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Spontaneous Beliaev-Landau scattering out of equilibrium
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We investigate Beliaev-Landau scattering in a gas of interacting photons in a coherently driven array of
nonlinear dissipative resonators, as described by the one-dimensional driven-dissipative Bose-Hubbard model.
Due to the absence of detailed balance in such an out-of-equilibrium setup, steady-state properties can be much
more sensitive to the underlying microscopic dynamics. Because the popular truncated Wigner approximation
dramatically fails in capturing this physics, we present an alternative approach, based on a systematic expansion
beyond the Bogoliubov approximation, which includes the third-order correlation functions in the dynamics. As
experimentally accessible signatures of Beliaev-Landau processes, we report a small but non-negligible correction
to the Bogoliubov prediction for the steady-state momentum distribution, in the form of a characteristic series of
peaks and dips, as well as non-Gaussian features in the statistics of the cavity output field.
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I. INTRODUCTION

The convenient assumption of detailed balance, valid for a
quantum many-body system at thermal equilibrium, ensures
that any microscopic process is balanced by its reverse process,
thus making the specific underlying dynamics irrelevant for the
equilibrium ensemble. For systems far from equilibrium no
such claims can be made. Although some similarities can exist
[1–3], driving and dissipation in general prevent the system
from approaching a complete thermal equilibrium [4]. As
a result, the phase-space distribution of out-of-equilibrium
systems is typically much more sensitive to the actual
microscopic driving, dissipation, and equilibration processes
that drive the system towards the steady state.

In this paper we study a weakly interacting driven-
dissipative Bose-Hubbard model in the superfluid regime.
Going beyond the widely applied Bogoliubov approximation,
which assumes noninteracting quasiparticles, we show that
scattering processes involving three quasiparticles, known as
Beliaev-Landau scattering [5], leave a small imprint on the
steady-state momentum distribution and are responsible for
non-Gaussian features in the photon statistics of the cavity
output field.

Beliaev-Landau scattering processes were originally pre-
dicted in the many-body theory of quantum fluids [6] to be
responsible for the finite lifetime of phonons in systems of
either bosonic [7–9] or fermionic particles [10] and were
experimentally observed with ultracold atomic gases [11,12].
In these works, the damping was typically detected after
a population of phonons was introduced in the system by
an external perturbation. Here, on the contrary, we aim at
capturing the spontaneous occurrence of Beliaev-Landau scat-
tering processes by identifying their footprint on steady-state
properties of the nonequilibrium photon gas, such as, most
notably, the momentum distribution and the quantum statistics.

Semiconductor microcavities and superconducting circuits
are among the most promising platforms for realizing scalable
arrays of quantum-optical building blocks, suitable for large-
scale quantum simulations (see [13–16] for recent reviews).
Motivated by recent experimental advances, much theoretical
effort has been devoted to developing numerical techniques

to simulate large-scale driven-dissipative quantum systems.
Several reasons cooperate to make these systems compu-
tationally much more challenging than the corresponding
equilibrium ones. First of all, the total photon number is not
conserved, resulting in a much larger effective Hilbert space,
and second, the steady state is a mixed state, thus requiring
the evaluation of a full density matrix rather than a single
wave function. This led to the development of new numerical
tools such as, among others, variational approaches based on
matrix product states in one dimension [17–20], resummation
techniques [21], self-consistent projection operator theory
[22], extensions of the variational principle [23], and the
corner-space renormalization method for two-dimensional
lattices [24].

In addition to the above-cited exact methods, approximated
techniques based on the truncated Wigner approximation are
also very popular tools to evaluate corrections beyond the
Bogoliubov approximation in both conservative cold-atom
[25,26] and lossy optical systems [14,27]. For the latter, this
technique has been applied in various contexts, including the
study of condensation and superfluid properties [28–31], dy-
namical phase transitions [2,32,33], and even genuine quantum
effects such as dynamical Casimir emission [34] and Hawking
radiation [35,36]. In contrast to these successes, we will
show in this work that the truncated Wigner approximation,
when naively adopted to study Beliaev-Landau scattering,
may dramatically overestimate the corrections to Bogoliubov
theory and even lead to unphysical results.

As an alternative approach we discuss how a truncated
hierarchy of correlations can serve as a consistent expansion
beyond the Bogoliubov approximation [37–39]. In particular,
we will illustrate that the truncation of the hierarchy at the
third-order correlation functions, i.e., one order beyond the Bo-
goliubov approximation, is sufficient to incorporate the cor-
rections attributed to Beliaev-Landau processes, provided an
adequate truncation scheme is employed.

The structure of our paper is as follows. In Sec. II we present
the one-dimensional (1D) driven-dissipative Bose-Hubbard
model and in Sec. III we illustrate how the nonequilibrium
condition allows for on-shell Beliaev-Landau scattering in
one dimension. We next explain how the truncated Wigner
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approximation fails to describe these processes in Sec. IV.
In Sec. V we introduce the third-order correlation functions
to incorporate Beliaev and Landau scattering and construct a
hierarchy of correlation functions. In Sec. VI we discuss the
imprint of Beliaev-Landau scattering on measurable quantities
and discuss the expected signal for realistic parameters
inspired from state-of-the-art semiconductor devices. Con-
clusions are finally drawn in Sec. VII. Appendix A reports
additional numerical truncated Wigner approximation data in
the absence of open Beliaev-Landau channels. Appendixes B
and C summarize technical details on the hierarchy of corre-
lations and on the different truncation schemes. Details on the
calculation of the effect of disorder are given in Appendix D.

II. MODEL

We consider a 1D coupled array of L nonlinear, single-mode
photon cavities under a coherent drive with frequency ωL. The
resonator frequencies ωc are assumed to be uniform throughout
the chain. After a unitary transformation to remove the time
dependence of the drive, we obtain the driven Bose-Hubbard
Hamiltonian (we set h̄ = 1 throughout the article)

Ĥ = −J
∑
〈j,l〉

(â†
j âl + â

†
l âj ) − δ

L∑
j=1

n̂j + U

2

L∑
j=1

n̂j (n̂j − 1)

+
L∑

j=1

�j (âj + â
†
j ). (1)

The operators â
†
j (âj ) create (annihilate) a particle at site

j of the chain and n̂j = â
†
j âj is the local number operator.

Photons in the chain can tunnel to their neighboring sites with
a hopping strength given by J . The notation 〈j,l〉 means that
the summation runs over all neighboring sites. The two-body
interaction strength for photons confined inside the same cavity
is given by U . The amplitude of the driving field at each
site is �j , while its detuning from the on-site single-photon
resonance is given by δ = ωL − ωc. For simplicity we impose
periodic boundary conditions such that â1 = âL+1.

The dissipative nature of the setup implies that injected
photons have a finite lifetime inside the cavity array before they
escape. In the Born-Markov approximation, the coupling of the
system to its environment at zero temperature is described by
the dissipator in the Lindblad form [27,40]

D[ρ̂] = γ

2

∑
j

(2âj ρ̂â
†
j − ρ̂n̂j − n̂j ρ̂). (2)

The full dynamics of the density matrix ρ̂ is then governed by
a master equation, which includes both the unitary evolution
under Ĥ and the photonic losses

∂t ρ̂ = −i[Ĥ ,ρ̂] + D[ρ̂]. (3)

A mean-field description of the problem can be derived
in terms of coherent fields ψj = 〈âj 〉 by assuming that all
normal-ordered operator products factorize [14]. This leads to
the equation of motion

iψ̇j = −
(
δ + i

γ

2

)
ψj − J (ψj+1 + ψj−1) + U |ψj |2ψj + �j .

