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Circuit configurations which may or may not show superradiant phase transitions
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Several superconducting circuit configurations are examined on the existence of superradiant phase transitions
(SRPTs) in thermal equilibrium. For some configurations consisting of artificial atoms, whose circuit diagrams
are however not specified, and an LC resonator or a transmission line, we confirm the absence of SRPTs in the
thermal equilibrium following the similar analysis as the no-go theorem for atomic systems. We also show some
other configurations where the absence of SRPTs cannot be confirmed.

DOI: 10.1103/PhysRevA.96.053857

I. INTRODUCTION

A superradiant phase transition (SRPT), i.e., a spontaneous
appearance of (static) coherent amplitude of transverse elec-
tromagnetic fields in the thermal equilibrium due to the light-
matter interaction, was first proposed theoretically around
1970 [1–3]. It is different from the so-called superradiance or
superfluorescence [4], i.e., a collective spontaneous emission
from many atoms. It is also different from the exciton superra-
diance (one-photon superradiance) [5], i.e., an emission-rate
enhancement by spatial broadening of wave function of an
excitation. In contrast to these nonequilibrium phenomena,
SRPTs are phase transitions in the thermal equilibrium. Since
the first proposals [1–3], its absence (no-go theorem) in
atomic systems has been discussed based on the so-called
A2 term [6–9], P 2 term [10,11], gauge invariance [12–14],
and minimal-coupling Hamiltonian [14,15]. Influences of the
longitudinal dipole-dipole interaction have also been discussed
recently [16–20].

SRPTs require an ultrastrong light-matter interaction
[21,22], i.e., the interaction strength (vacuum Rabi splitting
or absorption or emission rate in single-photon level) must be
comparable to or larger than frequencies of electromagnetic
waves and of transitions in matters. In recent years, the
ultrastrong interactions have been realized experimentally
in a variety of systems [23–37]. The presence of the so-
called vacuum photons [21] and the Schrödinger-cat-like
state [21,38,39] are expected in the ground state under the
ultrastrong interaction, and recent experiments are indicating
a signature of them [37]. However, the coherent amplitude of
the electromagnetic fields (expectation value of annihilation
operator of a photon) does not appear even in such a ground
state, but it is obtained only after a SRPT. Currently, SRPTs are
not yet observed experimentally in the thermal equilibrium,
while nonequilibrium analogs were proposed theoretically
[40] and observed experimentally in cold atoms driven by
laser light [41,42].

Instead of the atomic systems [23–26,30–32,35], which are
basically described by the minimal-coupling Hamiltonian [43],
the possibility of the thermal-equilibrium SRPTs in supercon-
ducting circuits [27–29,36,37] has been discussed [44–48].
The existence of a SRPT was proposed for a superconducting
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circuit with capacitive coupling between (two-level) artificial
atoms and a resonator by estimating the A2 term to be relatively
small [44]. However, its estimation was doubted through a
standard description of superconducting circuit systems [45].
After that, the existence of a SRPT was proposed again for
superconducting circuit with three-level artificial atoms as
a result of the modification of the sum rule (and then of
the A2 term) [46]. In these three works, their Hamiltonians
were guessed for standard circuit configurations but without
specifying circuit diagrams in detail, although the derivation
of exact Hamiltonians is crucial for discussing the possibility
of SRPTs. Recently, the absence of SRPTs was confirmed for
a superconducting circuit diagram with capacitive coupling
between an LC resonator and charge qubits by deriving its
Hamiltonian in the standard quantization procedure [47].
Almost at the same time, for a circuit diagram consisting of
an LC resonator coupled with Josephson junctions through
inductors, the existence of a SRPT was proposed also in the
standard quantization procedure [48]. No doubt is raised until
now.

A remarkable feature of SRPTs is a decrease of the
zero-point energy in the whole system due to the light-
matter interaction [48–51]. Chemical reactions [52] and work
functions [53] were reported to be modified by the ultrastrong
interaction with the vacuum electromagnetic fields. The free
energy, i.e., thermodynamic behaviors at finite temperatures,
should also be modified as suggested in Ref. [54], while its
experimental and theoretical evaluations are still under debate
[55,56]. In the superconducting circuit proposed in Ref. [48],
an external magnetic flux bias or π junctions [57] are inevitable
for realizing the SRPT in the thermal equilibrium. The external
magnetic flux increases the zero-point energy of the circuit.
While the zero-point energy is certainly decreased by the
increase in the photon-atom interaction strength, it cannot be
lower than the zero-point energy in the absence of the external
magnetic flux. It is still open to dispute whether there is a lower
bound of the zero-point energy in superconducting circuits. If
there exists a superconducting circuit showing a SRPT without
the external magnetic flux or π junctions, the zero-point energy
should be purely decreased by increasing the strength of the
interaction with the transverse electromagnetic fields, and the
thermodynamic properties, e.g., the superconducting transition
temperature, of the circuit might be modified.

In order to find such a circuit structure, in this paper, we
show some hopeless circuit configurations where SRPTs are
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absent even in the presence of an external magnetic flux or
π junctions. There are a large number of degrees of freedom
in designing circuit structures, and there is not a standard
Hamiltonian corresponding to the minimal-coupling one for
the atomic systems. In order to rule out a wide range of
circuit structures, we treat artificial atoms as a black box, i.e.,
we do not specify their circuit diagrams. We consider some
capacitive- and inductive-coupling configurations between
the black box and an LC resonator or a transmission line.
The absence of SRPTs in those configurations are confirmed
following the similar analysis as the no-go theorem for the
atomic systems [14,15] by deriving Hamiltonians in the flux-
[58] or charge-based [59] standard quantization procedure. In
the analyses based on the A2 term [6–9,44–46], on the P 2

term [10,11,47], or on the softening of transition frequency
[44,48–50], we must specify circuit diagrams of whole systems
in detail. In contrast, in this paper, the artificial atoms are
treated as a black box following the no-go theorem [14,15],
but we need to specify only the connection between the black
box and a resonator.

