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Macroscopic quantum superposition states are fundamental to test the classical-quantum boundary and present
suitable candidates for quantum technologies. Although the preparation of such states has already been realized,
the existing setups commonly consider external driving and resonant interactions, predominantly by considering
Jaynes-Cummings-like and beam-splitter-like interactions, as well as the nonlinear radiation pressure interaction
in cavity optomechanics. In contrast to previous works on the matter, we propose a feasible probabilistic scheme
to generate a macroscopic mechanical qubit, as well as phononic Schrödinger’s cat states with no need of any
energy exchange with the macroscopic mechanical oscillator. Essentially, we investigate an open dispersive
spin-mechanical system in the absence of any external driving under nonideal conditions, such as the detrimental
effects due to the oscillator and spin energy losses in a thermal bath at nonzero temperature. In our work, we
show that the procedure to generate the mechanical qubit state is solely based on spin postselection in the
weak to moderate coupling regime. Finally, we demonstrate that the mechanical superposition is related to the
amplification of the mean values of the mechanical quadratures as they maximize the quantum coherence.
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I. INTRODUCTION

In the late 1920s, nonrelativistic quantum mechanics (QM)
was ultimately formulated to encompass the understanding
of the microscopic and macroscopic world [1,2]. Thus, for
instance, there would be no objection to extend the quantum
superposition principle to everyday life scale—a very well-
known conundrum established by Schrödinger [3]. To date,
macroscopic quantum superposition (MQS) appears not only
to grasp fundamental aspects of QM [4,5], but also as an
excellent candidate for quantum technologies [6–8].

Although quantum superpositions at microscale have been
widely realized (e.g., Refs. [9,10]), MQS states are more
challenging to be achieved experimentally. This is because the
large number of interacting particles and their interaction with
its surroundings prevent the quantum behavior at macroscale to
emerge [11]. Despite this, MQS states have been demonstrated
experimentally for some systems such as Josephson junctions
[12–15], Cooper-pair boxes [16], Bose-Einstein condensates
(BECs) [17,18], Rydberg atoms [19], and trapped ions [20]. On
the other hand, quantum mechanical oscillators have attained
increasing attention for MQS preparation due to notable
experimental progress in the microfabrication of high-Q
mechanical oscillators [21,22] in the quantum regime [23–27].
Additionally, they can easily interact with an extensive range
of physical systems, such as ultracold-atomic BECs [28,29],
Cooper-pair boxes [30–32], optomechanical systems [33,34],
etc. In particular, a superposition between two isolated states
raises the possibility of having a long-lived mechanical qubit,
which opens a window for quantum information technologies
[35–37], quantum sensing [6–8,38], as well as in the quan-
tum communication field [39], e.g., as transfer interface in
superconducting quantum circuits [40,41], and they can serve
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as elements for modular quantum computation architectures
[42,43].

Stimulated by these, in the past few years, there have
been remarkable advancements in the development of accurate
quantum control and preparation of nonclassical macroscopic
mechanical states in different hybrid platforms as cavity or
circuit QED [44], opto- and nanomechanics [45–56], trapped
ions [57], etc. Yet such schemes are based on resonant
interactions, where the exchange of excitations between
systems takes place. Moreover, nonlinearities such as the
radiation pressure in cavity optomechanics, the usage of
external driving, and interactions typically operating in the
strong regime are required.