(4)

For this work we assume a uniform drive field �j = � at
all sites in the chain. In the steady state we thus find one or
two stable homogeneous density solutions in the mean-field
description, depending on the amplitude and detuning of the
pump. They are found as solutions of

n0[(δ − Un0 + 2J )2 + γ 2/4] = |�|2, (5)

where n0 = |ψ0|2 in terms of the spatially uniform mean-field
steady state ψj = ψ0. The parameter

	 = δ − Un0 + 2J (6)

is the renormalized laser detuning from the interaction-
blueshifted optical resonance. We restrict our analysis to the
case 	 < 0 such that the system is in the optical limiter
regime or in the high-density branch of the hysteresis loop
of a bistable regime [14]. As we will briefly review later, this
restriction asserts a gapped spectrum of excitations [41]. In
the numerical analysis that follows, the drive amplitude � is
always implicitly determined by choosing a value for n0.

III. BOGOLIUBOV THEORY AND BELIAEV-LANDAU
PROCESSES

A. Bogoliubov dispersion and the nonequilibrium steady state

The case of a uniform drive field allows for a convenient
parametrization of the full quantum field in terms of a
homogeneous coherent field ψ0 and quantum fluctuations.
Expanding the latter in their φ̂k spatial Fourier components,
one can write

âj = ψ0 + 1√
L

∑
k

eikj φ̂k, (7)

where the sum over k is restricted to the interval [−π,π ] with
a spacing equal to 2π/L in the case of a finite number L of
cavities and periodic boundary conditions.

While the time evolution of the mean-field ψ0 is gov-
erned by the classical equation (4), the dynamics of the
quantum fluctuations is governed by a quantum Langevin
equation [14,27]

i∂t φ̂k = (εk + Un0 − iγ /2)φ̂k + Uψ2
0 φ̂

†
−k + ξ̂k

+ 2Uψ0√
L

∑
q

φ̂†
q φ̂k+q + Uψ∗

0√
L

∑
q

φ̂q φ̂k−q

+ U

L

∑
q,l

φ̂†
q φ̂l φ̂k+q−l , (8)

where we have set

εk = −δ + Un0 − 2J cos k. (9)

The Markovian losses are responsible for quantum noise
with Gaussian statistics, represented by the operators ξ̂k , that
assume the following zero-temperature statistics:

〈ξ̂k(t)ξ̂k′(t ′)〉 = 〈ξ̂ †
k (t)ξ̂k′(t ′)〉 = 0, (10)

〈ξ̂k(t)ξ̂ †
k′(t ′)〉 = γ δk,k′δ(t − t ′). (11)

As usual in Bogoliubov-like approaches, the interaction terms
in Eq. (8) are ordered in increasing number of fluctuation
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operators. When the number of photons in the condensate |ψ0|2
is much larger than the number of fluctuations, one expects the
effect of higher-order terms to be negligible [42].

The first-order correction to the mean field, summarized
on the first line of (8), incorporates processes where two
condensate particles collide and produce a pair of excitations
with counterpropagating wave vectors k and −k and vice versa.
In a Hamiltonian formalism, this corresponds to only retaining
quadratic terms in the fluctuation operators φ̂k . Restricting to
these terms in Eq. (8) and dropping the ones on the second and
third lines, which contain terms with more than one fluctuation
operator, results in a set of linear equations for the fluctuation
fields φ̂k . As done in Ref. [43], this set of linear stochastic
equations is solved by means of a Bogoliubov transform to
new operators

φ̂k = ukχ̂k + vkχ̂
†
−k (12)

that diagonalize the equations of motion

i(∂t + γ /2)χ̂k = ωkχ̂k + ukξ̂k − vkξ̂
†
−k. (13)

Here we have defined the quasiparticle energies ωk along with
the transformation functions uk and vk as

ωk =
√

εk(εk + 2Un0), (14)

uk,vk =
√

εk + 2Un0 ± √
εk

2
√

ωk

. (15)

In Fig. 1(a) the Bogoliubov spectrum (14) is shown for
different values of the renormalized detuning 	 [Eq. (6)].
In contrast to equilibrium systems, note that a spectral gap is
generally present in the Bogoliubov dispersion and only closes
for 	 → 0(−), i.e., when the drive is exactly on resonance with
the interaction-shifted mode [14].

Due to the noise operators in Eq. (13), one has a finite
occupation of Bogoliubov modes with nontrivial anomalous
correlations in the stationary regime,

n
(χ )
k = 〈χ̂ †

k χ̂k〉 = v2
k , c

(χ)
k = 〈χ̂kχ̂k〉 = ukvkγ

γ + 2iωk

. (16)

It is important to note that the occupation of the Bogoliubov
modes here, in contrast with an equilibrium system, is not at
all set by a finite-temperature Boltzmann-Gibbs distribution
but by the interplay of interactions, hopping, driving, and
dissipation [43]. This different origin is apparent in the slow
power-law decay of the occupation of high momentum modes,
much slower than the usual exponential exp [−E(k)/kBT ] of
equilibrium systems. Returning to the original φ̂k operators,
one can derive a closed system of linear differential equations
for the quadratic correlation functions nk = 〈φ̂†

kφ̂k〉 and ck =
〈φ̂kφ̂−k〉,

∂tnk = −γ nk + 2 Im
[
Uψ2

0 c∗
k

]
, (17)

i∂t ck = (2εk + 2U |ψ0|2 − iγ )ck + Uψ2
0 (2nk + 1), (18)

whose steady-state solution reads

nk = 1

2

(Un0)2

ω2
k + γ 2/4

, ck = −Uψ2
0

2

εk + Un0 + iγ /2

ω2
k + γ 2/4

. (19)

FIG. 1. (a) Spectrum of excitations (14) for (J,Un0) =
(30γ,10γ ) and for different values of the renormalized detuning 	

[Eq. (6)]. If 	 → 0(−), i.e., a drive exactly on the blueshifted reso-
nance, the gap vanishes. Beliaev decay is sketched as an excitation at
momentum k that decays to q and k − q with conservation of energy.
(b) Contours of energy conservation from (20) for the same parame-
ters as in (a). The extremal momenta are found from the contours and
are indicated for 	 = −10γ (solid black line), the case we have con-
sidered for the rest of the analysis. (c) Shift of the extremal momenta
as a function of 	 for the positive contour. At 	 < 	0 < 0 the spectral
gap becomes too large and no resonant scattering channels exist.

B. Corrections to the Bogoliubov approximation and
Beliaev-Landau processes

The next-order correction to the Bogoliubov approximation
is given by Hamiltonian interaction terms that comprise three
fluctuation operators and only one condensate mode, which
go under the name of Beliaev and Landau scatterings. Beliaev
scattering is the collision of a fluctuation with momentum
k with a condensate particle into a pair excitations with
momenta q and k − q such that total momentum is conserved
[see Fig. 1(a)]. Landau scattering is the opposite process:
Two fluctuations with momenta k − q and q scatter into a
condensate mode and an excitation with momentum k.

In a closed system, all scattering processes must occur on-
shell, i.e., they conserve both energy and momentum. For the
Beliaev-Landau processes, this implies the relation

ωk = ωq + ωk−q, (20)

with ωk the quasiparticle oscillation frequency. Because of
the absence of a spectral gap and the convexity of the
Bogoliubov dispersion of conservative continuum systems, the
criterion (20) in continuum models can only be satisfied in two
or more spatial dimensions, while in 1D systems phonons
can only decay through higher-order scattering processes
[44]. However, there exist specifically engineered 1D optical
lattices with a nonconvex (but gapless) spectrum such that
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energy and momentum conservation can be simultaneously
satisfied [45,46].

The situation is different in driven-dissipative systems,
where the Bogoliubov spectrum is typically gapped when
the drive is below resonance. In a continuous 1D setup, the
presence of a finite spectral gap in combination with a convex
excitation spectrum always allows for a third-order scattering
process that satisfies (20). When the spectrum is not convex,
as is the case in a lattice model, the situation is somehow more
complicated. The subtle interplay between the spectral gap
and the degree of nonconvexity determines whether resonant
third-order scattering channels are present.

