonlinear crystal. Since we are not interested in the global
magnitude of the process, as it will cancel out in normalization,
we’ll henceforth ignore �. The expressions in Eqs. (21), (22),
and (24) are derived in the Appendix.

Both the output state and the measurement state can be
expressed as superpositions of LG modes. The point of this
exercise is to show that the three-way overlap, given in Eq. (18),
serves as an inner product for these LG modes, because this
allows the extraction of the coefficients in the expansion from
which the information of the Kraus operator is obtained. For
this purpose, it suffices to select individual LG modes for the
output state and the measurement state. In the calculation, we
use the generating function for the angular spectra of the LG
modes [46] with zero radial index (p = 0),

GLG(a; μ,T ,w) = N exp[iπ (a + iT b)wμ − π2w2|a|2],

(25)

where w is the mode size, T is given by the sign of the
azimuthal index, μ is the generating parameter, and

N = w

(
2π2|�|

|�|!
)1/2

, (26)

is the normalization constant, which depends on the azimuthal
index. The angular spectrum for a particular LG mode is
produced by taking the number of derivatives, with respect
to the generating parameter equal to the magnitude of the
azimuthal index and setting the generating parameter to zero,
where after we substitute in the appropriate normalization
constant.

One can now substitute Eq. (23) and

ψout(a1) → GLG(a1; μ1,T1,w1),

ψmea(a2) → GLG(a2; μ2,T2,w2) (27)

into Eq. (18) and evaluate the integrals. We also apply the thin
crystal limit, by setting

β = Lλ3

πw2
c

→ 0, (28)

where

λ3 = λ1λ2

λ1 + λ2
(29)

is the up-converted wavelength. The result is a generating
function for the measurements Mmea, given by

G = πw1w2N1N2n
2
3

W

× exp

[
μ1μ2(1 − T1T2)n1n2w1w2w

2
c

2W

]
, (30)

where

W = n2
1w

2
2w

2
c + n2

2w
2
1w

2
c + n2

3w
2
1w

2
2. (31)

One can use Eq. (30) to generate the up-conversion
probability for any values of the azimuthal indices of the output
state and the measurement state. However, it is quite clear
that, unless the azimuthal indices have the same magnitude
and opposite signs, the result would be zero. It thus follows
that the up-conversion process does indeed act like an inner
product operation (apart from the flip in the sign of the
azimuthal index), and that it can therefore be used to extract
the information of the Kraus operator from the output state.

The expression in Eq. (30) can also be used to determine the
nature of the coefficient function �(|�|) that was introduced in
Eq. (5). Our assumption that �(|�|) is independent of the fre-
quency is validated by the fact that the frequency components
in the frequency comb that we select in our implementation
are extremely close to each other. By expanding Eq. (30) to all
orders in μ1μ2, we obtain the coefficients of the LG modes in
the SPDC state (dual of the SPUC process). The coefficients
of this expansion are the � functions and they are given by

�(|�|) =
(

n1n2w1w2w
2
c

W

)|�|
, (32)

which we have normalized so that �(0) = 1. When the
measurement state is designed, one can weigh the coefficients
of the different LG modes to compensate for the difference
in the magnitude of �(|�|), due to different values of |�|, that
would be produced in the up-conversion process, as seen in
Eq. (9).

If the different wavelengths are very close to each other,
then the refractive indices seen by the output state and the
measurement state would be approximately the same. Critical
phase matching would then imply that n1 = n2 = n3. If,
furthermore, we assume that the mode sizes of the output
state and the measurement state are the same w1 = w2 = w0,
then the coefficient function can be expressed as

�(|�|) = (2 + α)−|�|, (33)

where

α = w2
0

w2
c

. (34)

One would prefer that the coefficient function remains as
constant as possible as a function of |�|—in other words,
close to 1. From Eq. (33), we see that the best one can
do is �(|�|) = 2−|�|, which implies that the best operating
conditions are when w0 � wc.
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IV. DISCUSSION AND CONCLUSIONS

The most common way to characterize a quantum channel
is through quantum process tomography. The disadvantage of
quantum process tomography is that one needs to prepare a
set of basis states. In addition, one also needs to prepare an
ensemble of identical input states. In other words, one needs
to prepare the same state repeatedly to build up statistics
from which one can extract the required information. For
an increasing number of dimensions, quantum process to-
mography quickly becomes unpractically complex. Moreover,
due to the required repetition of measurements, the complete
measurement process runs over an extended period during
which the conditions of the channel may change. As a
result, it would not be possible to characterize a single
realization of turbulence. The best it can do is to give
information about the average behavior over all turbulence
realizations.

In contrast, the use of classical light, as proposed here
and in [42], allows one to perform the process with a single
pulse of bright light. A higher dimensionality does not lead
to longer measurement times, but instead to a more complex
measurement system. Therefore, it is not necessary to prepare
an ensemble of input states and a large set of input basis
states. The single-pulse implementations enable the classical
scheme to characterize single realizations of turbulence, which
represents a process that maintains purity.

The use of wavelength, instead of polarization as was done
in [42], provides the means to implement channel charac-
terization for arbitrary dimensions. There is no fundamental
barrier to the number of dimensions. Therefore, the method
is scalable. However, the complexity of the measurement
system would increase drastically with increasing number of
dimensions.

It is important to note that this scheme differs from
the conventional classical methods that are based on the
preparation of a set of orthogonal input modes, which are
used to determine the classical cross-talk matrix. Instead, our
scheme only requires the preparation of a single nonseparable
input state.