We also show some other circuit configurations where
the absence of SRPTs in the thermal equilibrium cannot
be confirmed. The circuit structure proposed in Ref. [48] is
certainly included in these configurations. While our analysis
does not depend on whether an external magnetic flux or π

junctions are absent or not, it does not rule out the possibility
of SRPTs without the external magnetic flux and π junctions.

This paper is organized as follows. We first review the
no-go theorem for atomic systems in Sec. II. Following the
similar analysis, in Sec. III, we show the absence of SRPTs in
three circuit configurations by deriving Hamiltonians without
specifying circuit diagrams of artificial atoms. In Sec. IV, we
show some other configurations where the absence of SRPTs
cannot be confirmed. The discussion is summarized in Sec. V.

II. NO-GO THEOREM FOR ATOMIC SYSTEMS

In this section, we review the no-go theorem of SRPTs in
atomic systems described by the minimal-coupling Hamilto-
nian. It was mainly discussed in Refs. [14,15] based on the
c-number substitution [3,15,60,61], which is also used in the
semiclassical analysis of Ref. [48].

The minimal-coupling Hamiltonian is expressed as [43]

Ĥmin =
∫

d r

{
ε0 Ê⊥(r)2

2
+ B̂(r)2

2μ0

}

+
N∑

j=1

[ p̂j − ej Â(r̂j )]2

2mj

+ V̂ ({r̂j }). (1)

Here, the second last term is the kinetic energy of charged
particles. N is the number of the particles. r̂j and p̂j are
operators of a position and a momentum, respectively, of the
j th particle with a mass mj and a charge ej . They satisfy
[r̂j , p̂j ′] = δj,j ′ ih̄1. The last term V̂ represents the Coulomb
interaction between the charged particles, and it depends only
on the particles’ positions {r̂j }. The first and second terms
represent the energies of the transverse electric field Ê⊥(r) =
−Π̂(r)/ε0 and the magnetic flux density B̂(r) = ∇ × Â(r),
respectively. Here, Â(r) is the vector potential and Π̂(r) is its

conjugate momentum satisfying

[ Â(r),Π̂(r ′)] = ih̄δ⊥(r − r ′), (2)

where δ⊥(r − r ′) is the transverse delta function [43]. We
rewrite these fields by annihilation and creation operators as

Â(r) =
M∑

k=1

ek

√
h̄

2ε0ωk

fk(r)(âk + â
†
k), (3a)

Π̂(r) = −
M∑

k=1

eki

√
h̄ε0ωk

2
fk(r)(âk − â

†
k). (3b)

Here, âk annihilates a photon in the kth mode of the
electromagnetic wave with a frequency of ωk . fk(r) is the
wave function of the kth mode, ek is the unit vector in its
polarization direction, and ε0 is the vacuum permittivity. M is
the number of modes. The minimal-coupling Hamiltonian in
Eq. (1) is rewritten as

Ĥmin =
M∑

k=1

h̄ωk

(
â
†
kâk + 1

2

)

+
N∑

j=1

[ p̂j − ej Â(r̂j )]2

2mj

+ V̂ ({r̂j }). (4)

For simplicity, as discussed in Ref. [14], we apply the long-
wavelength approximation (electric-dipole approximation),
i.e., the vector potential is rewritten as

Â(r̂j ) � Â(Rj ), (5)

where Rj is the rough position of the j th particle (e.g., position
of lattice site). The long-wavelength approximation is justified
when the amplitude of the vector potential varies only slightly
by the distance r̂j − Rj . In other words, r̂j − Rj is much
shorter than the wavelength of the electromagnetic wave in the
frequency range of interest. A more general discussion beyond
the long-wavelength approximation is shown in Ref. [15].

Expanding the kinetic energy of the charged particles in
Eq. (1) or Eq. (4), we get −∑N

j=1(ej /mj ) p̂j · Â(r̂j ) and∑N
j=1 e2 Â(r̂j )2/(2mj ). The former leads to the light-matter

interaction term, and the latter leads to the A2 term [6–9].
The absence of SRPTs by the presence of the A2 term can
be confirmed when we specify the atomic systems of interest,
especially the shape of V̂ ({r̂j }). In contrast, the following
no-go theorem shows the absence of SRPTs generally in the
minimal-coupling Hamiltonian, i.e., without specifying the
systems in detail.

The thermodynamic properties at a finite temperature T are
analyzed by the partition function for β = 1/(kBT ) as

Z(T ) = Tr[e−βĤmin ]. (6)

As discussed in Refs. [3,15,60,61], we replace the trace over
the photonic variables by the integral over the coherent state
as

Z̄(T ) =
∫ (∏

k

d2αk

π

)
Tr[e−βĤ′

min ], (7)
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where the photon operators {âk,â
†
k} and vector potential Â(Rj )

are replaced by c numbers as

Ĥ′
min =

M∑
k=1

h̄ωk

(
|αk|2 + 1

2

)

+
N∑

j=1

[ p̂j − ej A(Rj )]2

2mj

+ V̂ ({r̂j }). (8)

Here, αk ∈ C is an amplitude of a coherent state |αk〉k in the kth
mode giving âk|αk〉k = αk|αk〉k . The c-number vector potential
is expressed as

A(r) =
M∑

k=1

ek

√
h̄

2ε0ωk

fk(r)(αk + α∗
k ). (9)

The replacement (approximation) performed in Eq. (7) is
called the c-number substitution [15,61], and the analysis
based on it is called the semiclassical analysis in Ref. [48],
since the photonic operators are treated as the c numbers.