The allowed wave vectors k and q that exactly satisfy the
energy and momentum conservation condition (20) in one
dimension are indicated in Fig. 1(b). Importantly, maximal
and minimal values can be deduced for k and q from the
contours, which set limits on allowed in and out states
for Beliaev-Landau scattering. Only excitations with a wave
vector k for which kmin < k < kmax can scatter resonantly to
excitations with wave vectors q and k − q through Beliaev
decay. Likewise, only excitations with a wave vector q for
which qmin < q < qmax can combine with an excitation at
k − q to form one at k through Landau scattering. However, the
driven-dissipative nature of our setup allows energy not to be
strictly conserved, so scattering processes are possible within
a finite linewidth γ around the energy-conservation point.

In Fig. 1(c) we show how the extremal input and output
momenta shift as a function of the interaction-renormalized
detuning, defined in 	 [Eq. (6)], a parameter that can be
tuned in experiment by changing the laser frequency ωL.
When the drive is too far below resonance, i.e., when 	 < 	0,
with 	0 < 0 a critical value that can be derived from the
dispersion relation, the spectral gap is too large as compared
to the bandwidth and no resonant Beliaev-Landau scattering
channels exist. In the limit of 	 → 0, for which the dispersion
relation is linear, we find the contour of an equilibrium
condensate from Ref. [45]. We anticipate at this point that
the experimental possibility of shifting the limiting scattering
momenta in a well-controlled manner provides a genuine
signature of Beliaev-Landau scattering.

Before continuing with our analysis, we would like to
draw attention to an important consideration. Given a closed
quantum system (e.g., a gas of ultracold atoms or a superfluid
liquid helium sample), the presence of detailed balance will
unavoidably restrict the effect of Beliaev-Landau scattering
to driving the system back into its thermal state once it is
kicked out of equilibrium. Therefore, most works on this
physics are related to phonon-decay experiments, where one
studies how externally injected phonons are damped through
scattering with the condensate (Beliaev) or with the thermal
cloud (Landau) [7,8] or how a thermal equilibrium is reached
again after a sudden global quench [47].

Consequently, it is exactly the absence of detailed balance
in a driven-dissipative context which motivates us to study
the effects of spontaneous Beliaev-Landau processes in the
steady-state regime of the cavity array. In this section we have
illustrated that two crucial conditions for these scatterings to
be possibly relevant are indeed satisfied: (i) There is finite
occupation of Bogoliubov modes over the entire Brillouin
zone, as given in Eq. (16), and (ii) there are regions in

phase space for which energy and momentum are conserved
according to (20), which allows the Bogoliubov modes to
scatter and redistribute (quasi)resonantly.

IV. TRUNCATED WIGNER METHOD

A possible approach to compute corrections beyond
Bogoliubov and quantify the observable signatures of the
Beliaev-Landau processes is the so-called truncated Wigner
approximation (TWA) [25–27,48]. This approach is based on
a one-to-one mapping of the quantum master equation for
the density matrix (3) onto a partial differential equation for
the corresponding Wigner distribution. The resulting Fokker-
Planck equation can be efficiently simulated if the terms with
a third-order derivative are neglected. Since these terms are
proportional to the single-particle interaction constant U , one
expects this approximation to be accurate for sufficiently weak
values of U [14]. This leads to a stochastic differential equation
for a classical field ϕj (t),

idϕj (t) =
[
−
(
δ + i

γ

2

)
ϕj (t) − J (ϕj+1(t) + ϕj−1(t))

+U (|ϕj (t)|2 − 1)ϕj (t) + �j (t)
]
dt +
√

γ

2
dWj (t),

(21)

where the stochastic Wiener increment dWj (t) is white
Gaussian noise with variance 〈dW ∗

j (t)dWj ′(t)〉 = δj,j ′dt and
a random phase. Average values of the field ϕj correspond
to expectation values of symmetrically ordered products of
quantum operators. In particular, for the number operator we
find

〈ϕ∗
j ϕj 〉W = 1

2 (〈â†
j âj 〉 + 〈âj â

†
j 〉) = 〈n̂j 〉 + 1

2 . (22)

As a consequence, the quantum vacuum is represented by a
finite occupation of 1/2 for the classical field ϕj . As long
as nj � 1/2, one does not expect this to cause problems
but, when performing a TWA simulation to estimate the
effects of Beliaev-Landau scattering, one finds surprisingly
large corrections to the occupation numbers of quantum
fluctuations, as can be seen in Fig. 2(a). Even worse is that the
occupation numbers may become negative at certain values
of the momentum, even though the used parameters are well
inside the supposed region of validity of the TWA. In Fig. 2
we fixed Un0 = 10γ and show the results for two interaction
constants U = 0.02γ and U = 0.1γ such that the mean-field
predictions for the number of particles per site are n0 = 500
and n0 = 100, respectively. The results were obtained by
averaging out over a total number of about 106 samples, which
were collected by integrating (21) in time with small enough
time step 	t , and then taking a statistically independent sample
each τs = 5γ −1.

As expected, the magnitude of the correction to the Bogoli-
ubov theory is proportional to the single-photon interaction
constant U (or, equivalently, to the inverse of n0 at a given
mean-field energy Un0). For both values of U , the negative
occupation of some high-k modes is a clearly unphysical
prediction of the TWA.

To better understand the physical origin of this breakdown,
one needs to take a closer look at the nature of the underlying
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FIG. 2. Momentum distribution of photons (in units of the
number of photons per mode) as obtained (a) from the truncated
Wigner approximation and (b) by truncating the hierarchy of
correlation functions at the third order, as discussed in the text.
The parameters are (J,	,Un0) = (30γ, − 10γ,10γ ), L = 128, and
three different interaction strengths U = 0.02γ (blue solid lines),
U = 0.1γ (red dashed lines), and U = 0.5γ (green dash-dotted lines)
such that the average number of photons per cavity is 500, 100,
and 20, respectively. The latter case is not shown for the TWA
computation, because it is outside its regime of validity anyway.
The Bogoliubov result (17) is also indicated (black dotted line). For
clarity, we show the difference of the HOC from the Bogoliubov
distribution δn = n − nBog in the inset of (b). The redistribution of
particles is in both cases the strongest around the extremal values
qmin, kmin, qmax, and kmax (vertical dotted lines) of the contour from
Fig. 1(b). The inaccurate TWA result tremendously overestimates the
corrections stemming from Beliaev-Landau decay, with a negative
value for certain k modes, while the HOC result predicts only a
small deviation from the Bogoliubov distribution. This is a direct
consequence of the unphysical decay of the quantum vacuum in the
Wigner representation.

physical processes. Through Beliaev scattering, a quasiparticle
at a high momentum k decays into two quasiparticles with
smaller momenta q and k − q. Since the occupation decreases
for higher-k modes, one expects the importance of this effect to
be suppressed at higher momenta. However, within the TWA
the quantum field is represented as a classical field for which
the occupation of high-k modes does not decay to 0 but to
1/2, which represents the quantum vacuum fluctuations [see
Eq. (22)]. This finite occupation of all modes, even the highest-
k ones, results in the possibility of a nonphysical decay of the
quantum vacuum through spontaneous Beliaev processes. The
final states of these collisions are quasiparticles with smaller
momenta, which explains the massive pileup in the momentum
distribution around qmin, at the cost of a strong negative
dip around kmax. Of course, the TWA-simulated momentum
distribution recovers relatively well to the Bogoliubov result
for all k values outside of the region [qmin,kmax] for which

there are no resonant Beliaev-Landau scatterings possible.
In Appendix A we include a simulation of a model without
energy-conserving Beliaev-Landau channels and we conclude
that in this case the occupation of all modes is positive and
much better convergence to the Bogoliubov result is achieved.
While this inaccuracy of the TWA is not expected to affect
the predictions for dynamical Casimir and Hawking emission
[34–36] that are at the level of Bogoliubov theory, special care
will be needed in the more advanced study of backreaction
effects in analog models of gravity [49].

