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Orbital-angular-momentum mixing in type-II second-harmonic generation
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We investigate the nonlinear mixing of orbital angular momentum in type-II second-harmonic generation with
arbitrary topological charges imprinted on two orthogonally polarized beams. Starting from the basic nonlinear
equations for the interacting fields, we derive the selection rules determining the set of paraxial modes taking
part in the interaction. Conservation of orbital angular momentum naturally appears as the topological charge
selection rule. However, a less intuitive rule applies to the radial orders when modes carrying opposite helicities
are combined in the nonlinear crystal, an intriguing feature confirmed by experimental measurements.
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I. INTRODUCTION

The ability to control different degrees of freedom of
a light beam is essential for both quantum and classical
communication protocols. In this context, orbital angular
momentum (OAM) has proved to be a potentially useful tool
and has motivated a fair amount of research work with potential
applications to quantum and classical information processing
[1]. In the quantum domain, qubits and qudits can be encoded
on either Laguerre-Gaussian (LG) or Hermite-Gaussian (HG)
modes, which combined with the photon polarization allows
creation of entanglement between internal photonic degrees
of freedom. Many works have been devoted to schemes for
implementing and applying this spin-orbit coupling [2,4—12].
Beyond the intrinsic beauty of this subject, one may
find interesting applications to quantum information tasks
like optical communication [13,14], teleportation schemes
[15-21], alignment-free quantum cryptography [22-24], con-
trolled gates for quantum computation [25,26], quantum
simulations [27,28], and metrology [29-31]. Quite curiously,
the presence of spin-orbit structures in an optical beam can
be characterized by inequality criteria similar to those used
to witness entanglement in quantum mechanics [32—39]. The
interplay between spin and spatial degrees of freedom also
plays an important role in the noise properties of vertical-cavity
surface-emitting lasers [40].

Orbital-angular-momentum exchange in nonlinear interac-
tions has been extensively studied and is still a fruitful domain.
It has already been investigated in frequency up [41-49]
and down [50-52] conversion, optical parametric oscillation
[53-56], four-wave mixing in atomic vapors [57-59], and high
harmonic generation [60,61]. A detailed theoretical treatment
of the orbital-angular-momentum transfer in different nonlin-
ear processes can also be found in Ref. [62].

The control of the nonlinear optical interaction through
polarization has been also considered both in the quantum
[3,4] and classical regimes [44,63]. In these examples, the
phase-match condition imposes simple arithmetic relations
among the topological charges of the interacting modes
[44,46]. In the seminal works on second-harmonic generation
with OAM beams, the intuitive charge doubling condition was
demonstrated and remained as a natural assumption until other
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degrees of freedom were brought into play. In type-II second-
harmonic generation with LG modes, we have demonstrated
different topological charge operations controlled by the po-
larizations of the interacting beams. Actually, these operations
are a natural consequence of selection rules arising from the
spatial overlap among the interacting modes. In cylindrical co-
ordinates, the angular part of the spatial overlap trivially leads
to topological charge conservation. The nonlinear wave mixing
may also cause the appearance of radial structures [47,64—67].

In this paper we perform a detailed study about orbital-
angular-momentum mixing in collinear type-II second-
harmonic generation. Multimode coupling is considered in
connection with OAM addition and the selection rules are
derived based on the spatial overlap between the modes par-
ticipating in the nonlinear process. One curious consequence
of these selection rules is the appearance of higher radial
orders when opposite topological charges are added. This
intriguing feature of the nonlinear interaction is theoretically
derived and experimentally confirmed. We also derive the
analytical solution for the nonlinear dynamical equations both
for co- and counter-rotating OAM modes, as a multimode
generalization of the result obtained in Ref. [68]. Another
curious feature of the nonlinear coupling is the reduction of
the apparent multimode to an effective three-mode dynamics
when counter-rotating vortices are mixed. The dynamics of the
higher radial modes is slaved by the fundamental one, making
an effective three-mode coupling.