For justifying this c-number substitution, we must consider
the thermodynamic limit N → ∞. Further, in the early study
by Wang and Hioe [3], they note that this substitution is
justified on the following two assumptions:

Assumption 1: The limits as N → ∞ of the field operator
â/

√
N and â†/

√
N exist.

Assumption 2: The order of the double limit in the
exponential series limN→∞ limR→∞

∑R
r=1(−βĤ)r/r! can be

interchanged.
The first assumption implies that αk/

√
N should be of a finite

value after the SRPTs in the thermodynamic limit N → ∞.
On the other hand, it is hard to check the second assumption for
arbitrary systems. Instead, we follow the justification discussed
in Ref. [60]. The exact partition function Z(T ) in Eq. (6) and
the approximated one Z̄(T ) in Eq. (7) satisfy the following
relation [60]:

Z̄(T ) � Z(T ) � exp

(
1

kBT

M∑
k=1

h̄ωk

)
Z̄(T ). (10)

From this, the free energy −(kBT/N) ln Z(T ) per atom
satisfies

− 1

N

M∑
k=1

h̄ωk − kBT

N
ln Z̄(T ) � −kBT

N
ln Z(T )

� −kBT

N
ln Z̄(T ). (11)

Therefore, in the thermodynamic limit N → ∞, Z(T ) is well
approximated by Z̄(T ), if systems of interest satisfy

Assumption A: lim
N→∞

M∑
k=1

h̄ωk

N
�

∣∣∣∣kBT

N
ln Z̄(T )

∣∣∣∣.
This condition can be checked when we specify atomic
systems of interest. It is satisfied for ensemble of two-level
atoms [60], i.e., in the Dicke Hamiltonian. For superconducting
circuits, it was checked numerically for the circuit proposed
in Ref. [48]. In this paper, we implicitly consider that
the systems of interest satisfy Assumptions 1 and 2, or A

in the thermodynamic limit N → ∞, while we do not specify
the systems in detail. In other words, we cannot discuss
the absence of SRPTs in systems that do not satisfy these
assumptions since we cannot rewrite the partition function as
Eq. (7) and the following analysis is not justified.

The no-go theorem [14] for atomic systems in the long-
wavelength approximation is discussed based on the parti-
tion function in Eq. (7) described by the minimal-coupling
Hamiltonian in Eq. (8) under the c-number substitution.
If there exists a state |ψ({αk})〉 that minimizes the energy
〈ψ({αk})|Ĥ′

min|ψ({αk})〉 for a nonzero amplitude αk = 0, the
transverse electromagnetic fields get an amplitude sponta-
neously in the ground state (and also in the thermal equilibrium
for T > 0), i.e., the system shows a SRPT. However, the
absence of such a superradiant ground state is confirmed as
seen in the following.

Here, we introduce a unitary operator

Ûc ≡ exp

⎡
⎣ i

h̄

N∑
j=1

ej r̂j · A(Rj )

⎤
⎦. (12)

Using this, we get

Û †
c p̂j Ûc = p̂j + ej A(Rj ). (13)

Then, since the Coulomb interaction V̂ does not depend on the
momentum { p̂j } of the charged particles, we get

Ĥ′′
min ≡ Û †

c Ĥ′
minÛc =

M∑
k=1

h̄ωk

(
|αk|2 + 1

2

)
+ Ĥatom, (14)

where Ĥatom is the Hamiltonian of the charged particles
without the interaction with the transverse electromagnetic
fields as

Ĥatom ≡
N∑

j=1

p̂j
2

2mj

+ V̂ ({r̂j }). (15)

Since Ûc is a unitary operator, the partition function in Eq. (7)
can be rewritten as

Z̄(T ) =
∫ (∏

k

d2αk

π

)
Tr[e−βĤ′′

min ]. (16)

Then, the problem is reduced to the minimization of
〈ψ({αk})|Ĥ′′

min|ψ({αk})〉 for trial state |ψ({αk})〉. Since Ĥatom

in Eq. (14) is simply the Hamiltonian of the charged particles,
the minimum energy is obtained for the following state:

|ψ ′′
min,g〉 = |ψg〉atom ⊗ |{αk = 0}〉em, (17)

where |ψg〉atom is the ground state of Ĥatom and |{αk = 0}〉em

represents a classical state with zero amplitude for all the
photonic modes. In this way, the photonic modes do not
spontaneously get an amplitude in the ground state (and also in
thermal equilibrium). This is the basic logic of the no-go the-
orem of SRPTs in atomic systems discussed in Refs. [14,15].

On the other hand, from the minimal-coupling Hamiltonian
Ĥmin in Eq. (4) without the c-number substitution, we can
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get the Hamiltonian Ĥdip of the length form [16–20,43], in
contrast to Ĥmin called the velocity form. Recovering the vector
potential as an operator in the unitary operator as

Û = exp

⎡
⎣ i

h̄

N∑
j=1

ej r̂j · Â(Rj )

⎤
⎦, (18)

the Hamiltonian of the length form is obtained in the long-
wavelength approximation as

Ĥdip = Û †ĤminÛ (19)

=
∫

d r

{
[ D̂⊥(r) − P̂⊥(r)]2

2ε0
+ B̂(r)2

2μ0

}
+ Ĥatom (20)

=
M∑

k=1

h̄ωk

(
â
†
kâk + 1

2

)
− 1

ε0

∫
d r P̂⊥(r) · D̂⊥(r)

+ 1

2ε0

∫
d r P̂⊥(r)2 + Ĥatom. (21)