When preparing the input state, one needs to ensure that
the modes associated with different wavelengths are properly
separated on the SLM. To form beams that are well separated,
the incident beam needs to illuminate enough lines on the
diffraction grating. The required number of illuminated lines
is N ∼ λ/	λ. For a pulse repetition frequency of 1 GHZ and
a nominal wavelength of λ = 1 μm, the number of lines that
needs to be illuminated is on the order of 300 000. Diffraction
gratings with several thousand lines per mm are commercially
available. So, the input beam size needs to be on the order of
100 mm to illuminate enough lines. Although challenging, this
should be doable. Often the best setup for this type of system
is to operate the diffraction gratings at the Littrow angle [47].
This will also avoid too much astigmatism in the first diffracted
order.

For a three-dimensional implementation as we show here,
the maximum size of the beam on the SLM would be one-
fifth of the total width of the SLM (taking those beams that
are blocked in between, into account). The typical number of
pixels across the SLM is on the order of a thousand. Hence,

one can expect that each beam on the SLM would have about
200 pixels on a side (200 × 200 in total) with which it can
be modulated. This should be more than enough to achieve a
reasonably well-defined spatial mode. For higher dimensions,
one would obtain progressively smaller numbers of pixels. At
some point one would need to separate the beams onto different
SLMs. This will make the system more complex, but it does
not introduce a fundamental limit.

The modulation process that is used in the preparation of the
measurement state is assumed to be an amplitude modulation
with a suppressed carrier. It should be noted that to implement
this form of modulation may require a more involved setup
than what a single optical modulator would provide. Details
of such a setup would depend on the experimental equipment
that are used in the implementation.

In a down-conversion process, the signal and idler photons
propagate at particular angles, depending on their frequencies.
One can design the down-conversion process so that the signal
and idler both propagate collinear with the pump at a particular
frequency, but for different frequencies they would have
nonzero angles with respect to the pump, because different
frequencies are produced with different angles of propagation,
as governed by the phase-matching conditions of the crystal.
The inverse process (up-conversion) would therefore require
that the different frequencies enter the nonlinear crystal at
the required angles to produce a successful up-conversion
incorporating all the different frequencies. However, if the
frequencies are close enough to each other, the differences in
these angles would be negligible. This would be the case for
a frequency comb where the differences among the different
frequency components are on the order of a GHz. In that
case, the differences in frequency are too small to produce
significantly different propagation angles. (See for instance
Appendix C in [48].)

The up-conversion process is assumed to employ critical
phase matching, such as type-1 phase matching. For higher
efficiency, it is often advisable to use quasiphase matching
that involves type-0 phase matching. This would result in
some changes in the details of the calculation. However, these
changes are not expected to give significantly different results.

In the practical implementation of the measurements, it is
assumed that the wavelength would always match up with a
particular wavelength produced in the up-conversion process.
However, if the different wavelength components, from which
the input state and measurements states are composed, are
extremely close together, then the up-conversion process
would produce up-converted wavelengths that are also very
close together. As a result, a wavelength filter may not be able
to separate them to select the particular wavelength intended
in the design. It may therefore require an additional diffraction
grating-based filter after the up-conversion process to select the
specific wavelength that would enable the correct operation of
the measurement process.
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APPENDIX A: APPENDIX: PHASE MATCHING
CONDITIONS

Any deviation from momentum conservation in SPDC can
be expressed in terms of the three-dimensional propagation
vectors k as

	k = n1k1 + n2k2 − n3k3, (A1)

where the subscripts 1,2,3 refer to the signal, idler, and pump
beams, respectively. The refractive indices n1, n2, and n3

depend on the frequencies and states of polarization of their
associated optical beams.

For critical phase matching, the dominant part of Eq. (A1)
becomes zero. As a result, if we assume collinear conditions
and replace the three propagation vectors by their magnitudes,
we obtain a relationship among the refractive indices and
wavelengths,

0 = n1

λ1
+ n2

λ2
− n3

λ3
. (A2)

Energy conservation provides us with another relationship
among the three wavelengths given in Eq. (29). Using
Eqs. (A2) and (29), one can obtain an expression for n3, given
by

n3 = n1λ2 + n2λ1

λ1 + λ2
. (A3)

The transverse part of the mismatch given in Eq. (A1) is
zero 	kT = 0, because one can extend the transverse spatial
integrations to infinity, provided that the pump beam does not

overfill the nonlinear crystal. Here, the subscript T represents
the transverse part. As a result, the transverse components of
the pump beam can be replaced by

a3 = n1a1 + n2a2

n3
= (n1a1 + n2a2)(λ1 + λ2)

n1λ2 + n2λ1
, (A4)

where we express the transverse parts of the propagation
vectors in terms of two-dimensional spatial frequency vectors,
related by 2πa = kT .

Due to the finite length of the nonlinear crystal, the
longitudinal components do not cancel exactly,

	kz = n1k1z + n2k2z − n3k3z. (A5)

One can express the longitudinal components of the prop-
agation vectors in terms of the transverse spatial frequency
vectors,

kmz = 2π

(
1

λ2
m

− |am|2
)1/2

, (A6)

where m = 1,2,3. Substituting these expressions into
Eq. (A5), performing a paraxial expansion, and applying
Eqs. (29) and (A3), we then obtain (ignoring an overall minus
sign)

	kz = πn1n2|λ1a1 − λ2a2|2
n1λ2 + n2λ1

. (A7)
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