II. DYNAMICAL EQUATIONS
FOR THE COUPLING MODES

We will consider type-II second-harmonic generation in
collinear configuration with orthogonally polarized incoming
beams carrying arbitrary topological charges. Let us start with
the expression for the electric-field vector corresponding to
a light wave with the fundamental frequency w, propagating
along the z direction:

E,(r.z;1) = [En(r,2) & e + &,(r,2) &, eM%]e™™ ", (1)
where €, (&,), ki (k,), and &, (&,) are, respectively, the po-
larization unit vector along the horizontal (vertical) direction,
the corresponding wave number, and the transverse spatial

function. For type-II phase match the second-harmonic field
can be written as

Eou(r,2;1) = £y (1,2) &), €/ K207 7200 )
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The three field components, (w,k),(w,v), and (2w), follow a
coupled evolution inside the nonlinear medium with a coupling
constant y that involves the relevant terms of the nonlinear
susceptibility tensor. Under phase match (ky, = kj, + k), the
equations describing this coupled evolution in the paraxial
approximation are

&, w?
V2 &, + 2iky, Z] = —X—2 & &y,
&, X w? .
ViE, =- &y, 3)
&2, 2
ViEZw + 2ik2w 2 =—4 X 620 5}1 gvv
0z c

with V, = (9/dx,0/dy). In order to inspect the OAM ex-
change in the nonlinear process, we expand the interacting
fields in the Laguerre-Gauss basis:

w
&)= [— Y Abubr2),
np Iy
w v v
Eur) = - ;A,ﬂ 1’ (r.2), )

w
2 : 2
Ezw(raz) = Bpl Mp‘]o(rvz)’
w
pil

where 7, is the refraction index for the horizontally (verti-
cally) polarized infrared beam and n5,, is the second-harmonic
refraction index. The orthonormal Laguerre-Gaussian mode
functions are

1]
Ny 2r Il 2r?
pl(r,Z) \/> wj(z) (wj(z)> Lp —wz(z)

» w/Z(;) eA[zR S (2p+|l|+l)arctan( )+10]’ (5)

|
SR PREETY ©

(j = h,v,2w). The beam width and wavefront radius at
position z are, respectively, given by

»2

2
w;(2) = w; 1+(i) : (7)

ZR/.

ZR; 2
Ri() =z[1+ (7> } ®)

where w; = ,/2zg, ./k; is the beam waist and 2R, is the
Rayleigh distance. Besides the longitudinal phase-match
condition (k;, + k, = ko), efficient frequency conversion also
requires transverse phase match, imposing the wave-front
overlap R, = R, = Ry, and a common Rayleigh range
ZR, = XR, = 2Ry, — ZR-
This transverse mode decomposition allows the description
of the field evolution as a set of coupled equations for the mode
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amplitudes [53]:

h
dApl rn *
T N Br(ay)
dz p'pp” l ’1’ ’
/l/pll
dA?
pl i *
a2 8L D Ay Bpr(Ape) O)
rl pl’
dB,; "
“=p i h v
iz —ngZ Appp,/ Ap,,,Ap,/l,/.
!l/pll

The following convenient parameters are introduced:

8 = 51 T oo (10)

1
wr o _ Rpp’P” (11)
pp'p" T R000 °
000
nr 2w, h \¥(,v \*g2
RUT, = [ W2 () () P, (12)

Here Rifpl /18 the three-mode spatial overlap of Laguerre-
Gauss modes with indices pl, p’l’, and p"l” .

Equations (9) describe the amplitude evolution of each
component in the expansion. We will neglect nonlinear losses
(x* = x) and the Gouy phase acquired inside the crystal,
making (A”] )* AL, In fact, from the experimental
values of the infrared and second-harmonic beam waists,
which were on the order of 0.2-0.4 mm, the Rayleigh range
was around tens of centimeters while the crystal was only
10 mm long. In this case, the factor arctan(z/zx) can be fairly
neglected within the interaction distance. The Gouy phases of
the generated modes only show up in the diffraction region

where the nonlinear interaction no longer occurs.