Here, P̂⊥(r) is the transverse component of the electric
polarization P(r) = ∑

j ej r̂j δ(r − r̂j ), while a more general
definition is required beyond the long-wavelength approx-
imation (Power-Zienau-Woolley transformation) [17,19,43].
The last term in the first line of Eq. (21) represents the
light-matter interaction mediated by P̂⊥(r) and the transverse
component of the electric displacement field D̂⊥(r), which
corresponds to the conjugate momentum of the vector potential
as D̂⊥(r) = −Π̂(r) in the length form. The second last term in
Eq. (21) is called the P 2 term, by which the absence of SRPTs
can also be confirmed [10,11] in the similar manner as the A2

term.
The ground state |ψ ′′

min,g〉 of Ĥ′′
min is not the exact ground

state |ψdip,g〉 of Ĥdip. However, the absence of SRPTs itself
can be confirmed as discussed above if systems of interest
satisfy Assumptions 1 and 2, or A in the thermodynamic
limit. When the transverse electric polarization P⊥(r) =
〈ψg| P̂⊥(r)|ψg〉atom gets an amplitude spontaneously in the
ground state |ψg〉atom of the charged particles, the electric
displacement field can be induced as D⊥(r) = P⊥(r), while
the electric field is basically zero E⊥ = (D⊥ − P⊥)/ε0 = 0,
by simply considering the minimization of the first term
in Eq. (20) as the classical analysis in Ref. [48]. Even
though the photonic amplitude can get an amplitude as
〈ψdip,g|Π̂(r)|ψdip,g〉 ≈ −D⊥(r) in the ground state of Ĥdip, we
do not call it a SRPT in this paper because the appearance of
the photonic amplitude originates from the system of charged
particles Ĥatom, not from the light-matter interaction.

While the possibility of SRPTs in atomic systems is
still under debate especially beyond the long-wavelength
approximation [15,19,20], the above logic is basically valid
if the c-number substitution performed in Eq. (7) is justified,
i.e., if systems of interest satisfy Assumptions 1 and 2,
or A in the thermodynamic limit N → ∞. Following this
semiclassical analysis, we examine the possibility of SRPTs in
some superconducting circuit configurations in the following
sections.

[48]

FIG. 1. Map of circuit configurations discussed in this paper
and the circuit proposed in Ref. [48]. SRPTs are absent in the
configurations depicted in Figs. 2–4, if systems of interest satisfy
Assumptions 1 and 2, or A. The absence of SRPTs cannot be
confirmed in the configurations depicted in Figs. 5 and 6. The circuit
proposed in Ref. [48] [depicted in Fig. 5(c)] shows a SRPT and is
included in the configurations of Figs. 5(a) and 5(b).

III. CIRCUIT CONFIGURATIONS WHERE
SRPTs ARE ABSENT

In this section, we show three superconducting circuit
configurations where the absence of SRPTs can be confirmed
by the semiclassical analysis explained in the previous section.
Once we get an exact Hamiltonian of a circuit, we can examine
the possibility of SRPTs following the semiclassical analysis
or in other approaches [1,2,48–50]. However, in order to
discuss a wide range of circuit structures, Hamiltonians of
general forms are preferred, such as the minimal-coupling one
for atomic systems.

Figure 1 shows a map of circuit configurations which we
will discuss in this paper and the circuit structure proposed
in Ref. [48]. We discuss the three circuit configurations
depicted in Figs. 2–4 with treating artificial atoms as a
black box (without specifying their circuit diagrams). The
absence of SRPTs will be confirmed in an inductive-coupling
configuration with an LC resonator in Sec. III A (Fig. 2),
capacitive-coupling one with an LC resonator in Sec. III B
(Fig. 3), and capacitive-coupling one with a transmission line
in Sec. III C (Fig. 4). The two configurations depicted in Figs. 5
and 6, where the absence of SRPTs is not confirmed, will be
discussed in the next section.

FIG. 2. (a) An LC resonator coupled inductively with a black
box. (b), (c) Examples of circuits with artificial atoms. This circuit
configuration does not show SRPTs by the coupling between the
black box and the LC resonator.
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FIG. 3. (a) An LC resonator coupled capacitively with a black
box. (b) Example of circuits with artificial atoms, which was already
discussed in Ref. [47]. This circuit configuration does not show
SRPTs by the coupling between the black box and the LC resonator.

A. Inductive coupling with an LC resonator

We first consider the circuit configuration depicted in
Fig. 2(a) consisting of a black box and an LC resonator with
inductance Lr and capacitance Cr. Following the flux-based
quantization procedure in Ref. [58], we define two node fluxes
φ, ψ and the ground as Fig. 2(a). A Lagrangian of this circuit
is written as

L1 = Cr

2
φ̇2 − (φ − ψ)2

2Lr
+ Lblack(ψ,ψ̇ ; . . .). (22)

The LagrangianLblack represents the elements in the black box,
and it is described by the flux ψ , its time derivative ψ̇ , and
others inside the black box. The conjugate momenta (charges)
of φ and ψ are derived, respectively, as

q ≡ ∂L1

∂φ̇
= Crφ̇, (23a)

ρ ≡ ∂L1

∂ψ̇
= ∂Lblack

∂ψ̇
. (23b)

Then, we get a quantized Hamiltonian as

Ĥ1 = q̂2

2Cr
+ (φ̂ − ψ̂)2

2Lr
+ Ĥblack(ψ̂,ρ̂; . . .), (24)

where Ĥblack is the Hamiltonian of the black box derived
from Lblack. The operators satisfy the following commutation

FIG. 4. A transmission line coupled capacitively with a long black
box. This circuit configuration does not show SRPTs by the coupling
between the black box and the transmission line.