As far as we we know, there is no simple solution to this
intrinsic problem of the TWA. Note that related problems with
the TWA are known also in the conservative case of ultracold
atomic Bose gases [25]. The equipartition theorem for the
classical fields states in fact that the momentum distribution
should eventually relax to a thermalized one satisfying nclass

k ∼
kBT /εk . Apart from the fact that this Rayleigh-Jeans-like law
does not match the expected Bose statistics, the TWA can also
lead to negative values for the physical occupation of high-k
modes after subtraction of 1/2 vacuum noise (22). Therefore,
one can reliably use the TWA to compute time evolutions
only up to a limited time such that no thermalization sets in
for the high momentum modes. Also on the calculation of
phonon damping rates this problem has a direct impact, as
the unphysical late-time thermalization of the classical field
dramatically affects the Landau processes [25].

V. HIERARCHY OF CORRELATION FUNCTIONS

Given the dramatic failure of the TWA classical field
approach discussed in the preceding section, we need to
develop a more sophisticated method, apt to capture the
quantum nature of the field operators more accurately. The
idea is to go back to the quantum equation of motion (8) and
to expand up to higher orders in the quantum fluctuations.

A. Method

While a linearized form of Eq. (8) was sufficient to
reproduce the quadratic correlation functions (16), which
describe the effect of a nonzero quasiparticle occupation, one
can expect that the third-order correlation functions are needed
to correctly describe interactions between quasiparticles. In
particular, the matrix M

(χ)
k,q = 〈χ̂ †

k−q χ̂
†
q χ̂k〉 can be used to

represent the scattering of a quasiparticle with momentum
k into two quasiparticles with momenta q and k − q and vice
versa, i.e., Beliaev and Landau scattering. To facilitate our
discussion, from now on we go back from the Bogoliubov basis
to the original basis of φ̂k operators. This requires including
two distinct third-order correlators in the dynamics, namely,

Mk,q = 〈φ̂†
k−q φ̂

†
q φ̂k〉, Rk,q = 〈φ̂−k−q φ̂q φ̂k〉. (23)

Making use of Eq. (8) for the time evolution of quantum
fluctuations, one readily derives differential equations for the
correlation functions up to third order (see Appendix B).

If the lowest order ψ0 in Eq. (7) is kept fixed to the
mean-field value, the inclusion of the third-order correlator
leads to a finite value for the first-order correlator φ0 = 〈φ̂0〉
as well. Another convenient way of choosing the ansatz (7)
is to set φ0 = 0 by definition, thus capturing the variation
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of the condensate wave function directly in ψ0. This goes
at the cost of adding backreaction terms to the generalized
Gross-Pitaevskii equation. At the level of approximation
considered in this section, both approaches are equivalent,
but setting φ0 = 0 asserts that we are dealing with connected
second- and third-order correlation functions, which is a better
controlled truncation [50]. We refer the interested readers to
Appendix B for more details on the method and to Appendix C
for a comparison of different truncation schemes.

Correlation functions of order 4, which enter into the
equations of motion of the second- and third-order correlators,
are factorized into different possible products of second-order
correlation functions. With this procedure we explicitly neglect
the connected part of the fourth-order correlation function,
but we keep its main contribution coming from separable
correlations. The fifth-order correlator, entering in the equation
of motion for the third-order correlation functions, can be
instead safely neglected. Already in factorized form it would
reduce to various products of second and third order, which
constitute negligible corrections to dominant terms in the
equations of motion. See Appendix B for more details on
the implications of these approximations.

Within this framework, the Gross-Pitaevskii equation for
the homogeneous condensate background ψ0, extended with
the backreaction terms, reads

i∂tψ0 =
(
− 	 − i

γ

2

)
ψ0 + � + 2Uψ0

L

∑
k

nk

+ Uψ∗
0

L

∑
k

ck + U√
L3

∑
k,q

M∗
k,q . (24)

The second-order correlation functions (17) are now coupled
to the third-order correlation functions (23),

i∂tnk = −iγ nk + 2i Im

[
U

(
ψ2

0 + 1

L

∑
q

cq

)
c∗
k

+ 2Uψ0√
L

∑
q

Mq,k + Uψ∗
0√

L

∑
q

M∗
k,q

]
, (25)

i∂t ck =
[

2εk + 2U

(
|ψ0|2 + 1

L

∑
q

nq

)
− iγ

]
ck

+U

(
ψ2

0 + 1

L

∑
q

cq

)
(2nk + 1)

+ 2Uψ0√
L

∑
q

(M∗
q,−k + M∗

q,k)

+ Uψ∗
0√

L

∑
q

(R−k,q + Rk,q). (26)

Note that the factorized contribution of the fourth-order
correlator enters here in the equations of motion as a small
correction to the couplings ψ2

0 and |ψ0|2. At equilibrium these
corrections are well studied in the Hartree-Fock-Bogoliubov
method [51].

Finally, we also find the equations of motion for the
third-order correlation functions, in which the fifth-order

backreaction is neglected,

i∂tMk,q =
(

εk − εq − εk−q − U |ψ0|2 − 3i

2
γ

)
Mk,q

−U (ψ∗
0 )2(M∗

q,k + M∗
k−q,k)

+Uψ2
0 R∗

−k,q + F
(M)
k,q , (27)

i∂tRk,q =
(

εk + εq + εk+q + 3U |ψ0|2 − 3i

2
γ

)
Rk,q

+Uψ2
0 (M∗

−k,q + M∗
−q,k + M∗

k+q,k)

+F
(R)
k,q . (28)

Here F
(M,R)
k,q captures the backreaction of the various separable

contributions from the fourth-order correlation functions

F
(M)
k,q = 2Uψ0√

L
[c∗

k−qnq + nk−qc
∗
q − nk(c∗

q + c∗
k−q)]

+ 2Uψ∗
0√

L
[nk−qnq − nk(1 + nq + nk−q)

− ck(c∗
q + c∗

k−q)], (29)

F
(R)
k,q = 2Uψ0√

L
(ck + cq + ck+q + nk+qcq + ck+qnq

+ nkcq + nkck+q + cknq + cknk+q)

+ 2Uψ∗
0√

L
(ckcq + ckck+q + cqck+q). (30)

In principle, Eqs. (24)–(28) provide a solution to the full
time-dependent problem when appropriate initial conditions
are inserted. The focus of the present work is, however, on the
steady-state solution. To obtain this, we in practice initialize
the system with the mean-field condensate amplitude ψ0 and
the Bogoliubov solution (19) for nk and ck , and we initially set
Mk,q and Rk,q to zero. We then let the system evolve until it
spontaneously reaches its steady state.

To follow the time evolution, we have implemented a
Runge-Kutta-based routine with adaptive time step to integrate
Eqs. (24)–(28) in time. By plotting a quantity such as δ(t) =
1/(L	t)

∑
k |nt+	t

k − nt
k|/nt

k as a function of t for fixed 	t ,
we can monitor the convergence. As a criterion we set a
fixed ε and stop the evolution once δ(t) < ε. Typically δ(t) ∼
exp(−κt) and therefore convergence is rapidly achieved. For
a system with 128 cavities we need about 2 min of CPU time
on a standard computer, without any optimization, to get an
accuracy δ < 10−6.

B. Results

In Fig. 2 we present a comparison between the (inaccurate
and unreliable) TWA result and the one obtained with the
present hierarchy-of-correlation (HOC) approach. First of
all, the corrections from the Bogoliubov theory are again,
as expected, proportional to the single-photon interaction
constant U for a given mean-field energy Un0. Importantly,
the predictions of the HOC approach do not suffer from
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FIG. 3. Absolute value of the third-order correlation matrix Mk,q

for (a) U = 0.02γ , (b) U = 0.1γ , and (c) U = 0.5γ for the same
parameters as in Fig. 2. The curve representing energy and momentum
conservation shown as a black solid line in Fig. 1(b) corresponds here
to a line of enhanced scattering.

unphysical negative occupation numbers and quantitatively
the corrections turn out to be much smaller than the ones
found in the TWA. From a qualitative point of view, we see
that they are similar in shape to the TWA ones, but far less
pronounced. We therefore conclude that within the TWA,
the physical scattering processes between quasiparticles are
overwhelmed by the unphysical Beliaev-like decay of the 1/2
vacuum noise, which is indeed significantly larger than the
actual occupation number of the excitations.