A. Effective nonlinear mode coupling

In the multimode dynamics, the effective nonlinear cou-
pling between the different modes is basically ruled by the
nonlinear susceptibility x and the spatial overlap integral
defined in Eq. (12). Here we are interested in the nonlinear
OAM mixing of two beams carrying topological charges I’
and !”, with zero radial order (p’ = p” = 0). In Appendix A,
the calculation of the corresponding overlap integral is detailed
and two selection rules are derived. The first one leads to the
expected OAM conservation, already discussed in previous
works [43,44,46,51,52]. The second one is less obvious and
predicts that higher radial orders are generated in the second-
harmonic field when opposite helicities are combined in the
nonlinear process.

When both input topological charges have the same sign
(I’ -1” > 0), the normalized overlap becomes

L P L AP
A[;folo = 81417 TEIEE (p =0), (13)
0 (p >0,

where &; = (wa,,/w;)? . This means that the two input modes
couple to a single second-harmonic one carrying the added
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topological chargel = I’ +
zero radial order (p = 0).

A less intuitive situation is produced when the input modes
carry topological charges with opposite signs (I’ - {” < 0). In
this case, the resulting overlap integral becomes

[” (OAM conservation) and having

" e g E e
A,ﬁoo—&m/' P—p! \ PIpHl+7D! (p < P), (14)

0 (p > P),

where P = min(|!’|,|I"”|), so that higher radial orders, up to
the minimum value between || and |I”|, are generated in
the second-harmonic field. Therefore, the nonlinear mixing
of opposite helicities implies a more complex dynamics with
more transverse modes taking part in the nonlinear interaction.

B. Multimode Manley-Rowe relations

In order to derive multimode conservation laws, it will be
useful to define the phase (qﬁp,,wp/) anq intensity (I;Z,Jpl)
variables, in terms of which the mode amplitudes are expressed
as

AN = [0 0l B = [T, e, (15)

In Appendix A we derive the following Manley-Rowe rela-

tions:
D 1) - ZM@ > 13,00 — Z”’/z 0),
Pl v

Z Tp(2) + Z I(z) = Z Tp(0) + Z 12(0). (16)

p'r p'r

These conservation laws are important for the solutions of
the dynamical equations. They identify the natural integration
constants for the dynamical equations.

III. NONLINEAR MIXING OF COROTATING VORTICES

We now solve the nonlinear coupled equations for the
three-mode interaction in second-harmonic generation of
corotating vortices. As we discussed in Sec. IT A, when two
corotating vortices with zero radial order are mixed in the
nonlinear process, a single second-harmonic mode will be
excited and a three-mode dynamics is realized. In this case,
Eqgs. (9) are significantly simplified and an analytical solution
can be found. For this purpose we assume only two nonzero
initial amplitudes ('’ =m and " =n) A} (0) = A},(0) =
Iy (m - n > 0) at the crystal entrance, all other modes being
empty. According to the overlap integrals given by Eq. (13), a
single second-harmonic mode with p = 0 and/ = m + n will
be excited. The resulting three-mode dynamical equations are

dAl .
d_Zm =i gAGoo Bo Ay,
dA?
0 — g AR By ALY, (17)
dz
dBy
E =18An0 A()mAOn’

where B is the second-harmonic amplitude with zero radial
order (p = 0) and we omitted the superfluous index [ for
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simplicity. Equations (17) can be further simplified by defining
the following rescaled amplitudes:

b =g Agoo Bo, an = g A Agm’ ay = & Agoo Agys (18)
giving

dah . da db .