FIG. 5. An LC resonator coupled with a black box, where the
absence of SRPTs cannot be confirmed by the analysis in this paper. It
is because we could not derive a Hamiltonian for (a). For (b) and (d),
their Hamiltonians can be derived, but they cannot be transformed
as the minimal-coupling Hamiltonian. (c) The circuit proposed in
Ref. [48].

relations:

[φ̂,q̂] = ih̄, (25a)

[ψ̂,ρ̂] = ih̄, (25b)

and the other combinations are commutable. We consider the
flux φ̂ and the charge q̂ of the LC resonator as canonical
variables of a photonic mode. Introducing the annihilation
operator â of a photon and an impedance Zr = √

Lr/Cr, they
are described as

φ̂ =
√

h̄Zr

2
(â + â†), (26a)

q̂ = −i

√
h̄

2Zr
(â − â†). (26b)

The resonance frequency is expressed as

ωr = 1√
LrCr

. (27)

In Eq. (24), the coupling between the LC resonator and the
black box is described by the second term, the inductive energy
at Lr. This expression corresponds to the Hamiltonian Ĥdip of
the length form in Eq. (20). Expanding the second term, we
get φ̂2/(2Lr), −φ̂ψ̂/Lr, and ψ̂2/(2Lr) corresponding to the
photonic flux energy, the interaction term, and the P 2 term,
respectively.

FIG. 6. A transmission line coupled inductively with a long black
box. The absence of SRPTs cannot be confirmed by the analysis in
this paper.
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The no-go theorem for atomic systems starts from the
minimal-coupling Hamiltonian in Eq. (1), where the light-
matter coupling is described by the kinetic term of the charged
particles. In order to describe the coupling by a part of the
black box as similar as the minimal-coupling Hamiltonian, we
transform Eq. (24) by a unitary operator

Û1 = e−iq̂ψ̂/h̄. (28)

Using this operator, we get

Û
†
1 φ̂Û1 = φ̂ + ψ̂, (29a)

Û
†
1 ρ̂Û1 = ρ̂ − q̂, (29b)

and the Hamiltonian is transformed to

Ĥ1′ ≡ Û
†
1Ĥ1Û1 (30a)

= q̂2

2Cr
+ φ̂2

2Lr
+ Ĥblack(ψ̂,ρ̂ − q̂; . . .) (30b)

= h̄ωr(â
†â + 1/2) + Ĥblack(ψ̂,ρ̂ − q̂; . . .). (30c)

This Hamiltonian has a similar form as the minimal-coupling
Hamiltonian in Eq. (4). Specifying the black box and ex-
panding the capacitive term depending on ρ̂ − q̂, such as
(ρ̂ − q̂)2/(2C) for a capacitance C, we get an interaction term
−ρ̂q̂/C and the A2 term q̂2/(2C). However, the following
discussion does not depend on the detail of the black box.

Here, we suppose that there are many artificial atoms in the
black box, for example, as Figs. 2(b) and 2(c), and the circuit
satisfies Assumptions 1 and 2, or A. In the thermodynamic limit
(infinite number of artificial atoms; N → ∞), the partition
function is written approximately as

Z̄(T ) =
∫

d2α

π
Tr[e−βĤ′

1′ ], (31)

where â is replaced by a c number α as

Ĥ′
1′ = h̄ωr(|α|2 + 1/2) + Ĥblack(ψ̂,ρ̂ − q; . . .), (32)

and the operator q̂ is also replaced by

q = −i

√
h̄

2Zr
(α − α∗). (33)

Here, by substituting the c number also to the unitary operator
as

Û1c = e−iqψ̂/h̄, (34)

the partition function is rewritten as

Z̄(T ) =
∫

d2α

π
Tr[e−βĤ′′

1′ ], (35)

where

Ĥ′′
1′ ≡ Û1cĤ′

A′Û
†
1c = h̄ωr(|α|2 + 1/2) + Ĥblack(ψ̂,ρ̂; . . .).

(36)

In this way, the problem is reduced to the similar one discussed
around Eq. (14) for atomic systems. Then, SRPTs originating
from the coupling between the LC resonator and the black

box are absent in the circuit configuration of Fig. 2(a), if the
circuits satisfy Assumptions 1 and 2, or A.

In Figs. 2(b) and 2(c), we suppose many flux qubits [62],
which basically require an external magnetic flux in each
loop consisting of three Josephson junctions for reaching the
ideal two-level systems. Even in the presence of the external
magnetic fluxes in these loops, the SRPTs are absent because
the Lagrangian is still expressed as Eq. (22), while some
phase transitions originating from the black box (not from
the coupling with LC resonator) can exist. Of course, the
SRPTs are absent also when the external magnetic fluxes are
completely absent.

B. Capacitive coupling with an LC resonator

Next, we consider the circuit configuration depicted in
Fig. 3(a). An LC resonator couples with a black box through
capacitances inside the black box. Following the charge-based
quantization procedure in Ref. [59], a Lagrangian is obtained
as follows. We define the ground, voltage V , current I , charges
q and {ρj } for j = 1,2, . . . ,N as in Fig. 3(a). The voltage V

and charge q at capacitance Cr are related as

V = q

Cr
. (37)

The current I through inductance Lr, charges {ρj } at coupling
capacitances in the black box, and q at Cr are related as

I = −q̇ −
N∑

j=1

ρ̇j . (38)

Further, the voltage V and current I are related as

V = Lrİ . (39)

Then, we get an equation of motion as

q̈ +
N∑

j=1

ρ̈j = q

LrCr
. (40)

There are some other equations of motion describing the inside
of the black box. A Lagrangian giving these equations is in
general represented as

L2 = Lr

2

⎛
⎝q̇ +

N∑
j=1

ρ̇j

⎞
⎠

2

− q2

2Cr
+ Lblack({ρj },{ρ̇j }; . . .).

