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Perfect polarization for arbitrary light beams
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Polarization of light is harnessed in an abundance of classical and quantum applications. Characterizing
polarization in a classical sense is done resoundingly successfully using the Stokes parameters, and numerous
proposals offer new quantum counterparts of this characterization. The latter often rely on distance measures from
completely polarized or unpolarized light. We here show that the accepted class of perfectly polarized quantum
states of light is severely lacking in terms of both pure states and mixed states. By appealing to symmetry
and geometry arguments we determine all of the states corresponding to perfect polarization, and show that
the accepted class of completely polarized quantum states is only a subset of our result. We use this result to
reinterpret the canonical degree of polarization, commenting on its interpretation for classical and quantum light.
Our results are necessary for any further characterizations of light’s polarization.
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I. INTRODUCTION

Polarization is a fundamental property of light [1,2] (see
[3] for a recent review). It is readily manipulated [4–6]
and measured [7,8], making it integral to fields such as
communications [9], remote sensing [10,11], weather radar
[12], and astrophysics [13]. Polarization is well-defined
quantum mechanically, and is the parameter of choice in
many quantum optical and quantum information protocols
including quantum key distribution [14,15], EPR tests [16],
and quantum tomography [17]. However, quantum mechanical
characterizations of polarization are incomplete.

In classical physics, polarization is completely char-
acterized by the Stokes parameters [2,18]. Deterministic
beams of light are said to be “perfectly” polarized, as are
ensemble-averaged beams whose Stokes parameters obey
S2

1 + S2
2 + S2

3 = S2
0 [2]. Natural light,1 on the other hand,

is completely unpolarized, with Stokes parameters obeying
S1 = S2 = S3 = 0 [20]. All statistically stationary fields can
be uniquely decomposed into the sum of a perfectly polarized
and a perfectly unpolarized beam of light, and the degree
of polarization quantifies the relative contribution of these
two beams [2]. We here investigate the completeness of this
description for quantum states of light.

It has been established that quantum fluctuations give
rise to phenomena not described by the Stokes parameters
[21–28], leading to a strong push in recent years to find
new methods of characterizing the degree of polarization
from a quantum mechanical perspective [24,29–32]. Perfectly
unpolarized quantum states of light are well understood both
with the Stokes parameters [1,2,33] and without [21,34–36].
The same cannot be said of perfectly polarized quantum states;
this is the focus of the present work.

In this paper we characterize all of the perfectly polarized
states of light. This was originally done by Mehta and Sharma

*goldberg@physics.utoronto.ca
1That is, stochastic light. This includes incandescent sources

such as light bulbs and sunlight. Solar radiation that reaches the
Earth’s surface, however, is partially polarized due to scattering with
atmospheric particles [19].

in 1974 [37], but we show that their result was incomplete. We
generalize the known results for both pure and mixed states,
and phrase the former in terms of the geometrically intuitive
SU(2) coherent states and the Majorana representation. Our
list of states with perfect polarization is exhaustive. We
then use this result to explain the canonical definition of
degree of polarization, thereby determining exactly how much
information is contained in the readily measured Stokes
parameters.

Our investigation of perfect polarization has many ex-
perimental consequences. Perfectly polarized light is fully
transmitted through an ideal polarizer [38]. It can be used for
polarization holography [39], communications, ellipsometry,
the electro-optical effect, and more [38,40]. Polarization is
related to indistinguishability and entanglement, with perfectly
polarized light embodying the largest amount of separability
and thus the most knowledge of the state [41–43]; highly
polarized beams are necessary for precise experiments. It is
fundamental to understand such ubiquitously used properties
of light.

This work is organized as follows. In Sec. II we review
polarization from classical and quantum standpoints, including
a discussion of noncanonical definitions of degree of polar-
ization. Sections III and IV investigate perfectly polarized
quantum states for fixed and indeterminate particle number,
respectively. The former gives a geometrical interpretation to
the currently accepted class of perfectly polarized pure states,
and the latter shows that our new results generalize all of the
previously accepted classes of perfectly polarized quantum
states. In Sec. V we comment on what our results imply for
the canonical definition of degree of polarization, showing
that the decomposition of a state into perfectly polarized and
unpolarized components is no longer unique; and in Sec. VI
we conclude.

II. CLASSICAL AND QUANTUM POLARIZATION

A. Stokes parameters and degree of polarization

The most general description of a plane wave propagating
in direction �k is given by the electric field

�E(�x,t) = (ε̂aα + ε̂bβ)ei�k·�x−iωt , (1)
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for constants α and β and orthogonal polarization vectors
ε̂a and ε̂b. This can be characterized by the four Stokes
parameters

S0,pw = |ε̂a · �E|2 + |ε̂b · �E|2 = |α|2 + |β|2,
S1,pw = |ε̂a · �E|2 − |ε̂b · �E|2 = (|α|2 − |β|2),

S2,pw = 2Re[(ε̂a · �E)∗(ε̂b · �E)] = (α∗β + αβ∗),

S3,pw = 2Im[(ε̂a · �E)∗(ε̂b · �E)] = −i(α∗β − αβ∗). (2)

The Stokes parameters for a plane wave associated with Eq. (1)
satisfy the identity S2

0,pw = S2
1,pw + S2

2,pw + S2
3,pw such that the

vector �Spw ≡ (S1,pw,S2,pw,S3,pw) normalized by S0 spans a unit
sphere known as the Poincaré sphere [38].