2 iba d—; =ibaj, 7 =iapa, (19)

The analytical solution for this system is derived in
Appendix C. It resembles the original solution found in
Ref. [68]. The resulting output intensities are

Jo(z) = 21, tanh? (g A /210 2),
1$,(2) = 13,(2) = Iy sech®(g Ao v/210 2). (20)

where 1= |A0m| Iy, = 1A, 1>, Jo=1|Bo|*>, and Iy =

()m 0) = 10”,,(0) is the common 1ntens1ty of the input modes at
the crystal entrance. Moreover, along the interaction distance
z the phase variables evolve under the following phase-match
condition:

Do (D) + 96, (2) — Yo(2) = N + 1)%, 2y

with N € Z, as detailed in Appendix C.

IV. HIGHER RADIAL ORDERS GENERATION
FROM COUNTER-ROTATING VORTICES

We now investigate the generation of arbitrary radial
orders from the orbital-angular-momentum mixing of counter-
rotating vortices. As we have already mentioned, radial orders
up to the minimum absolute value of the mixed OAM are
generated in the process. In principle, this could imply a
complicated multimode dynamics, but we demonstrate that an
effective three-mode dynamics can be derived. Let us consider
the input modes A}, and A}, with m - n < 0. Without loss
of generality, we shall assume |m| < |n|. In this case, the
dynamical equations are

dal il
d—(’m =ig Ay Y A" B, (22)
Z
p=0
[m]
dAY
d—zo” —ig Al ZAPOO (23)

dB
d_zp =ig A’;’(’}O AgmA(’;n O < p < |m)), (24)

where B, is the amplitude of the second-harmonic radial mode
p . Note that Eq. (24) imposes the relation

dB, _ N dBy
dz A(’;’O’(’) dz

(25)

This relation implies a constrained evolution of the second-
harmonic mode amplitudes. Assuming null second-harmonic
input [B,(0) = 0], we obtain
mn
p00
Ao

B,(2) = By(2). (26)

053856-3



PEREIRA, BUONO, TASCA, DECHOUM, AND KHOURY

By defining the rescaled amplitudes

2

A
b=g—p,, 27)
AOOO
an = g Aest Al (28)
ay = g ActrAg,, (29)
|m| 12
mn 2
Ao = Z (A7) , (30)
p=0

we arrive at an effective three-mode coupling, governed
by the same rescaled dynamical equations (19). Therefore,
the orbital-angular-momentum mixing of counter-rotating
vortices gives rise to a superposition of radial modes, locked
in phase and amplitude as determined by Eq. (26). In some
sense, this phase and amplitude locking among the radial
modes can be considered analogous to the longitudinal mode
locking achieved in pulsed laser cavities.

For the initial condition Agm(O) = Ag,(0) = Ty, the
analytical solutions for the output intensities are derived in
Appendix C:

13,(2) = 18,(2) = Iy sech*(g Aer v/210 2),

Amn 2
Jo(2) = 21, <%) tanh?(g Aeirv/2102),  (31)

eff

Amn 2
Jp(z)z( P"O) Jo(2).

mn
A 000

Therefore, the second-harmonic field generated by counter-
rotating vortices is a superposition of transverse modes carry-
ing the same topological charge, but with different radial or-
ders. Since the LG mode orderis 2p + |I|, the different modes
in the second-harmonic field acquire different Gouy phases
along propagation, making different near- and far-field images.
This will be used in our experimental investigation to evidence
the multimode structure of the second-harmonic field.

V. EXPERIMENTAL RESULTS

Our experimental setup is sketched in Fig. 1. Two beams
from an infrared Nd:YAG laser (wavelength A = 1064 nm)
impinge on two half screens of a spatial light modulator. Each

FIG. 1. Experimental setup.
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L bzy
FIG. 2. Sketch of the multiradial mode propagation, showing the
transition between the near- and far-field images.

half screen is computer controlled to generate an independent
OAM hologram and produce arbitrary pairs of topological
charges. The two OAM beams produced are then set with
orthogonal polarizations and pass through pairs of collimating
lenses for mode matching before being superposed on a
polarizing beam splitter (PBS). After the PBS, the orthogonally
polarized OAM beams are focused on a potassium titanyl
phosphate crystal cut for type-II phase match. The second-
harmonic beam at 532-nm wavelength is separated from the
fundamental beam by a spectral filter and sent to an imaging
system.