Furthermore, we deduce from Fig. 2(b) that the overall
redistribution of particles is from high k to small k, which
means that the Beliaev decay of high-momentum quasiparti-
cles is dominant. Around the two extremal momenta of the
input states, qmin and qmax, this manifests itself as a peak
in the momentum distribution, while there is a dip at the
extremal momenta kmin and kmax of the output states. This
is a consequence of the relatively large density of states for
possible output (input) states for scatterings with input (output)
momenta around kmin or kmax (qmin or qmax), as one can
deduce in Fig. 1(b) from the slow bending of the contours
at these extremal values. As energy does not need to be
exactly conserved in an open system, scattering is also possible
slightly outside the interval [qmin,kmax], with a width set by the
linewidth γ . This characteristic series of peaks and dips in the
steady-state momentum distribution appears to be a promising
experimental signature of Beliaev-Landau scattering processes
in the context of nonequilibrium quantum fluids. On the other
hand, in the limit of small and large momenta (k → 0 and
k → π ) Beliaev-Landau processes are not allowed, so the
Bogoliubov result is accurately recovered.

When trying to gain insight into the nature of out-of-
equilibrium Beliaev-Landau scattering, it is worthwhile to
take a closer look at the scattering matrix Mk,q , shown
in Fig. 3. In addition to a central peak as a consequence
of nonresonant decay, the contour representing energy and
momentum conservation [see Fig. 1(b)] is clearly manifested
as a band of enhanced magnitude of Mk,q .

To clarify this, we take a step back and go again to the basis
of Bogoliubov operators χ̂k . By pursuing transformation (12)
consistently, we find a closed set of equations equivalent to
(24)–(28), but in terms of the χ̂k . Although the full evaluation
is much more cumbersome, as a consequence of the appearance
of various products of the uk and vk transformation functions,

one easily sees that the third-order correlation function must
be of the form

〈χ̂ †
k−q χ̂

†
q χ̂k〉 = 2U√

L

ψ0Ak,q + ψ∗
0 Bk,q

ωk − ωq − ωk−q − 3i
2 γ

, (31)

where Ak,q and Bk,q are coefficients of order one which result
from the combination of the Bogoliubov uk and vk factors
corresponding to the different terms originating from the
factorization of the fourth-order correlation functions in the
Bogoliubov basis.

From the denominator of expression (31) one readily
concludes that Beliaev-Landau scatterings are concentrated
around the energy-conserving contours from (20). As the
hierarchy of correlations (24)–(28) is built in the basis of the φ̂k

operators, scatterings to negative energy states are also possible
through the Bogoliubov transformation (12). These contours
can be obtained by setting ωk → −ω−k and/or ωq → −ω−q in
Eq. (20) and are visible as less pronounced bands of enhanced
matrix elements in Fig. 3.

While the Bogoliubov approximation is a consistent ex-
pansion beyond mean field that captures corrections which
scale as ∼Uψ2

0 , we now conclude from (31) that terms
scaling as ∼Uψ0/

√
L, the next order in the expansion, are

included with the present method. In particular, we have shown
that the redistribution of occupation numbers is caused by
quasiresonant Beliaev-Landau scattering. In our framework,
this effect is accounted for in Eqs. (25) and (26) by the
backreaction of the third-order correlation matrices, which
capture the scatterings, on the momentum distribution and
anomalous correlation.

VI. EXPERIMENTAL SIGNATURES OF
BELIAEV-LANDAU SCATTERINGS

To make the theoretical analysis discussed in the previous
sections more concrete, we dedicate this section to providing
some clear experimental indications on how the small Beliaev-
Landau signal can be extracted in a realistic experimental
context. We consider a one-dimensional cavity array consisting
of a chain of coupled semiconductor microcavities, such as that
presented in Ref. [52]. The cavities, L in total, are positioned
at a distance 	x = 1 μm from each other and are irradiated by
a laser with frequency h̄ωL = 1.6 eV. Photons in the cavities
have an average lifetime of 20 ps, corresponding to a linewidth
of h̄γ = 33 μeV, and display a single-photon nonlinearity of
U = 3.3 μeV such that U ≈ 0.1γ . Furthermore, we set J =
30h̄γ ≈ 1 meV and 	 = −10h̄γ ≈ −330 μeV and assume
an average number of photons per cavity of n0 = 100 such that
Un0 ≈ 10γ ≈ 330 μeV. This is a case that we have already
discussed in the theoretical analysis presented in Sec. V [see
Fig. 2(b), red dashed line, and Fig. 3(b)].

As we have illustrated previously, the most straightforward
approach to observe a signature of Beliaev-Landau scattering
in the cavity array is to measure the momentum distribution
of the quantum fluctuations and observe the characteristic
series of peaks and dips. With the proposed parameters, we
predict that a deviation of about 2% from the Bogoliubov
result (19) can be observed around the minimal final-state
momentum of Beliaev decay qmin [see Fig. 2(b), red dashed
line]. The momentum distribution can be detected through
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FIG. 4. (a) Sketch of the standard setup for an angle-resolved
measurement. While the cavity array is pumped in the k = 0 mode,
corresponding to a perpendicularly incident laser beam, quantum
fluctuations are expected to leak out at a nonzero angle sin θk =
ck/ωL	x. In the setup we discuss in the text, all photons are expected
to leak out within an angle of about 23◦. Measuring the intensity
at an angle θk with width δθ then allows for the measurement
of nk , for which the theoretical prediction is given in Fig. 2(b).
(b) Possible setup to detect the non-Gaussianities in the cavity output
field through the third-order correlator (23). Simultaneous clicks
between detector 1 and the difference signal of detectors 2 and 3
allows for the measurement of the quantity from expression (32).
Here PS stands for phase shifter and BS for a (50:50) beam splitter.

an angle-resolved measurement of the far-field emission, as
sketched in Fig. 4(a): A photon with (adimensional) in-plane
momentum k will fly out of the cavity array at an angle given by
sin θk = ck/ωL	x, with c the speed of light in vacuum [14].

For the proposed setup, we have that all quantum fluctua-
tions can be detected by restricting the field of view to a cone
of aperture θmax ≈ 23◦. Importantly, the dominant signal of
the condensate mode at k = 0 is concentrated about the per-
pendicular axis and can be filtered out through postselection.

The momentum-space density of photons escaping from
the cavity array is approximately given by d�

dk
= Lnkγ /2π ,

where 2π/L is the momentum-space separation between
adjacent modes for an array of L cavities. For an array of
L = 128 cavities, an angular resolution of δk = 0.025(2π )
larger than the k-space mode separation but well smaller
than the width of the Beliaev features, and nk ≈ 0.1 around
qmin [see Fig. 2(b)] we expect a significant photon flux of
about � = 1.5 × 1010 s−1. The number of photon clicks per
time unit is then given by N = εeff�, with εeff some overall

efficiency factor incorporating uncontrolled photon losses and
detection efficiency. The signal can be integrated in time until
a sufficient number of photons is collected.

Of course, as shown in Fig. 2(b), the experimental signal
from Beliaev-Landau processes is enhanced with a larger
nonlinearity. Although experimentally challenging, a stronger
nonlinearity can in principle be achieved by reducing the size
of the microcavities or by increasing the excitonic fraction
of polaritons [53]. Another more speculative possibility is
to use the platform of superconducting circuits, where high
nonlinearities are naturally achieved [54].