(41)

The conjugate momenta are derived as

φ ≡ ∂L2

∂q̇
= Lr

⎛
⎝q̇ +

N∑
j=1

ρ̇j

⎞
⎠, (42a)

ψj ≡ ∂L2

∂ρ̇j

= Lr

⎛
⎝q̇ +

N∑
j=1

ρ̇j

⎞
⎠ + ∂Lblack

∂ρ̇j

. (42b)

They satisfy

[q̂,φ̂] = ih̄, (43a)

[ρ̂j ,ψ̂j ] = ih̄, (43b)
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and other combinations are commutable. The Hamiltonian is
obtained as

H2 = φ2

2Lr
+ q2

2Cr
+ Hblack({ρj },{ρ̇j }; . . .), (44)

where the Hamiltonian of the black box is defined as

Hblack({ρj },{ρ̇j }; . . .) ≡
N∑

j=1

ρ̇j

∂Lblack

∂ρ̇j

− Lblack({ρj },{ρ̇j }; . . .). (45)

Let us rewrite this in terms of {ρj }, {ψj }, . . . . From Eqs. (42),
we get

∂Lblack

∂ρ̇j

= ψj − φ. (46)

In the absence of the LC resonator, we simply get
∂Lblack/∂ρ̇j = ψj , and the Hamiltonian is represented as
Hblack({ρj },{ψj }; . . .). Then, in the presence of the LC res-
onator, ψj is replaced by ψj − φ inHblack, and the Hamiltonian
in Eq. (44) is rewritten in terms of {ρj },{ψj }, . . . and in the
quantized form as

Ĥ2 = φ̂2

2Lr
+ q̂2

2Cr
+ Ĥblack({ρ̂j },{ψ̂j − φ̂}; . . .). (47)

In this case, expanding an inductive energy depending on ψ̂j −
φ̂ in the black box, we get an interaction term and the A2 term,
when we specify the black box in detail. In the same manner
as the previous subsection, we rewrite φ̂ and q̂ by annihilation
operator â as

φ̂ = −i

√
h̄Zr

2
(â − â†), (48a)

q̂ =
√

h̄

2Zr
(â + â†). (48b)

Then, we replace â by a c number α as

Ĥ′
2 = h̄ωr(|α|2 + 1/2) + Ĥblack(ρ̂,ψ̂ − φ; . . .), (49)

where φ̂ is also replaced by

φ = −i

√
h̄Zr

2
(α − α∗). (50)

Using a unitary operator

Û2c = exp

⎛
⎝ i

h̄
φ

N∑
j=1

ρ̂j

⎞
⎠, (51)

we get

Û
†
2cψ̂j Û2c = ψ̂j + φ, (52)

and the problem is reduced to the minimization of

Ĥ′′
2 = Û

†
2cĤ′

2Û2c

= h̄ωr(|α|2 + 1/2) + Ĥblack({ρ̂j },{ψ̂j }; . . .). (53)

In the same manner as discussed above, the SRPTs due to
the coupling between the LC resonator and the black box are

absent in the circuit configuration of Fig. 3(a), if systems of
interest satisfy Assumptions 1 and 2, or A. Then, for example,
the SRPTs are absent in the circuit of Fig. 3(b), where the
charge qubits couple capacitively with an LC resonator as
already discussed in Ref. [47].

C. Capacitive coupling with a transmission line

We next consider a transmission line coupled capacitively
with a long black box as depicted in Fig. 4. We can derive its
Hamiltonian in the similar manner as the previous subsection.

In Fig. 4, Ct and Lt are, respectively, capacitance and
inductance per unit length, and Δx is a short length for the
discrete description of the transmission line. We define voltage
Vj , current Ij , and charges qj and ρj as in Fig. 4. The voltage
Vj and the charge qj at the j th capacitance CtΔx is related as

Vj = qj

CtΔx
. (54)

The current Ij is related with the charges qj and ρj as

Ij = Ij−1 − q̇j − ρ̇j . (55)

Further, the voltage Vj and the current Ij are related as

Vj+1 − Vj = −LtΔxİj . (56)

From these relations, we get a difference equation as

q̈j + ρ̈j = qj+1 + qj−1 − 2qj

LtCt(Δx)2
. (57)

This equation can be obtained by the following Lagrangian:

L3 =
∑

j

[
LtΔx(q̇j + ρ̇j )2 − (qj+1 − qj )2

2CtΔx

]

+ Lblack({ρj },{ρ̇j }; . . .). (58)

The conjugate momenta are derived as

φj ≡ ∂L3

∂q̇j

= LtΔx(q̇j + ρ̇j ), (59a)

ψj ≡ ∂L3

∂ρ̇j

= LtΔx(q̇j + ρ̇j ) + ∂Lblack

∂ρ̇j

. (59b)

Then, in the same manner as the previous subsection, the
Hamiltonian is derived as

H3 =
∑

j

[
LtΔx

2
(q̇j + ρ̇j )2 + (qj+1 − qj )2

2CtΔx

]

+Hblack({ρj },{ρ̇j }; . . .), (60)

Ĥ3 =
∑

j

[
φ̂j

2

2LtΔx
+ (q̂j+1 − q̂j )2

2CtΔx

]

+ Ĥblack({ρ̂j },{ψ̂j − φ̂j }; . . .). (61)

The first two terms are simply the Hamiltonian of the
transmission line, in which a photon (microwave) propagates
with a speed of v = 1/

√
LtCt in the one-dimensional system.