The waists of the infrared and second-harmonic beams were
on the order of 0.2-0.4 mm, which corresponds to a Rayleigh
distance of tens of centimeters. Since the crystal was only
10 mm long, the factor arctan(z/zg) can be fairly neglected
within the interaction distance and the Gouy phases only show
up in the diffraction region where the nonlinear interaction
no longer occurs. In order to evidence the generation of
higher radial orders experimentally, we performed intensity
measurements on the second-harmonic beam both in the near-
and far-field regions. The superposition of different radial
orders carrying the same topological charge involves modes
acquiring different Gouy phases (2p + || + 1) arctan(z/zg)
along propagation. This results in different near- and far-
field images of the second harmonic, as suggested by the
propagation sketch shown in Fig. 2. The image evolution can
be easily simulated and compared to the experimental images
acquired with a CCD camera placed in different propagation
regions. The corresponding images are displayed in Fig. 3.
While the near-field images only display a hollow intensity
distribution, the appearance of external rings in the far-field
intensity patterns unravels the presence of higher radial orders.
Moreover, the phase singularity remains present in the far field
when there is a net OAM transferred to the second harmonic.
In these cases, the phase singularity and the external rings
coexist in the far-field intensity distribution. The agreement
between the experimental results and the simulated images is
remarkable.

An intuitive picture can be envisaged for the far-field struc-
ture of the second harmonic produced by opposite topological
charges (I’ = —!”). In this case, the second harmonic carries no
OAM, but has a hollow intensity distribution in the near field.
Therefore, the far-field structure is analogous to the diffraction

053856-4



ORBITAL-ANGULAR-MOMENTUM MIXING IN TYPE-II ...

Near
Field

Near
Field

Far
Field

FIG. 3. Experimental (top) and theoretical simulation (bottom) of
the near- and far-field images formed by second-harmonic generation
of counter-rotating vortices.

pattern produced by a circular obstacle and the central peak
can be viewed as a manifestation of the famous Poisson
spot, which by the way also comes accompanied by external
rings. Of course, in the usual Poisson spot situation, a sharp
circular obstacle is assumed, giving rise to a virtually infinite
number of external rings. However, the near-field pattern of
the second harmonic generated by opposite input charges has
a smooth hollow distribution. Therefore, the far-field pattern
will exhibit a limited number of external rings, precisely equal
to the absolute value of the mutually annihilating charges. This
suggests a further method for topological charge measurement
through the nonlinear mixing of a sample OAM beam with its
mirror image.

VI. CONCLUSION

We developed a detailed study of the orbital-angular-
momentum mixing in type-II second-harmonic generation.
The multimode nonlinear dynamical equations were derived
and solved. Special attention was given to the selection rules
determining the transverse mode coupling in the nonlinear
medium. While the well-known OAM conservation condition
is recovered, a less trivial condition was derived for the
radial modes. The generation of higher radial orders, when
counter-rotating vortices are mixed, is a subtle effect predicted
by our theoretical approach and confirmed by our experimental
results. For opposite input charges, it allows an interesting
interpretation in terms of the famous Poisson spot and can be
viewed as a further method for OAM measurement.