Stochastic light requires taking time or ensemble averages
of Eq. (2) Sμ = 〈Sμ,pw〉classical, with the vector �S/S0 in general
lying inside of the Poincaré sphere, and so we define the degree
of polarization as per Wiener 2 by the formula [50]

p = |�S|
S0

. (3)

Only perfectly polarized states of light have p = 1; in general,
we have the relation p � 1 [2,18]. Any classical beam of light
can be written as the unique sum of a perfectly polarized and
a completely unpolarized beam, and p quantifies the relative
contributions of the two [2,38,49].

When we consider quantum fluctuations, �E becomes an

operator with α →
√

h̄ω
2V ε0

â and β →
√

h̄ω
2V ε0

b̂ inside a quanti-

zation volume V , where the latter obey bosonic commutation
relations [âi ,â

†
j ] = δij , âi ∈ {â,b̂}. â and b̂ can represent

annihilation operators for any two orthogonal polarizations
of light. The Stokes parameters are normalized by |α|2 + |β|2
and promoted to operators defined by [33,51,52]

Ŝ0 = â†â + b̂†b̂,

Ŝ1 = â†â − b̂†b̂,

Ŝ2 = â†b̂ + b̂†â,

Ŝ3 = −i(â†b̂ − b̂†â). (4)

These operators satisfy the su(2) algebra

[Ŝμ,Ŝν] = 2iδμ0δν0

3∑
j=1

εμνj Ŝj ,

Ŝ2
1 + Ŝ2

2 + Ŝ3
3 = Ŝ2

0 + 2Ŝ0, (5)

and are related to the classical Stokes parameters by Sμ =
〈Ŝμ〉, where 〈•〉 denotes the quantum expectation value
[33,53].

2References [44–46] also allude to this definition of degree of
polarization; however, the first to use the Stokes parameters explicitly
in the definition after they were rediscovered by Soleillet in 1929 [47]
and made famous by Chandrasekhar in the 1940s [48] was Wolf in
1959 [49] (see Refs. [33,38] for detailed historical discussions).

Recent work has made significant progress in charac-
terizing higher-order moments than the Stokes parameters
for situations in which S1 = S2 = S3 = 0 but “hidden” po-
larization still exists. These are states that can be decom-
posed into two arbitrary, orthogonal, plane-polarized com-
ponents whose phases are not statistically independent; i.e.,
〈â†nâm〉 	= 0 for some n,m ∈ N [21,22]. Here we focus
on conventional polarization, with an emphasis on the true
quantum regime that allows for indeterminate numbers of
photons.

B. Alternative definitions for degree of polarization

Many authors have expressed misgivings regarding the
definition of degree of polarization in Eq. (3) [22,24,29–32,54].
One of the first challenges to Eq. (3) is the inability to
simultaneously measure all three components of �S [29].
Furthermore, some find it strange that classically unpolarized
light can be rotated into an orthogonal state by a transformation
that preserves p [22,32]. Others worry that the two-mode
vacuum has p = 1 or they define the degree of polarization
for the two-mode vacuum as p(|0〉â ⊗ |0〉b̂) = 0 and dislike
the resulting discontinuity in p(|ψ〉â ⊗ |0〉b̂) as |ψ〉â → |0〉â
[54]. A final grief is that some authors want mixtures of
perfectly polarized states to have p 	= 0 [32,54]. These have
prompted a plethora of new measures for light’s degree of
polarization.

We here include a brief list of solutions to these problems,
while maintaining that Eq. (3) is a logically consistent measure
of degree of polarization that serves as a reference against
which all new results are to be measured. We direct the reader
to Refs. [3,32] for thorough reviews.

Some new degrees of polarization retain use of the Stokes
parameters and simply modify Eq. (3). They include the

modification S0 →
√
〈 �̂S2〉, and agree with Eq. (3) in the

S0 � 1 limit [29,31]. A separate class of definitions for
degree of polarization avoids use of the Stokes parameters,
instead looking at the aforementioned unpolarized states found
without the use of the Stokes parameters [21,34]. Luis has
pushed to define degree of polarization as the distance between
the quasiprobability distributions of a state and of unpolarized
light [3,24,55]. In the same vein, other authors define degree
of polarization as a function of some distance between a given
state and the density operator of unpolarized light. The distance
measures include the Hilbert-Schmidt metric, fidelity-based
metrics, and metrics based on the trace norm [56]. Each
definition provides a different set of insights into the quantum
state under investigation.