The boundary conditions of the transmission line do not affect
the possibility of SRPTs in the semiclassical analysis relying
on the c-number substitution.
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In order to justify the c-number substitution performed in
Eq. (7), let us discuss when the systems with the transmis-
sion line satisfy Assumption A. Here, we consider that the
transmission line has a length of . The frequency of the
photonic mode is ωk = k(πv/) for k = 1,2, . . . . Considering
the minimum wavelength λmin where the electromagnetic
wave interacts sufficiently with the artificial atoms and is
confined sufficiently in the one-dimensional transmission line,
the effective number of the photonic modes is determined as
M = /λmin. The free energy per atom is in the same order
as the characteristic frequency ωa of the atomic transition,
which gives a wavelength of λa = 2πv/ωa. Instead of the
limit N → ∞, we consider the limit of the number of atoms
in the length of λa as n = Nλa/ → ∞. Then, Assumption A
is rewritten as

1

N

h̄πv



M(M + 1)

2
� h̄ωa, (62)

(λa/λmin)2

4
� n. (63)

In this way, the c-number substitution is justified when the
number n of atoms in λa is much lager than (λa/λmin)2.

In the same manner as the previous subsections, when the
c-number substitution is justified under the above condition,
the SRPTs due to the coupling between the transmission line
and the black box are absent in the circuit configuration of
Fig. 4.

IV. CIRCUIT CONFIGURATIONS WHERE
SRPTs CAN EXIST

Next, we show some circuit configurations where the
absence of SRPTs cannot be confirmed by the analysis
in this paper. In Sec. IV A (Fig. 5), we discuss another
inductive-coupling configuration with an LC resonator. In
Sec. IV B (Fig. 6), an inductive-coupling configuration with
a transmission line is discussed. As shown in Fig. 1, these
configurations include also the circuit structures that do not
show SRPTs, while the configuration of Fig. 5 includes the
circuit proposed in Ref. [48] that shows a SRPT.

A. Another inductive coupling with an LC resonator

Let us first consider the circuit configuration depicted in
Fig. 5(a), which is generalized from the capacitive-coupling
configuration in Fig. 3(a). We could not derive a Hamiltonian
of this configuration in the flux- [58] or charge-based [59]
quantization procedure. While other quantization procedures
[63] might give a Hamiltonian, it in fact includes the circuit
of Fig. 5(c) proposed in Ref. [48], which shows a SRPT in the
presence of an external magnetic flux or π junctions. Then,
even if we get a Hamiltonian of the circuit configuration in
Fig. 5(a), the absence of SRPTs would not be confirmed by
the semiclassical analysis.

For example, let us consider the configuration in Fig. 5(b),
which is less general than Fig. 5(a) but includes the circuit
of Fig. 5(c) proposed in Ref. [48]. Following the flux-based
procedure, we define the ground and node fluxes φ and {ψj } as
in Fig. 5(b). In the same manner as Sec. III A, a Hamiltonian

can be derived as

Ĥ4 = q̂2

2Cr
+ φ̂2

2Lr
+

N∑
j=1

(φ̂ − ψ̂j )2

2Lc

+ Ĥblack({ψ̂j },{ρ̂j }; . . .). (64)

Let us derive the black-box Hamiltonian and roughly check
the existence of the SRPT for the circuit proposed in Ref. [48]
by specifying the detail inside the black box as Fig. 5(c). Each
Lc is connected with a Josephson junction with Josephson
energy EJ and capacitance CJ. A half of flux quantum �0 =
h/(2e) is applied to a loop as an external flux bias �ext = �0/2.
For this circuit, the black-box Hamiltonian is derived as [48]

ĤRef. [48]
black ({ψ̂j },{ρ̂j }) =

N∑
j=1

(
ρ̂j

2

2CJ
+ EJ cos

2πψ̂j

�0

)
. (65)

The sign of the last term (potential energy of the Josephson
effect) is positive by the presence of the external flux bias
�ext = �0/2. We can intuitively understand the existence of a
SRPT by analyzing the minima of the inductive energy:

U (φ,ψ) = φ2

2Lr
+

N∑
j=1

[
(φ − ψj )2

2Lc
+ EJ cos

2πψj

�0

]
. (66)

For NLr > [�0/(2π )]2/EJ − Lc, this function has two min-
ima at φ = ±φ0 = 0 (and ψj = ±[1 + Lc/(NLr)]φ0 = 0).
Since the potential barrier between the two minima becomes
infinitely high in the thermodynamic limit N → ∞, the
symmetry (superposition of the two minima) in the ground
state is broken spontaneously, and we get a coherent am-
plitude of the flux φ ≈ ±φ0 below a critical temperature.
In this way, SRPTs exist in superconducting circuits where
the photonic harmonic energy [φ2/(2Lr) minimized at φ =
0] and the atomic anharmonic energy [EJ cos(2πψj/�0)
minimized at ψj = 0] competes through the coupling term
[(φ − ψj )2/(2Lc) minimized for φ = ψj ].

As we already found a counterexample above, we cannot
get the no-go theorem for the Hamiltonian in Eq. (64) derived
for the circuit in Fig. 5(b). In contrast to Sec. III A, we cannot
relocate the photonic flux φ into Ĥblack by unitary transfor-
mations since there are N coupling terms (φ̂ − ψ̂j )2/(2Lc),
while the absence of SRPTs can be shown for N = 1 in the
same manner as Sec. III A. On the other hand, if we consider
the third term, the inductive energies at Lc, as a part of the
black-box Hamiltonian as

Ĥ′
black(φ̂; {ψ̂j },{ρ̂j }; . . .) ≡

N∑
j=1

(φ̂ − ψ̂j )2

2Lc

+ Ĥblack({ψ̂j },{ρ̂j }; . . .), (67)

the coupling term is certainly included in the black box as

Ĥ4 = q̂2

2Cr
+ φ̂2

2Lr
+ Ĥ′

black(φ̂; {ψ̂j },{ρ̂j }; . . .). (68)

However, we cannot remove the photonic flux φ from the
black-box Hamiltonian even under the c-number substitution.
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For example, by introducing a unitary operator as

Û4c = exp

⎛
⎝− i

h̄
φ

N∑
j=1

ρ̂j

⎞
⎠, (69)

the Hamiltonian Ĥ′
4 under the c-number substitution is

transformed to

Û
†
4cĤ′

4Û4c = q2

2Cr
+ φ2

2Lr
+ Ĥ′′

black(φ; {ψ̂j },{ρ̂j }; . . .), (70)

where the black-box Hamiltonian is transformed as

Ĥ′′
black(φ; {ψ̂j },{ρ̂j }; . . .)