A crucial point of concern is that the Beliaev-Landau
peaks, being rather small in size, can be washed away by
a sufficient amount of disorder. In particular, when a small
random potential Vi is applied, for instance, by variations of
the cavity resonance ωc from site to site, it will perturb the
momentum distribution and imprint additional peaks. We can
estimate that the disorder amplitude has to satisfy

√
〈V 2

i 〉 �
h̄ω

peak
k

√
δn

peak
k /n0 ≈ 3 μeV, with ω

peak
k the frequency of the

mode at the Beliaev-Landau peak and δn
peak
k the height of the

peak [on the order of 2 × 10−3; see the red line in the inset
of Fig. 2(b)]. In Appendix D we provide more details about
the derivation of this estimation. In a recent experiment with
a setup similar to ours, a standard deviation of about 30 μeV
for the disorder potential was reported [55], a factor of about
10 larger than required for our estimations. However, given
that the origin of the Beliaev-Landau peaks is different in
nature than the disorder background, there are two additional
strategies one can employ to isolate them.

First of all, the disorder peaks are different for each
realization of a cavity array, while the Beliaev-Landau signal
should not depend on this. If one therefore fabricates many
copies of the same cavity array on the same sample, averaging
over the different copies will cancel out effects from disorder,
while the Beliaev-Landau peaks are left in place. If the different
copies are positioned adjacent to one another, this amounts to
displacing the laser beam from one array to the next.

Second, the exact position of the Beliaev-Landau peaks
has a well-defined dependence on the mean-field parameters
Un0, 	, and J , as plotted in Fig. 1(c). As a simple example,
one could, e.g., try to follow the shift of Beliaev-Landau peaks
while varying the detuning 	 by modifying the laser frequency
ωL according to (6).

Finally, an alternative and conceptually more sophisticated
strategy to observe Beliaev-Landau scattering processes is
proposed in Fig. 4, where we present a sketch of a possible
optical setup to directly measure the third-order correlator
Mk,q (see Fig. 3). The measurement would consist of detecting
subtle correlations between the relative phase of the emissions
at k and q and a homodyne measurement on the k − q emission
mixed with the coherent pump. The detection of simultaneous
clicks in detector 1 and the difference signal of detectors 2 and
3 provides a measurement of the quantity

〈(φ̂†
q + e−iθ φ̂

†
k)(φ̂q + eiθ φ̂k)(eiχ�φ̂

†
k−q + e−iχ�∗φ̂k−q)〉

= 2 Re{�ei(θ+χ)〈φ̂†
k−q φ̂

†
q φ̂k〉} = 2 Re{�ei(θ+χ )Mk,q},

(32)

053854-8



SPONTANEOUS BELIAEV-LANDAU SCATTERING OUT OF . . . PHYSICAL REVIEW A 96, 053854 (2017)

where the second step is obtained after omitting all correlations
that are not momentum conserving, since they must be zero
in a spatially uniform sample. The phases θ and φ are
introduced by the two phase shifters in the setup and allow
for the measurement of different quadratures of Mk,q . Any
deviation from zero of the quantity (32) at nonvanishing angles
k,q,k − q �= 0 would be a manifest indication of the non-
Gaussian nature of the cavity output field and would provide
an indication of quasiresonant Beliaev-Landau scattering.

As high-order interference experiments of this kind go
beyond standard quantum optical setups, a quantitative study
of the expected signal and noise for a realistic experimental
setup lies outside the scope of this work.

VII. CONCLUSION

In this work we have studied theoretically the effect of
Beliaev-Landau processes in a coherently driven fluid of light
in a one-dimensional array of weakly nonlinear optical or mi-
crowave cavities. In contrast to the equilibrium case, where one
typically looks at the decay of additional excitations externally
generated in the fluid, here characteristic and experimentally
accessible signatures of the Beliaev-Landau processes are
identified in observable properties of the nonequilibrium
steady state.

Remarkably, the momentum distribution (visible in the
angular distribution of the far-field emission pattern) shows
a characteristic series of peaks and dips, which we attribute
to the absence of detailed balance in an out-of-equilibrium
setup. Also the higher-order correlators of the field (visible as
non-Gaussian features in the photon statistics of the emitted
light) exhibit nontrivial features stemming from quasiparticle
interactions. Supported by our estimations, we expect that the
predicted signal is within the reach of state-of-the-art exper-
imental setups of coupled-cavity arrays with semiconductor
microcavities or superconducting circuits.

From the theoretical point of view, our results pinpoint un-
expected limitations to the use of the truncated Wigner method
to describe scattering processes between quasiparticles. Given
the importance of the TWA method as a tool for numerical
studies of quantum fluctuation phenomena, future work should
address improved schemes to overcome these difficulties.

The calculations are performed by truncating the hierarchy
of correlations of the driven-dissipative Bose-Hubbard model
to one order beyond Bogoliubov, i.e., by including the
third-order correlation functions and employing a consistent
truncation and factorization scheme for the higher-order cor-
relation functions. Future work should extend this technique
to spatially inhomogeneous configurations presently of great
interest in the context of analog models of gravity.
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APPENDIX A: THE TWA WITHOUT BELIAEV-LANDAU
CHANNELS

In the main text we pointed out how Beliaev-Landau
scattering processes lie at the basis of the failure of the
truncated Wigner method. To motivate this statement better,
we present a TWA simulation of a system which does not
contain resonant Beliaev-Landau channels that fulfill condition
(20). As illustrated in Fig. 1, the Bogoliubov spectrum (14)
determines the contour of resonant third-order scattering
processes. By modifying the mean-field parameters Un0,
J , and/or δ we can enter into a regime where no resonant
third-order scattering exists. Here we simply choose to replace
the value J = 30γ that was used throughout the main text with
J = 10γ , so as to have 	 < 	0 [see Fig. 1(c)].

As can be seen in Fig. 5, the absence of on-shell Beliaev-
Landau channels leads to much better agreement with the
prediction of the Bogoliubov approximation and does not
suffer from unphysical negative densities. The small deviation
from the Bogoliubov distribution can probably be attributed to
the nonresonant scattering of the 1/2 vacuum noise.

APPENDIX B: DERIVATION OF THE CORRELATION
HIERARCHY

With the ansatz (7) from the main text, we find the equation
of motion for the quantum fluctuations φ̂k [Eq. (8)]. By
repeatedly applying the product rule, one can obtain the equa-
tions of motion for the correlation functions of the quantum
fluctuations. An alternative, completely equivalent approach
would be to evaluate ∂t 〈Ô〉 = i〈[Ĥ ,Ô]〉 + tr{ÔD[ρ̂]}. Due
to spatial homogeneity, only momentum-conserving operator
products are included in this construction.
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For a general correlation function C = 〈∏k φ̂
†ak

k φ̂
bk

k 〉 of order N , with N =∑k(ak + bk), one can derive the recurrence relation

i
∂C

∂t
=
∑

q

[(
−(aq − bq)(εq + 2U |ψ0|2) − i(aq + bq)

γ

2

)
C
]

+Uψ2
0

∑
q

{(
2bqC

[
a−q+
bq−
]

+ b−q(bq − δq,−q)C

[
bq−
b−q−
])}

−Uψ∗2
0

∑
q

(
2aqC

[
aq−
b−q+
]

+ aq(a−q − δq,−q )C

[
a−q−
aq−
])

+ Uψ0√
L

∑
k,q

⎛
⎝2bqC

⎡
⎣ bq−

ak−q+
bk+

⎤
⎦+ bk(bq − δq,k)C

⎡
⎣ bk−

bq−
bk+q+

⎤
⎦− akC

⎡
⎣ak−q+

aq+
ak−

⎤
⎦
⎞
⎠

− Uψ∗
0√

L

∑
k,q

⎛
⎝2aqC

⎡
⎣ak+q+

aq−
bk−

⎤
⎦+ ak(aq − δq,k)C

⎡
⎣ak+q+

ak−
aq−

⎤
⎦− bkC

⎡
⎣ bk−

bq+
bk−q+

⎤
⎦
⎞
⎠

+ U

L

∑
k,k′,q

⎛
⎜⎝2bkC

⎡
⎢⎣

bk−
ak′+

bk−q+
bk′+q+

⎤
⎥⎦+ bk′(bk − δk,k′)C

⎡
⎢⎣

bk′−
bk−

bk−q+
bk′+q+

⎤
⎥⎦− 2akC

⎡
⎢⎣

ak−
ak′−q+
ak+q+
bk′+

⎤
⎥⎦− ak′(ak − δk,k′)C

⎡
⎢⎣

ak′−
ak′−q+
ak+q+
ak−

⎤
⎥⎦
⎞
⎟⎠.