There are a number of subsequent definitions of de-
gree of polarization, including entropy-based measures and
distinguishability-based measures, with no clear conclusion
as to the most viable definition [30]. The different defini-
tions give rise to different orderings for which states are
more and less polarized than each other [32]. Nonetheless,
Eq. (3) is well defined for all quantum states and pro-
vides a canonical ordering for degree of polarization. We
retain this global view by seeking to better understand the
definition in Eq. (3) rather than proposing any particular
replacement.
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III. FIXED PARTICLE NUMBER

A. Perfectly polarized N-photon states:
The SU(2) coherent states

We first look for the N -photon states that are perfectly
polarized. The most general two-mode N -photon pure state
can be written as

|ψ (N)〉 =
N∑

m=0

cm|m,N − m〉, (6)

where

|m,n〉 ≡ |m〉â ⊗ |n〉b̂ = â†mb̂†n√
m!n!

|vac〉 (7)

is the state with m photons in mode â and n photons in mode
b̂. The state is ensured to be normalized by

∑N
m=0 |cm|2 = 1.

For this state, the first Stokes parameter always satisfies
S0 = N . We see that the degree of polarization in general
obeys p < 1 despite |ψ (N)〉 being a pure state. For example,
a Fock state with coefficients cm = δmk for some 0 � k � N

has perfect polarization p = 1 only when k = 0 or k = N . The
only two-mode N -photon states that are completely polarized
and have definite particle number in each of the two modes are
states in which one of the two modes is empty.

We next look at the state in which all N photons are in the
same mode, associated with the annihilation operator âθ,φ =
cos θ

2 â + e−iφ sin θ
2 b̂, i.e., we consider the state given by

|θφ(N)〉 = â
†
θ,φ

N

√
N !

|vac〉. (8)

A binomial expansion yields

|θφ(N)〉 =
N∑

m=0

c(θ,φ)
m |m,N − m〉, (9)

where the coefficients are given by

c(θ,φ)
m =

√(
N

m

)
cosm θ

2
sinN−m θ

2
eiφ(N−m). (10)

The degree of polarization satisfies p = 1 for all such states,
which are the SU(2) coherent states (or spin-coherent states)
[57]. The SU(2) coherent states are isomorphic to N qubits,
to N unit vectors in R3 [58], and to a spin-N/2 particle, if
we identify Eq. (4) with the Schwinger mapping to angular
momentum [26]. Thus, the SU(2) coherent states comprise all
two-mode N -photon states that can be written as all N photons
being in the same mode, where the latter can be made from
a linear combination of the original two modes. All SU(2)
coherent states are perfectly polarized.

For the state |θφ(N)〉, the Stokes vector obeys �S/S0 =
(cos θ, sin θ cos φ, sin θ sin φ), which has an obvious interpre-
tation as a unit vector n̂θ,φ on the Poincaré sphere. Using the
SU(2) isomorphism, the Poincaré sphere is the same as the
Bloch sphere for a spin-N/2 particle [59]. Since the operator

R̂(θ,φ) = exp

[
i
θ

2
(Ŝ2 sin φ − Ŝ3 cos φ)

]
(11)

rotates a state pointing in the ẑ direction to a state pointing in
the n̂θ,φ direction in the Bloch sphere picture [57,59], it rotates
the state |N,0〉 to the state with all spins pointing in the n̂θ,φ

direction, i.e., R̂ simply rotates the Poincaré sphere. This is
also seen by identifying the rotated annihilation operator

â
†
θ,φ = R̂(θ,φ)â†R̂†(θ,φ), (12)

so that we can rewrite Eq. (8) as

|θφ(N)〉 = R̂(θ,φ)â†NR̂†(θ,φ)√
N !

|vac〉 = R̂(θ,φ)|N,0〉 (13)

(see Appendix A for an explicit calculation). There are no
other N -photon states with perfect polarization, as is quickly
seen using the Majorana representation.

B. Majorana representation

There is a geometrical interpretation of two-mode pure
states that lends insight onto interpreting polarization for the
states. The state given by Eq. (6) can be uniquely rewritten up
to a global phase as

|ψ (N)〉 = 1√
N

N∏
k=1

â
†
θk,φk

|vac〉, (14)

where N is a normalization factor [26,59,60]. The coefficients
{cm} from Eq. (6) are found from

cm =
√

m!(N − m)!

N

m∏
k=1

cos
θk

2

N∏
k=m+1

eiφk sin
θk

2
. (15)

The Majorana representation (also known as the Majorana
stellar representation) defines a one-to-one mapping from the
state |ψ (N)〉 to the N indistinguishable [58] points {(θm,φm)}
on the Poincaré sphere [26,59,60]. It provides a geometrical
interpretation for the properties of any N -particle two-mode
state.