=
N∑

j=1

ψ̂j
2

2Lc
+ Ĥblack({ψ̂j + φ},{ρ̂j }; . . .). (71)

In this way, the problem cannot be reduced to the minimization
of the black-box Hamiltonian without the LC resonator. In
other words, the Hamiltonian of the circuit configuration in
Fig. 5(b) cannot be expressed as similar as the minimal-
coupling Hamiltonian. Then, the absence of SRPTs cannot be
confirmed by the same logic as the no-go theorem for atomic
systems. This result is consistent with the proposal of a SRPT
in Ref. [48].

In the similar manner, for the circuit configuration of
Fig. 5(d), where Lr is eliminated, its Hamiltonian is simply
derived as Eq. (64) without the second term. The absence of
SRPTs cannot be confirmed also in this circuit configuration.

B. Inductive coupling with a transmission line

Finally, let us consider the circuit configuration depicted
in Fig. 6. A transmission line couples with a long black box
inductively, or we can instead consider small LC resonators
coupled through the black box. Following the flux-based
procedure, a Lagrangian is obtained as

L5 =
∑

j

[
CtΔx

2
φ̇j

2 − (φj − ψj )2

2LtΔx
− (φj − ψ ′

j−1)2

2L′
tΔx

]

+ Lblack({ψj },{ψ̇j }; {ψ ′
j },{ψ̇ ′

j }; . . .). (72)

The conjugate momenta are derived as

qj ≡ ∂L5

∂φ̇j

= CtΔxφ̇j , (73a)

ρj ≡ ∂L5

∂ψ̇j

= ∂Lblack

∂ψ̇j

, (73b)

ρ ′
j ≡ ∂L5

∂ψ̇ ′
j

= ∂Lblack

∂ψ̇ ′
j

. (73c)

Then, we get the Hamiltonian as

Ĥ5 =
∑

j

[
q̂j

2

2CtΔx
+ (φ̂j − ψ̂j )2

2LtΔx
+ (φ̂j − ψ̂ ′

j−1)2

2L′
tΔx

]

+ Ĥblack({ψ̂j },{ρ̂j }; {ψ̂ ′
j },{ρ̂ ′

j }; . . .). (74)

For this Hamiltonian, we cannot relocate the coupling terms
into Ĥblack as in the previous sections. For example, using a

unitary operator

Û5 = exp

⎛
⎝− i

h̄

∑
j

q̂j ψ̂j

⎞
⎠, (75)

we get

Û
†
5 φ̂j Û5 = φ̂j + ψ̂j , (76a)

Û
†
5 ρ̂j Û5 = ρ̂j − q̂j , (76b)

and

Û
†
5Ĥ5Û5 =

∑
j

[
q̂j

2

2CtΔx
+ φ̂j

2

2LtΔx
+ (φ̂j + ψ̂j − ψ̂ ′

j−1)2

2L′
tΔx

]

+ Ĥblack({ψ̂j },{ρ̂j − q̂j }; {ψ̂ ′
j },{ρ̂ ′

j }; . . .). (77)

In this way, the coupling terms inevitably remain in the
photonic Hamiltonian as far as we tried. Then, the absence of
SRPTs in the transmission line of Fig. 6 cannot be confirmed
by the analysis in this paper, while its Hamiltonian could be
derived with treating the artificial atoms as a black box.

V. SUMMARY

Following the similar analysis as the no-go theorem for
atomic systems [14,15], we examined the possibility of
SRPTs in some configurations of superconducting circuits. By
deriving Hamiltonians with treating artificial atoms as a black
box, we show that three configurations depicted in Figs. 2–4
do not show SRPTs if the systems satisfy Assumptions 1 and
2, or A in the thermodynamic limit, which justify the c-number
substitution performed in Eq. (7) and are essential in the no-go
theorem for the atomic systems [14,15].

The absence of SRPTs cannot be confirmed for the circuit
configurations in Figs. 5 and 6. It is because, for Fig. 5(a),
we could not derive its Hamiltonian with treating artificial
atoms as a black box. Concerning Figs. 5(b), 5(d), and 6, we
can derive their Hamiltonians, but they cannot be transformed
as the minimal-coupling Hamiltonian. Then, the absence of
SRPTs cannot be confirmed in the analysis of this paper. In
fact, Figs. 5(a) and 5(b) include the circuit in Ref. [48] depicted
in Fig. 5(c), where a SRPT in the thermal equilibrium was
proposed in the presence of an external magnetic flux or π

junctions.
The analysis in this paper shows the absence of SRPTs

originating from the coupling between the black box and the
LC resonator or the transmission line. If the black box includes
another resonator or transmission line, we must examine
whether it can be reduced to the three circuit configurations in
Figs. 2–4 or we must extend the discussion for circuits with
multiple resonators or transmission lines. Further, there also
remains the possibility of SRPTs in systems that do not satisfy
Assumption 1, 2, or A, i.e., those SRPTs cannot be analyzed
under the c-number substitution performed in Eq. (7).

In order to find SRPTs in the absence of an external
magnetic flux or π junctions, we should explore the circuit
configurations in Figs. 5 and 6 or others except Figs. 2–4,
while the analysis in this paper does not basically depend on
whether an external magnetic flux or π junctions exist or not.
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