In this work, we present a scheme to prepare nonclassical
states of a macroscopic mechanical object. The protocol
comprises a probabilistic qubit (0 and 1 phononic states) super-
position and the generation of the mechanical Schrödinger’s
cat state. To realize this, we have considered an open spin-
mechanical quantum system via a conditional displacement
Hamiltonian in the dispersive regime without any need for
adjusting resonances. Therefore, in comparison with previous
works on the matter [58–60], our proposal does not rely on any
nonlinearity, energy exchange, or external pumping—which
might be an advantage for scalability purposes. Moreover,
in contrast to cavity photons, spin systems exhibit both long
coherence as well as depolarization times at room temperature,
and they can also be easily prepared and read out [61,62]. Our
probabilistic preparation protocol is based on two steps. First,
we weakly evolve the preselected spin-mechanical system
for a time t , allowing us to truncate the oscillator Hilbert
space up to a single-phonon excitation. Subsequently, we
then proceed to postselect the spin system; this step aims to
prepare (probabilistically) any mechanical qubit superposition.
Our results can be understood within the clear connection
between the quantum coherence [63] of the mechanics and the
amplification of the position and momentum quadratures on
average.
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This article is structured as follows. In Sec. II, we present
the spin-mechanical model and we derive the mathematical
condition to generate any macroscopic mechanical qubit in
the absence of any source of decoherence. In Sec. III, we
have divided the discussion into two sections. First, we
consider the open quantum case in the presence of mechanical
damping in a reservoir at zero temperature. Second, we
use a closer experimental scenario by considering a full
master equation, i.e., we also include the spin-relaxation and
the pure dephasing terms. In addition to this, we consider
spin-postselection inaccuracies. In Sec. IV, we discuss how to
generate mechanical Schrödinger’s cat states. In Sec. V, we
give a very brief discussion on the connection between weak
measurements [Aharonov-Albert-Vaidman (AAV) theory] and
our protocol, a discussion which is extended in the Appendix
section. Finally, in Sec. VI, we present the concluding remarks
of our work.

II. MACROSCOPIC MECHANICAL QUBIT PREPARATION

Let us commence by considering a spin qubit coupled
dispersively to a mechanical oscillator. This elementary system
is described in the interaction picture by (h̄ = 1)

Ĥint = b̂†b̂ − λσ̂z(b̂
† + b̂), (1)

where λ = λ0/ωm is the scaled coupling strength, λ0 the direct
spin-mechanical coupling interaction, and ωm the oscillator
frequency; b̂ stands for the annihilation bosonic operator. To
investigate the dynamics, we preselect the spin as |ψ(0)〉q =
1/

√
2(|↑〉 + |↓〉), and we initialize the mechanics in its ground

state |ψ(0)〉m = |0〉 [23–27,64]. In the following, we will show
how a mechanical qubit can be generated via conditioned spin
postselection in the weak-to-moderate-coupling regime. To
assess this, let us recast the spin-mechanical wave function
(in the absence of any source of decoherence) as previously
reported in [65]; with η = (1 − e−it ),

|ψ(t)〉 = 1/
√

2(| ↑〉|λη〉 + | ↓〉|−λη〉). (2)

First, for our procedure to succeed, we require low mechan-
ical quanta excitations, and thus we proceed to truncate the
mechanical coherent states | ± λη〉 up to their first phononic
number state, i.e., | ± λη〉 ≈ 1/

√
1 + |λη|2(|0〉 ± λη|1〉)—an

approximation valid when |λη| = λ
√

2(1 − cos t) � 1. This
operational regime can be addressed, for instance, via magnetic
coupling. There the interaction can be explicitly written as
h̄λ0 ≈ μB∂B/∂z

√
h̄/2mωm [66,67], where for a set of values

of μB ∼ 10−23 J/T (Bohr magneton), mass m ∼ 10−14 kg,
mechanical frequency ωm ∼ 106 Hz, and magnetic gradient
between 104 < ∂B/∂z < 107 T/m, the coupling can be
reduced to 10−4 < λ < 10−1.

Subsequently, we postselect the spin with a general target
state as |ψf 〉 = cos(θ/2)| ↑〉 + sin(θ/2)eiφ| ↓〉. Thus the wave
function after the postselection becomes

|ψ(t)〉m ≈ 1

N
√

2(1 + |λη|2)
(α+|0〉 + ληα−|1〉), (3)

where

α± = cos(θ/2) ± e−iφ sin(θ/2), (4)

N 2 = 1 + sin θ cos φ + |λη|2(1 − sin θ cos φ)

2(1 + |λη|2)
. (5)

From (3), one could easily notice that a combination of
weak spin-mechanical coupling and spin postselection can
lead to a MQS. Particularly, for an equiprobable superposition,
e.g., |〈0|ψ(t)〉m|2 = |〈1|ψ(t)〉m|2 = 1/2, we demand

|λη|2(1 − sin θ cos φ) = 1 + sin θ cos φ. (6)

The above equation stands as one of the main results
of our work, as it relates the system dynamics ({λ,t}) with
the required postselection angles ({θs,φs}) to prepare the
mechanics in a qubit state. It can be interpreted as follows: if we
let our system evolve for a time t [such as λ

√
2(1 − cos t) �

1], then the mechanical qubit state will occur if and only if
{θs,φs} satisfies (6), or vice versa.