Since Ŝ0 counts the total number of photons and commutes
with the other operators of the algebra, particle number N

is conserved by SU(2) operations. Then any SU(2) operation
simply rotates all of the points {(θm,φm)} about the Poincaré
sphere [26,59]. All of the quantum numbers other than m

of the system described by Eq. (6) are conserved under
SU(2) operations [57], which encompass all of passive linear
optics [59]. Any two states with the same relative orientation,
independent of absolute orientation, have the same polarization
invariants; changing relative orientation changes polarization
invariants [26]. This means that the only N -particle states with
p = 1, on the surface of the Poincaré sphere, are obtained from
R̂(θ,φ)|N,0〉 using an appropriate choice of angles, as claimed
above.

To see the power of the Majorana representation, we find
the maximum fidelity between an arbitrary N -photon state and
an SU(2) coherent state. This is calculated by

F = max
θ,φ

|〈θφ(N)|ψ (N)〉|

= 1√
NN !

max
θ,φ

∣∣∣∣∣〈vac|âN
θ,φ

N∏
k=1

â
†
θk,φk

|vac〉
∣∣∣∣∣. (16)
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F is bounded from below by 1/
√

N + 1 [61]. Repeatedly ap-
plying the bosonic commutation relations yields the equation

F =
√

N !

N max
θ,φ

∣∣∣∣∣
N∏

k=1

(
cos

θ

2
cos

θk

2
+ sin

θ

2
sin

θk

2
ei(φk−φ)

)∣∣∣∣∣
=

√
N !

N max
θ,φ

N∏
k=1

cos
�k

2
, (17)

where �k = cos−1 (n̂θ,φ · n̂θk,φk
) is the angle between the unit

vectors pointing in the (θ,φ) direction and the (θk,φk) direction.
It is only the relative orientation of the points in the Majorana
representation that matter; the average orientation of the points
as defined by Eq. (17) yields the closest thing to a perfectly
polarized, SU(2) coherent state.

Even after finding the SU(2) coherent state |θφ(N)〉max that
maximally overlaps with |ψ (N)〉, one is never guaranteed that
there exists a constant α such that the state given by

|φ(N)〉 = |ψ (N)〉 − α|θφ(N)〉max√
1 − |α|2 (18)

is completely unpolarized. Indeed, unlike in the classical
case, an arbitrary N -photon pure state cannot in general be
decomposed into an SU(2) coherent state pointing in the same
direction as �S and an unpolarized pure state (see Appendix B).

We have thus shown that the only perfectly polarized states
with fixed particle number are the pure states given by Eq. (8).
The classical decomposition of a state into perfectly polarized
and unpolarized components does not work for pure states;
such a decomposition will be considered in Sec. V, following
our discussion of mixed states.

IV. NONFIXED PARTICLE NUMBER

Next we investigate the perfectly polarized states with
indeterminate particle number. For quantum systems without
fixed N , the Poincaré sphere becomes a series of nested spheres
with radii proportional to N [26]. Each subspace with a given
N is decoupled from the other subspaces, and so we can
consider an extended Majorana representation with N points
on the sphere corresponding to the subspace with N particles.
We can break the Stokes vector into Stokes vectors �S(N)

associated with each subspace. SU(2) operations still rotate
the Majorana “constellation” homogeneously, and leave all
polarization invariants unchanged.

A. Pure states

First we consider the perfectly polarized states with
indeterminate particle number that are pure states. Given one
pure state with p = 1, all other perfectly polarized pure states
are obtained by a solid angle rotation of the state’s Majorana
constellation. For a particular N -particle subspace, it is only
possible to achieve perfect polarization with a set of identical
Majorana points, so we expect that only superpositions of
SU(2) coherent states with different numbers of particles can
be perfectly polarized.

Taking the general state given by

|�〉 =
M∑

N=1

eiϕN
√

qN |ψ (N)〉
M∑

N=1

qN = 1, (19)

we define the Stokes vectors for each N -particle subspace by
�S(N) = 〈ψ (N)| �̂S|ψ (N)〉. We find that the degree of polarization,
given by the formula

p =
√∑M

N,N ′=1(qN
�S(N)) · (qN ′ �S(N ′))∑M

N=1 qNN
, (20)

relies only on the relative orientations of the Stokes vectors
associated with each subspace, and the weight qN of that
subspace in the superposition Eq. (19). This shows that
the most polarization is present when the Stokes vectors
for all of the subspaces are the most aligned, with the
strongest weightings coming from subspaces with the largest
populations qN | �S(N)|.

We see by the inequality | �S(N)| � N that p is less than unity
except when the Stokes vectors for each N -particle subspace
obeys | �S(N)| = N . Furthermore, p = 1 requires that all of the
vectors �S(N) point in the same direction. Thus, every perfectly
polarized pure state can be written as the sum of SU(2) coherent
states with different numbers of particles all pointing in the
same direction:

|�〉perfect =
M∑

N=1

eiϕN
√

qN |θφ(N)〉,
M∑

N=1

qN = 1

=
M∑

N=1

eiϕN
√

qN

â
†
θ,φ

N

√
N !

|vac〉

≡ f (â†
θ,φ)|vac〉. (21)

This means that a pure state is perfectly polarized if and only if
it can be obtained by the action of an analytic function f (â†

θ,φ)
of any single creation operator on the vacuum.