PHYSICAL REVIEW A 96, 053856 (2017)

Another interesting feature is the effective three-mode dy-
namics obtained even when higher radial orders are generated.
These higher radial orders are phase and amplitude locked to
the fundamental radial mode, producing a kind of transverse
mode locking.
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APPENDIX A: SPATIAL OVERLAP
AND SELECTION RULES

We now calculate explicitly the overlap integrals giv-
ing rise to OAM conservation and radial order selection
rules. The effective nonlinear coupling between modes
(p,1; 2w), (p',l'; w,h), and (p”,l”; w,v) is determined by
the following overlap integral:

RIT sz/\/p v Ny [ (V21
Ry = rdr —
Wp Wy W) 0 wawh Wy

8 L”l(Zr2 >L|1/| <2r2>L|1”| <2r )
r 2 r 2 2 2
wa wh wv
2o 2 2
X e ("‘zzm+wh2+w3)/ de =110
0

Note that the phase-match (k;, + k, = k»,,) and wave-front
match (zg, = zr, = 2Zr,,) conditions allow the cancellation of
the curved wave-front contributions and imply the following
relationship between the mode widths:

(AL)

1 1

= 4 A2
wl ~wl | wl (A2

Moreover, the angular integral provides the OAM selection
rule/ =1’ +1”, so that the overlap integral can be written as

R 25 NotNprNprwe []+1 £ 117]+1
/ oL T & v

Jo—
ppp e

R RO 0| —x
X X L, (X)L, (§nx)L,, (5, x)e™" dx,
0

(A3)
where we defined
2)‘2 W2 2
x=—, &§=|—]). (A4)
Wr, w;j
The fundamental modes overlap is
2 v
R = 2 L5 as)
T Wy
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The overlap integral normalized to the fundamental modes
overlap becomes

mwr |l’ 1
A S Ny Ny N I
o0
X
/O

We will be interested in the generation of higher radial orders
from zeroth-order input beams, so we assume that the incoming
modes have no radial structure and restrict our analysis to p’ =
= 0.By using L¥ 5(x) = 1 and making P = min(|l'|,|I"]) =
|l [+ "= I + l”|)/2 the spatial overlap integral assumes
the following simplified form:

11" H-II |

LNeoLY & LY (6, x)e™ dx.

(A6)

wo_ & & p!
pO0 (p+ 1+ 0D

o0
x/ x“u’l”'xPLllﬂ/HN'(x)e_de, (A7)
0

where we have omitted the superfluous index /. From the
recurrence relations for the generalized Laguerre polynomials,
one readily derives a useful expansion for the monomial:

P m
:Z(—l) P+ Py AS)
— (P —m)! (k +m)!

which can be used together with the orthogonality relations,

!
/ kLk (X)Lk (X)e_kd (nr+)5nm, (A9)
o !
to derive the final result
el e ey
O N L e P s (A10)
0 (p > P).

Now, two different situations need to be treated separately,
depending on the relative helicities of the incoming modes.
They lead to the radial selection rules for the second-harmonic
field.

(1) Corotating vortices: [’ -1” > 0. This corresponds to
P =0, giving

\'\ I’ \

AU +1D!
—rmer - P=0
0 (p > 0).

rr

= (Al1)

No higher radial orders are generated in the second-harmonic
field in this case.

(2) Counter-rotating vortices: I” - I < 0. This corresponds
to P = min(|/'[,|l"]), giving

e e e te e (p < P)
p00 = ) =P Y PTG+ ’ (A12)
0 (p > P).

Higher radial orders are generated in the second-harmonic field
up to the minimum value between |I’| and |I”].
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APPENDIX B: MULTIMODE MANLEY-ROWE RELATIONS

In order to derive a set of multimode Manley-Rowe
relations, the mode amplitudes are decomposed in terms of
phase and intensity variables as

I;lrle%’,

FENARTALS (B1)

In terms of these variables, the dynamical equations become

d 1", h
o +i,/1h,,% ¢
dz Pl dy
=i 23 Al €70 ®)

p'v”

i
pl —

d /I,
AN el T T
— i, —— |e""
dz P dz
/// _ph
=18 Z Z Appp "V pl[h/ ety (B3)
pl p'l
d 7, AU\ i,
dz P dz
" o v
=igY S A 11, G (B

pr pl

Taking the real and imaginary parts, we arrive at the phase-
intensity dynamical equations:

’l/ mwr
=28 Z APPI’

ZI i Ly SIN Al

pp'p"’
pl.p"l"
dr?, /7
P wr horv . w
dZ = 2 E A [7 ,D p[ I[”[, I[)”l” sin App/p//, (BS)
plpl

dJ ” ’
pl e |y "
.- 2g E Ny o] Iptl, ,,,I yr SIN App,p,,,

rl/ //l/r

d¢h
h 'l mwr h v i
Iy 2.~ 8 E App o oty oS A,

pLpl
d¢ /!
v Crptlr mw hoguv mnr
1 [ P g E Appp Jpllp,,lp//l,/ cos Appp,,, (B6)
pl.p'l
dy
pl_ e h Jv mwr
Jpi = =8 E Ny Ipit Ly Ly cOs A,
p’l’,[)”l”

where A = ¢",, 4+ ¢7,, — ¥ . From these equations of
motion, we derive the conservation laws given by generalized
Manley-Rowe relations. The first relation is derived by adding
up the intensity equations of motion for all Laguerre-Gaussian
components of the down converted fields, giving

d
EZ(I;, —-1') =0, (B7)
pl
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which simply states that the total intensity difference between
signal and idler fields remains constant along the nonlinear
process.

The second relation is derived by adding up the intensity
equations of motion for the Laguerre-Gaussian components of
the second-harmonic field and comparing with the previous
result obtained for the down converted fields, which gives the
following relation:

_Z pl+1h

These conservation laws help identifying the natural integra-
tion constants of the nonlinear dynamical equations. They will
be used in the derivation of their analytical solutions.

d
= D (p+12)=0.  (BY)

pl

APPENDIX C: THREE-MODE ANALYTICAL SOLUTION

We derive the analytical solution for the three-mode
evolution in second-harmonic generation as described by the
rescaled nonlinear equations:

day, . da,

b
i a,, d_z — =ia;a,. ((&2))]

=iba’,
hdg

Let us define the phase-intensity variables according to

ap = \/Eei‘p”, a, = \/ITvei"" b= \/}ei‘/’. (C2)

The phase-intensity dynamical equations are of the general
form

dﬁ =2 J_I_hl_v sin (¢, + ¢y — V),
dz
di, =

= Sin (¢h + ¢U - I/f)’
dz
Y o JTIT, sin(@n + ¢ — ),
dz

i QZZ}' =TI, cos (¢ + ¢y — V),
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L% _ VI, cos(¢y + ¢y — ¥),

v dZ
7 ‘Z‘f VI, cos @y + by — ). (C3)

From these phase-intensity equations it can be straightfor-
wardly demonstrated that

L0 465)- 40%) 0 e
dz dz dz dz dz dz

giving the following conserved quantity:

Vi@, (2)J (z) cos @(z) = 1/ 1,(0)1,(0)J (0) cos D(0),

(C5)

where ®(z) = ¢n(2) + ¢u(z) — ¥ (2) . If the second-harmonic
field is not seeded, then J(0) = 0 and this conserved quantity
imposes cos ®(z) = 0 for nonvanishing solutions for J(z).
In this case, one immediately sees from the phase equations
that ¢, , ¢,, and Y are stationary and must fulfill ®(z) =
2n+1)m/2.

In order to derive the analytical solution for the three-mode
evolution, we assume that the input fields have equal intensities
1,(0) = I,,(0) = I . From the Manley-Rowe relations one has

1,(2) = In(2), (Co)

J(2) = 2l — Li(2)], (€7

so that the dynamical equation for [, assumes the simple form

dl, -
=2./2(ly — I})) I, C8
iz V2o — In) Iy (C¥)

which can be readily solved, giving the well-known hyperbolic
solutions for the interacting field intensities:

I(z) = I,(z) = I sech®’(v/21y 2),
J(z) = 21y tanh>(v/ 21y 2). (C9)
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