Here we adopted the notation, following Ref. [39],

C[aq±] =
〈
φ̂
†aq±1
q φ̂

bq

q

∏
k �=q

φ̂
†ak

k φ̂
bk

k

〉
.

Up to third order, the explicit evaluation of the expression above yields the following equations of motion for the correlators.
First order. A finite value for the zero-momentum component is found

∂t 〈φ̂0〉 = (Un0 − iγ /2)〈φ̂0〉 + Uψ2
0 〈φ̂†

0〉 + 2Uψ0√
L

∑
k

〈φ̂†
kφ̂k〉 + Uψ∗

0√
L

∑
k

〈φ̂kφ̂−k〉 + U

L

∑
k,q

〈φ̂†
k+q φ̂q φ̂k〉. (B1)

Second order. We find for the density of fluctuations

i∂t 〈φ̂†
kφ̂k〉 = −iγ nk + Uψ2

0 〈φ̂†
kφ̂

†
−k〉 − Uψ∗2

0 〈φ̂kφ̂−k〉 + 2U√
L

∑
q

(ψ0〈φ̂†
kφ̂

†
q φ̂k+q〉 − ψ∗

0 〈φ̂†
k+q φ̂q φ̂k〉)

+ U√
L

∑
q

(ψ∗
0 〈φ̂†

kφ̂q φ̂k−q〉 − ψ0〈φ̂†
k−q φ̂

†
q φ̂k〉) + U

L

∑
q,l

(〈φ̂†
kφ̂

†
q φ̂l φ̂k+q−l〉 − 〈φ̂†

k+q−l φ̂
†
l φ̂q φ̂k〉). (B2)

Likewise, for the anomalous averages

i∂t 〈φ̂kφ̂−k〉 = (2εk + 2U |ψ0|2 − iγ )〈φ̂kφ̂−k〉 + Uψ2
0 g(2〈φ̂†

kφ̂k〉 + 1) + 2Uψ0√
L

∑
q

(〈φ̂kφ̂
†
q φ̂q−k〉 + 〈φ̂†

q φ̂q+kφ̂−k〉)

+ Uψ∗
0√

L

∑
q

(〈φ̂kφ̂q φ̂−k−q〉 + 〈φ̂q φ̂k−q φ̂−k〉) + U

L

∑
q,m

(〈φkφ̂
†
q φ̂l φ̂−k+q−l〉 + 〈φ̂†

q φ̂l φ̂k+q−lφ−k〉). (B3)

Third order. For the third-order correlation functions we can derive the equations of motion in the same way

i∂t 〈φ̂†
k−q φ̂

†
q φ̂k〉 =

(
−εk−q − εq + εk − U |ψ0|2 − 3i

2
γ

)
〈φ̂†

k−q φ̂
†
q φ̂k〉 − Uψ∗2

0 (〈φ̂q−kφ̂
†
q φ̂k〉 + 〈φ̂†

k−q φ̂−q φ̂k〉)

+Uψ2
0 〈φ̂†

k−q φ̂
†
q φ̂

†
−k〉 + 2U√

L

∑
m

(ψ0〈φ̂†
k−q φ̂

†
q φ̂

†
mφ̂m+k〉 − ψ∗

0 〈φ̂†
k−q+mφ̂mφ̂†

q φ̂k〉 − ψ∗
0 〈φ̂†

k−q φ̂
†
q+mφ̂mφ̂k〉)

× U√
L

∑
m

(ψ∗
0 〈φ̂†

k−q φ̂
†
q φ̂mφ̂k−m〉 − ψ0〈φ̂†

k−q−mφ̂†
mφ̂†

q φ̂k〉 − ψ0〈φ̂†
k−q φ̂

†
q−mφ̂†

mφ̂k〉)

+ U

L

∑
(fifth-order correlators) (B4)
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and

i∂t 〈φ̂−k−q φ̂q φ̂k〉 =
(

εk + εq + εk+q + 3U |ψ0|2 − 3i

2
γ

)
〈φ̂−k−q φ̂q φ̂k〉

+Uψ2
0 (〈φ̂†

k+q φ̂q φ̂k〉 + 〈φ̂−k−q φ̂
†
−q φ̂k〉 + 〈φ̂−k−q φ̂q φ̂

†
−k〉)

× 2Uψ0√
L

∑
m

(〈φ̂†
mφ̂m−k−q φ̂q φ̂k〉 + 〈φ̂−k−q φ̂

†
mφ̂m+q φ̂k〉 + 〈φ̂−k−q φ̂q φ̂

†
mφm+k〉)

× Uψ∗
0√

L

∑
m

(〈φ̂mφ̂−k−q−mφ̂qφ̂k〉 + 〈φ̂−k−q φ̂mφ̂q−mφ̂k〉 + 〈φ̂−k−q φ̂q φ̂mφk−m〉)

+ U

L

∑
(fifth-order correlators). (B5)

Through its equations of motion, a correlator of order N couples to correlators up to order N + 2. In principle, this hierarchy
of equations continues to infinite order if the number of particles is not conserved. Therefore, to obtain a closed set of equations,
the hierarchy must be truncated in some way.

APPENDIX C: DIFFERENT TRUNCATION SCHEMES AND
COMPARISON

We briefly discuss two different truncation schemes and
motivate the choice for the one presented in the main text.

The hard cutoff (HC). The most straightforward approach
is to set all correlation functions of order N higher than Nc

(i.e., orders Nc + 1 and Nc + 2) to zero in the equations
of motion. The major benefit of employing this truncation
scheme is that, by construction, it produces a linear system of
equations, which is relatively easily solved numerically. This
allows one to evaluate the result as a function of Nc for small
enough system sizes. As discussed in Ref. [39], this approach
is expected to be efficient when the number of excitations is
small. More precisely, by pursuing this truncation scheme, one
is implicitly assuming a small occupation of all modes nk < 1;
otherwise the factorizable part of the correlation functions
quickly grows as a function of N and the calculation may
not converge at high Nc. Nevertheless, even when nk < 1
is satisfied, no a priori assumptions can be made about the
connected part of the correlation functions. Therefore, one
must always verify convergence of the result by increasing
Nc. Following Ref. [39], we refer to this truncation scheme as
the hard cutoff.

The factorized cutoff (FC). The method employed in the
paper differs in a few aspects from the one described above.
First of all, we do not use the linearized equation for the
first-order correlator 〈φ̂0〉 [Eq. (B1)], but integrate in time the
full Gross-Pitaevskii equation with backreaction terms, i.e.,
Eq. (24), along with the different correlation functions. As
explained in the main text, this has the advantage of having
〈φ̂0〉 = 0 by definition, making correlators up to order 3 de
facto connected, because their factorizable part vanishes. On
the other hand, the field ψ0 in Eqs. (25)–(28) is now time
dependent, so the system of equations is no longer linear.