In the Majorana representation, the perfectly polarized pure
states have the entire constellation aligned on a single ray as
it intersects with the surfaces of the nested Poincaré spheres.
Rotations of the constellation yield all other perfectly polarized
pure states. The set of pure states in any mode coupled to the
vacuum in the orthogonal mode, and SU(2) rotations of the
joint states, yield the entire set of perfectly polarized pure
states. Again, an arbitrary pure state cannot be decomposed a
state of the form Eq. (21) pointing in the �S direction and an
unpolarized pure state (see Appendix B).

B. Extension to mixed states

We have just seen that the most general perfectly polarized
pure state is an SU(2) rotation of a pure state in one mode
and the vacuum in the orthogonal mode. We now investigate
perfectly polarized mixed states given this background.

The known class of perfectly polarized mixed states are
those for which an SU(2) rotation diagonalizes one mode and
brings the other mode to the vacuum, reminiscent of our pure
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state result. The former can be written as

ρ̂ =
∑
N

ρN |θφ(N)〉〈θφ(N)|. (22)

This is the original definition of a perfectly polarized mixed
quantum state [37].

The density operator formed from ρ̂perfect =
|�〉perfect〈�|perfect, corresponding to the property p = 1,
can be brought to the ground state in the b̂ mode by the
rotation R̂†(θ,φ)ρ̂perfectR̂(θ,φ) as required. However, the
resulting state will not be diagonal in mode â; there are
clearly more perfectly polarized states than found in Ref. [37]!
Indeed, the pure states allowed by Eq. (22) are none other
than the states {|θφ(N)〉}, which are but a subset of the pure
states defined by Eq. (21). We next lay out the true set of
conditions required for a state to be perfectly polarized.

1. Sufficient condition for perfect polarization

The definition in Eq. (22) is currently cited as comprising
the set of perfectly polarized mixed states [3,62]; but we here
show that a less stringent condition is sufficient for a state
to be perfectly polarized. References [3,63] take Eq. (22) as
equivalent to the condition

â−1b̂ρ̂ ∝ (1̂â − |0〉〈0|â) ⊗ 1̂b̂ρ̂ (23)

on a perfectly polarized state ρ̂, for â−1 = â†(1 + â†â)
−1

(see
Ref. [64] for a discussion of inverse creation and annihilation
operators). They extend the condition to pure states with
perfect polarization as â−1b̂|ψ〉 ∝ (1̂â − |0〉〈0|â) ⊗ 1̂b̂|ψ〉,
with the unique solution of two-mode Glauber coherent
states [3,65]. Expressing these solutions in terms of SU(2)
coherent states, we have |G〉 = e−r2/2 ∑∞

N=0
rN eiδN√

N!
|θφ(N)〉 for

real parameters r and δ [66]. This is clearly a special case of
our solution Eq. (21), with eiϕN

√
qN = rNeiδN−r2/2.

Although it is not readily understood in the Majorana
picture, we can extend our generalization to find all of the
mixed states with perfect polarization by forming convex
combinations of perfectly polarized pure states. Writing the
functions fi(â

†
θ,φ) = R̂(θ,φ)fi(â†)R̂†(θ,φ) for

fi(â
†) =

∑
N

λ
(i)
N√
N !

â†N, (24)

we have the density matrix

ρ̂p=1 =
∑

i

fi(â
†
θ,φ)|vac〉〈vac|f ∗

i (âθ,φ). (25)

We verify p = 1 by noting that the Stokes parameters obey

Sμ =
∑

i

〈vac|f ∗
i (â)R̂†(θ,φ)ŜμR̂(θ,φ)fi(â

†)|vac〉

=
∑
N

( ∑
i

∣∣λ(i)
N

∣∣2
)

〈θφ(N)|Ŝμ|θφ(N)〉, (26)

which is the same as for |�〉perfect if we write (
∑

i |λ(i)
N |2) = qN

and S(N)
μ = 〈θφ(N)|Ŝμ|θφ(N)〉. The most general perfectly

polarized state is an arbitrary convex combination of an

arbitrary superposition of pure states created in a single,
arbitrary mode.

Our main result is that the states in Eq. (25) are equivalent
to the density matrices

ρ̂p=1 = R̂(θ,φ)σ̂ R̂†(θ,φ)

σ̂ =
∑
N,N ′

σN,N ′ |N〉〈N ′| ⊗ |vac〉〈vac|. (27)

This is seen from the fact that the sum
∑

i λ
(i)
N λ

∗(i)
N ′ = σN,N ′ can

always be formed when ρ̂ is Hermitian, given either one of the
sets {λ(i)

N } or {σN,N ′ }. Alternatively, we can write the density
matrices as

ρ̂p=1 =
∑
N,N ′

σN,N ′ |θφ(N)〉〈θφ(N ′)|. (28)

Thus we have shown the nontrivial result that any general
mixed state in one mode combined with the vacuum in an
orthogonal mode, and the result of any SU(2) operation acting
on the combination, has perfect polarization p = 1.

2. Necessary condition for perfect polarization

All states of the form Eq. (28) have degree of polarization
p = 1. We now show explicitly that all states with p = 1 must
be of the form Eq. (28).

Consider a general mixed state ρ̂ with p = 1. For such
a state, the vector �Sρ̂/S0 lies on the surface of the Poincaré
sphere. SU(2) operations affect the orientation of �Sρ̂ but not
its length, because this vector transforms under rotations as

�Sρ̂ → Tr[ �̂S(R̂†(θ,φ)ρ̂R̂(θ,φ))]

= Tr[(R̂(θ,φ) �̂SR̂†(θ,φ))ρ̂]

= R̂(θ,φ)[�Sρ̂], (29)

where R̂(θ,φ)[�x] is the rotation operator acting on vector
�x. Consequently, the state R̂†(θ,φ)ρ̂R̂(θ,φ) also has degree
of polarization p = 1 for all angles (θ,φ), and there can
always be found a rotation R̂(θ,φ) such that �SR̂†(θ,φ)ρ̂R̂(θ,φ) =
R̂(θ,φ)[�Sρ̂] = (S0,0,0). All mixed states with p = 1 are
obtained from states with S0 = S1 by an SU(2) rotation.

By definition, the first two Stokes parameters satisfy S0 −
S1 ∝ 〈b̂†b̂〉. States with S0 = S1 must then have the vacuum
in mode b̂. This leaves complete freedom for mode â, so all
states with p = 1 are rotated from those with the vacuum in
one mode and a general mixed state in the other mode, as in
Eq. (28).

The hierarchy is shown in Table I. Our mixed state result
Eq. (28) has the previously accepted Eq. (22) as a special
case, and the latter allows for the previously accepted pure
states Eq. (8). Our mixed state also allows for the previously
unaccepted pure states Eq. (21), which again have Eq. (8) as a
special case. This dramatically increases the class of perfectly
polarized states.

053859-5



AARON Z. GOLDBERG AND DANIEL F. V. JAMES PHYSICAL REVIEW A 96, 053859 (2017)

TABLE I. Perfectly polarized states of light. The pure states in
each row are special cases of the mixed states in the corresponding
rows, and the previously known results in each column are special
cases of the new results in the corresponding columns. There are no
other states of light with degree of polarization p = 1, with p defined
by Eq. (3).

Pure states Mixed states

Previously known |θφ(N)〉 ∑∞
N=0 ρN |θφ(N)〉〈θφ(N)|

New results
∑∞

N=0
√

qN |θφ(N)〉 ∑∞
N,N ′=0 σN,N ′ |θφ(N)〉〈θφ(N ′)|

V. DECOMPOSITION OF ARBITRARY PARTIALLY
POLARIZED STATES INTO PERFECTLY POLARIZED

AND UNPOLARIZED STATES

Now that we have established the full set of states with per-
fect polarization, we return to the original definition of degree
of polarization as quantifying the polarized and unpolarized
fractions of a state. If we take our perfectly polarized states
from Eq. (25) and combine them with the unpolarized states
as defined by Refs. [21,34] without reference to the Stokes
vectors, we cannot form a basis for all of the two-mode mixed
states of light. If, however, we use the original definition of
unpolarized light as having S1 = S2 = S3 = 0, we find that
such a decomposition is always possible.

For statistically stationary light, the decomposition Sμ =
(1 − p)S(A)

μ + pS(B)
μ is unique if we require that the vectorial

components of the Stokes parameters obey | �S(A)| = 0 and
| �S(B)| = S0 [2]. A similar decomposition can be shown to
hold for photodetector counting rates from beams that are
not statistically stationary [67]. We can do the same thing for
mixed states by writing the density matrix as

ρ̂ = (1 − p)ρ̂(A) + pρ̂(B), (30)

where p is found using Eq. (3). We take ρ̂(B) to be any perfectly
polarized state of the form Eq. (28), where the relevant angles

are found from the direction of the Stokes vector �S = Tr[ �̂Sρ̂],
i.e., we find the unit vector n̂θ,φ = �S/| �S|. Since the Stokes
vector of the perfectly polarized portion is given by

�S(B) = Tr
[ �̂Sρ̂(B)

] = S0n̂θ,φ = �S/p, (31)

linearity guarantees that �S(A) = �0 for all partially polarized
states.

The decomposition Eq. (30) is seldom unique. For p = 0
and p = 1 there is only one such decomposition, but the
variety of perfectly polarized states with the same Stokes
vector leads to as many viable decompositions as there are
Hermitian matrices for Eq. (28). Perfectly polarized states with
fixed particle number are uniquely determined by their Stokes
vectors, so specifying the number of particles in ρ̂(B) for a
given ρ̂ uniquely determines the decomposition Eq. (30).