Furthermore, we perform two different approximations to
close the system of equations at order N = 3, by consistently
including the backreaction of the N = 4 and N = 5 in the
equations for the N = 2 and N = 3 correlation functions.
While the normal parts of higher-order correlators were set
to zero in the HC scheme, we start here by including them in
factorized form

For a general N = 4 correlation function, bearing in mind
that 〈φ̂0〉 = 0, we find that it can be written as

〈φ†
mφ

†
l φqφk〉 = 〈φ†

mφ
†
l φqφk〉c

+〈φ†
l φ

†
−l〉〈φkφ−k〉δl,−mδk,−q

+〈φ†
qφq〉〈φ†

kφk〉(δm,qδl,k + δm,kδl,q)

and likewise for other fourth-order correlators. The subscript
c (first line) denotes the connected nonfactorizable part of a
correlator and is neglected in our truncation scheme. In the
equations of motion for the second-order correlation function
the factorization of the N = 4 correlators from (B2) and
(B3) into products of N = 2 correlators yields the Hartree-
Fock-Bogoliubov-like terms in (25) and (26). In turn, for
the third-order, the N = 4 correlators, given in (B4)–(B5),
produce the drive terms F

(M,R)
k,q from (29) and (30). Note

that in the latter we have omitted factorizations of the form
∼Uψ0√

L
cq

∑
l nlδk,0, and similar terms with ∼δk,q and ∼δq,0,

which drive the diagonal terms of M(R)k,q . They are not
related to Beliaev-Landau scatterings and we have checked
that they merely give a negligible extra shift to ψ0 and slightly
renormalize the value of nk and ck in k = 0, while leaving
points at k �= 0 essentially unaffected.

Also the fifth-order correlator, entering in the equations of
motion for the third-order correlator, can be approximated by
its factorizable form, which produces a total of ten different
products of second- and third-order correlators. Two different
groups of terms arise with this procedure. For instance, the
first of the three terms entering on line (B4) is

∑
l,m

〈φ̂†
k−q φ̂

†
q φ̂

†
l φ̂mφ̂k+l−m〉 ≈ 〈φ̂†

k−q φ̂k−q〉
∑

l

〈φ̂†
q φ̂

†
l φ̂l−q〉 + · · ·

+ 〈φ̂†
k−q φ̂

†
q φ̂k〉
∑

l

〈φ̂†
l φ̂l〉 + · · · .

(C1)

The ellipses indicate more terms of the same kind, with
summations over an N = 3 (first line) or an N = 2 correlator
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FIG. 6. Comparison of different truncation schemes for the
quantity δnk = nk − n

Bog
k , with n

Bog
k the momentum distribution in

the Bogoliubov approximation (19). We show the values of U that
have been studied in the main text. The chain consists of only ten
cavities such that higher-order truncations can be computed and
compared. Here FC stands for factorized cutoff, the method that
has been outlined and employed in the main text; HC stands for hard
cutoff and the integer indicates up to which order Nc normal-ordered
correlation functions have been included in the hierarchy.

(second line). Hence we conclude that, after gathering all those
terms, they can be captured by making changes of the kind

|ψ0|2 → |ψ0|2 + 1

L

∑
l

〈φ̂†
l φ̂l〉, (C2)

ψ0 → ψ0 + 1

L

∑
l

〈φ̂†
q φ̂

†
l φ̂l−q〉 + · · · . (C3)

The second approximation consists of neglecting the correc-
tions coming from the factorized fifth-order correlator, which
is justified by assuming that the condensate density is much
larger than the density of fluctuations. We have evaluated all
these fifth-order contributions and verified that their influence
on the second-order and third-order correlation functions is
negligible for the parameters that are used.

To check the consistency of the method we used in the main
text, we compare it in Figs. 6 and 7 with the HC truncation
scheme at higher orders for a chain of only ten sites. This
allows us to obtain results within a reasonable computation
time for truncation orders up to Nc = 6 in the HC scheme.

10
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U [γ ]

Δ
n

 

 
FC
HC 4
HC 5
HC 6

FIG. 7. Difference 	n = 1/L
∑

k |nk − n
Bog
k |/n

Bog
k as a function

of the coupling constant U for different truncation schemes for a
chain comprising ten cavities.

The factorized method from the main text appears to agree
very well with the HC scheme for Nc = 5, even though we
only included connected correlators up to order 3. From this
we conclude that, at least in the parameter regime that we
have considered, it is a good approximation to neglect both the
connected N = 4 and the full N = 5 correlators. On the other
hand, we see a large deviation from the HC with Nc = 4, even
though both methods include correlators up to the same order
N = 4. This can be attributed to the inaccuracy with which
the fourth order is evaluated in the HC scheme, i.e., by bluntly
neglecting all higher orders. Therefore, the inclusion of the
fourth order in factorized form directly, as was employed in
our FC scheme, turns out to be a much better approximation
than obtaining it through a HC scheme with Nc = 4.

From Figs. 6 and 7 we deduce that results obtained with
different truncation schemes start to deviate from each other at
U/γ = 0.5. This limits the range of parameters in which our
approach provides a quantitatively accurate description. While
for stronger U/γ , the error due to truncation of higher-orders
terms becomes increasingly important, still at U/γ = 0.5 we
see that all truncation schemes reproduce at least qualitatively
the same result; in particular, the Nc = 3 factorized cutoff
still reasonably well agrees with the Nc = 5 HC scheme and
even with Nc = 6. We have therefore chosen to use the Nc =
3 factorized cutoff approximation for the study of Beliaev-
Landau processes in larger systems, even though there is a
small but non-negligible quantitative deviation from higher-
order HC schemes.

Keeping in mind that higher-order HC schemes are numer-
ically cumbersome and cannot be applied to large systems,
our main motivation for sticking to the Nc = 3 factorized
cutoff approximation is that we are unaware of an efficient
method to simulate driven-dissipative quantum dynamics in a
system with intermediate interactions (U = 0.5γ ) and a large
particle number (128 cavities, each containing 20 photons on
average). A possible alternative approach would be to develop
a variational method with matrix product operators in the spirit
of [19,20], in which the matrix product state of the quantum
excitations is determined self-consistently by coupling it back
to the coherent condensate. This will hopefully be the subject
of future work.

We therefore conclude that, even though we constructed a
hierarchy in terms of correlation functions up to order 3 only,
the accuracy is comparable to (or even better than) higher-
order methods in the HC scheme. Obviously, the reduced
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numerical complexity in the developed truncation scheme
realizes a significant computational speedup as compared
to these higher-order methods, thus allowing us to tackle
much larger systems and address the physically most relevant
questions.

APPENDIX D: THE INFLUENCE OF DISORDER

Given the Fourier transform Vk of a random potential, Vj =
1√
L

∑
k Vke

ikj , which is applied to the cavity array. We find that
the mean field follows the equation of motion

iψ̇j =
(
Vj − δ − i

γ

2

)
ψj − J (ψj+1 + ψj−1)

+U |ψj |2ψj + �j . (D1)

In the linear-response regime, the nonuniform polariton field
can be formulated as ψj = ψ0 + 1√

L

∑
k δψke

ikj . After sub-
stitution in Eq. (D1) and collecting terms up to linear order
in δψk and Vk , we derive a linear set of equations for each

mode

Lk

(
δψk

δψ∗
−k

)
=
(−Vkψ0

Vkψ
∗
0

)
(D2)

with the response matrix

Lk =
(

εk + Un0 − i
γ

2 Uψ2
0

−Uψ∗2
0 −εk − Un0 − i

γ

2

)
(D3)

and εk given in Eq. (9). Solving (D2) yields the response of
the density distribution to the disorder potential in the linear
regime

δnk = |δψk|2 = |Vkψ0|2 ε2
k + γ 2/4(

ω2
k + γ 2/4

)2 , (D4)

with ωk given in Eq. (14). Since all energy scales are larger
than γ and ωk ≈ εk for the purposes of this qualitative
analysis, we can further approximate δnk ∼ n0(Vk/ωk)2. For
white uncorrelated noise it therefore follows that roughly√

〈V 2
j 〉 � ω

peak
k

√
δn

peak
k /n0 if we want the peaks of disorder

to be smaller than the peaks of Beliaev-Landau scattering.
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Marchetti, I. Carusotto, and M. H. Szymańska, Phys. Rev. X
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