The full extent of Eq. (3) is now understood. The perfectly
polarized states of light are those with p = 1 and are specified
by Eq. (28). The completely unpolarized states of light have

p = 0 and are found via Eq. (30) by

ρ̂unpolarized = 1

1 − p
(ρ̂ − pρ̂polarized). (32)

Classical light can be uniquely decomposed into a sum of
a perfectly polarized and a completely unpolarized beam
of light; whereas the same decomposition for quantum
mechanical light is only unique if the perfectly polarized
component has fixed particle number. This characterization
holds for all two-mode mixed states, regardless of particle
number.

VI. CONCLUSIONS

For fixed N , the pure states of light with perfect polarization
are the SU(2) coherent states, and can be represented by all N

Majorana points coinciding on the Poincaré sphere. When N is
indeterminate, the perfectly polarized states of light are linear
combinations of SU(2) coherent states in different subspaces
[Eq. (21)]. These are characterized by N Majorana points at
the same place on the Majorana sphere of radius ∝ N , and
the entire Majorana constellation being located on a single ray
from the origin. Previous results ignore this class of perfectly
polarized pure states.

Earlier results claimed that perfectly polarized mixed states
are those obtained by rotating a diagonal density matrix in
Fock basis of one mode combined with the ground state of
the orthogonal mode; we here show that any density matrix
in the first mode will suffice to ensure perfect polarization
[Eq. (28)].

The Stokes parameters can be used to characterize the
decomposition of any state into a sum of a perfectly polarized
and a completely unpolarized state [Eq. (30)]. This sum is
not unique for quantum states of light unless the number of
particles in the perfectly polarized component is specified.
The class of states that remain unchanged by an ideal
polarizer is now seen to include a new set of pure states with
varying particle number and a large number of new mixed
states. Perfectly polarized beams are perfectly transmitted
through ideal polarizers. A general mixed state incident on
an ideal polarizer will transmit only the polarized fraction,
but there is no guarantee that this will be a pure state. This is
important to realize when working with polarizers in optical
circuits.

Definitions for degree of polarization may benefit from
this new characterization of the perfectly polarized states. The
canonical method of defining degree of polarization is now
fully understood and can be used as a benchmark for any
future definitions. The perfectly polarized states discussed
here should be used in the widespread applications where
extremely precise experimental control is desired. Future work
will investigate the use of these states in exceeding classical
measurement limits.
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APPENDIX A: ROTATION MATRIX ALGEBRA

We here show explicitly that the rotation operator acting on an N -photon state with all photons in one mode yields an SU(2)
coherent state: R̂(θ,φ)|N,0〉 = |θφ(N)〉. Our rotation operator is

R̂ = exp

[
i
θ

2
(sin φŜ2 − cos φŜ3)

]
= exp(−ξ Ŝ+ + ξ ∗Ŝ−), (A1)

where Ŝ± = (Ŝ2 ± iŜ3)/2 and ξ = θ
2 exp (−iφ). We follow Ref. [57] in using the faithful 2 × 2 representation of the su(2)

algebra:

Ŝ+ =
(

0 1

0 0

)
, Ŝ− =

(
0 0

1 0

)
, Ŝ1 =

(
1 0

0 −1

)
(A2)

to find the 2 × 2 representation of the rotation operator

R̂(θ,φ) =
⎛
⎝ cos |ξ | −

√
ξ

ξ∗ sin |ξ |√
ξ∗
ξ

sin |ξ | cos |ξ |

⎞
⎠ =

(
cos θ

2 −e−iφ sin θ
2

eiφ sin θ
2 cos θ

2

)
. (A3)

This is compared to the operator

Q̂(a,b,c) = exp(aŜ−) exp(bŜ1) exp(cŜ+) =
(

1 0

a 1

)(
eb 0

0 e−b

)(
1 c

0 1

)
=

(
eb ceb

aeb 1+ace2b

eb

)
. (A4)

Choosing a = eiφ tan θ
2 , b = ln (cos θ

2 ), and c = −e−iφ tan θ
2 , we find that the operators are related by

R̂(θ,φ) = Q̂(a,b,c) = exp

(
eiφ tan

θ

2
Ŝ−

)
exp

[
ln

(
cos

θ

2

)
Ŝ1

]
exp

(
− e−iφ tan

θ

2
Ŝ+

)
. (A5)

Because the exponential operators are a faithful representation of the rotation group, this relation is true for all of SU(2).
We can then use the fact that Ŝ+|N,0〉 = 0 to show explicitly the identity

R̂(θ,φ)|N,0〉

= exp

(
eiφ tan

θ

2
Ŝ−

)
exp

[
ln

(
cos

θ

2

)
Ŝ1

]
exp

(
−e−iφ tan

θ

2
Ŝ+

)
|N,0〉 = exp

(
eiφ tan

θ

2
Ŝ−

)
exp

[
ln

(
cos

θ

2

)
Ŝ1

]
|N,0〉

= exp

(
eiφ tan

θ

2
Ŝ−

)
exp

[
ln

(
cos

θ

2

)
N

]
|N,0〉 = cosN θ

2

N∑
n=0

einφ tann θ
2

n!
Ŝn

−|N,0〉

= cosN θ

2

N∑
n=0

einφ tann θ
2

n!

√
N !

(N − n)!
n!|N − n,n〉 =

N∑
m=0

√(
N

m

)
cosm θ

2
sinN−m θ

2
eiφ(N−m)|m,N − m〉 = |θφ(N)〉 (A6)

as promised.

APPENDIX B: PURE STATE DECOMPOSITION INTO POLARIZED AND UNPOLARIZED FRACTIONS

We here show that a pure state cannot in general be decomposed into a pure state perfectly polarized in the direction of �S and
a completely unpolarized state.

Consider a two-mode pure state |�〉 and find the angular coordinates � = (θ,φ) of the vector �S = 〈�| �̂S|�〉 such that we can
define a unit vector by n̂� = �S/| �S|. Then a general state perfectly polarized in the n̂� direction is given by the equation

|�〉 =
∑
N

cN |θφ(N)〉. (B1)

Our task is to show that there does not always exist a state given by

|�〉 = eiγ√
1 − |α|2

(|�〉 − α|�〉) (B2)

for variables γ ∈ R, α ∈ C such that the expectation value 〈�| �̂S|�〉 vanishes.
We start by expanding the expectation value to find the relation

〈�| �̂S|�〉 ∝ (〈�| − α∗〈�|) �̂S(|�〉 − α|�〉) = n̂�

(
| �S| + |α|2

∑
N

N |cN |2
)

− 2Re[α∗〈�| �̂S|�〉]. (B3)
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α can be tuned to set this expectation value to �0 in specific cases but not in general. We make the decompositions α = |α|e−iβ

and 〈�| �̂S|�〉 = �S1 + i �S2 for real scalar β and three-component vectors �S1 and �S2 in R3. Then we obtain the expectation value

〈�| �̂S|�〉 ∝ n̂�

(
| �S| + |α|2

∑
N

N |cN |2
)

− 2|α|(�S1 cos β + �S2 sin β). (B4)

If �S1 and/or �S2 point in the direction of n̂�, |α| and β can be tuned to set n̂�(| �S| + |α|2 ∑
N N |cN |2) = 2|α|(�S1 cos β + �S2 sin β). If,

on the other hand, neither �S1 nor �S2 are collinear with n̂�, then the equality n̂�(| �S| + |α|2 ∑
N N |cN |2) = 2|α|(�S1 cos β + �S2 sin β)

is only possible when n̂�, �S1, and �S2 are coplanar.3

Since in general n̂�, �S1, and �S2 are not coplanar, there does not always exist a state |�〉 satisfying the desired criteria. For
example, the state |�〉 = (|0,N〉 + |N − 1,1〉)/√2 (N > 1) has Stokes vector �S = |�S|(1,0,0). Then the most general perfectly
polarized pure state in the direction of �S is |�〉 = ∑

M cM |M,0〉, and we have the overlap

〈�| �̂S|�〉 =
√

N

2
c∗
N (0,1,−i) =

√
N

2
[(0,Re[cN ],−Im[cN ]) + i(0,−Im[cN ],−Re[cN ])] ≡ �S1 + i �S2. (B5)

The three vectors n̂�, �S1, and �S2 are far from coplanar;
they are orthogonal! Setting cN = 0 does not help, because
| �S| + |α|2 ∑

N N |cN |2 � 0 in Eq. (B4). Therefore one cannot
in general decompose a partially polarized pure state into the
sum of a pure state perfectly polarized in the direction of �S
and a completely unpolarized state.

3Even the coplanar case does not guarantee this possibility. When
�S1 and �S2 are collinear with each other but not with n̂�, one must find
a β such that �S1 cos β + �S2 sin β = �0, but | �S| + |α|2 ∑

N N |cN |2 � 0

precludes any nontrivial ways of simultaneously setting 〈�| �̂S|�〉
to �0.

The astute reader will notice that one can always decompose
a partially polarized pure state into the sum of a perfectly
polarized pure state and a completely unpolarized state if the
perfectly polarized pure state is in a direction other than n̂� =
�S/| �S|. For example, one can always take the unit vector in the
opposite direction to �S by choosing n̂� = −�S/| �S|, tune the

coefficients {cN } such that 〈�| �̂S|�〉 = �0, and then set |α|2 =
|�S|/∑

N N |cN |2. However, this result is not physically useful,
as it is strange to decompose a state partially polarized in one
direction into a state perfectly polarized in another direction
and a state that is completely unpolarized. We thus conclude
that the classical decomposition of a partially polarized state
into the sum of a state perfectly polarized in that direction and
an unpolarized state is not possible for quantum pure states.
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