III. A CLOSER EXPERIMENTAL REALIZATION OF THE
MECHANICAL QUBIT STATE

The aim of the following section is to study how our
system would respond in the presence of different sources of
decoherence, and thus investigate until which values we could
accommodate our protocol before thermalization. To achieve
this, we have divided this section into two: first we study the
system of interest uniquely considering oscillator energy losses
in a reservoir at zero temperature, and second we numerically
solve a full master equation at nonzero temperature including
also spin decoherences, as well as inaccuracies in the spin
postselection step.

A. Open dynamics of the oscillator embedded in a reservoir at
zero temperature

The above derivation (6) is restricted to a lossless evolution
in a truncated Hilbert space. Nevertheless, it is in our best
interest to investigate the robustness of our scheme in a more
realistic scenario. To model this, we have solved the standard
master equation for a reservoir at zero temperature. In this
case, the master equation reads

dρ̂

dt
= −i[Ĥint,ρ̂] + γ

2
(2b̂ρ̂b̂† − ρ̂b̂†b̂ − b̂†b̂ρ̂), (7)

where γ (scaled by ωm) is the mechanical damp-
ing rate. Following the procedure described in [68],
one can analytically calculate the spin-mechanical den-
sity matrix as ρ̂ = 1

2 (| ↑〉〈↑ | ⊗ ̂++ + |↑〉〈↓|⊗̂+− + | ↓
〉〈↑ |⊗̂−+ + |↓〉〈↓|⊗̂−−), where we have defined

̂±∓ = e−�
γ
±∓(t)|β±(γ,t)〉〈β∓(γ,t)|, (8)

̂±± = |β±(γ,t)〉〈β±(γ,t)|, (9)

β±(γ,t) = ±2iλ
(γ − 2i)

γ 2 + 4
(1 − e− 1

2 (γ+2i)t ), (10)

�
γ
±∓(t) = −γ

2

∫ t

0
|β±(γ,t ′) − β∓(γ,t ′)|2dt ′. (11)
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FIG. 1. Generation of a macroscopic mechanical qubit.
(a) Phonon probability distribution as in (14). (b) The Wigner function
for the case illustrated in (a). (c) Pr(n) for n = 2 and n = 3 as in
Eq. (14). As seen, for λ � 0.25, the mechanical qubit preparation
remains robust. Other parameters are t = π, γ = 10−2, and λ = 0.1,
and {θs,φs} are the solution from (6).

Under mechanical damping, the normalized mechanical
state after the spin postselection becomes

ρ̂m = cos2 θ
2 ̂++ + sin2 θ

2 ̂−− + sin θ
2 (eiφ̂+− + H.c.)

2P(θ,φ)
,

(12)
with

P(θ,φ) = 1 + sin θRe[e−D
γ
+−(t)eiφ〈β−(γ,t)|β+(γ,t)〉]

2
(13)

being the probability to postselect the spin.
To exhibit the mechanical superposition, we calculate the

phonon probability distribution [Pr(n) = 〈n|ρ̂m|n〉] obtained
from Eq. (12),

Pr(n) = 4ne−4c1λ
2
(c1λ

2)n

2P(θ,φ)n!
[1 + sin θ cos φec2λ

2
(−1)n], (14)

where (for t = π ) we have defined

c1 = (e− πγ

2 + 1)2

γ 2 + 4
, (15)

c2 = 8e−πγ

(γ 2 + 4)2

×{4e
πγ

2 γ 2 + γ 2 − eπγ [−3γ 2 + π (γ 2 + 4)γ + 4] + 4}.
(16)

A reasonable approximation satisfying Pr(n = 0) =
Pr(n = 1) ≈ 1/2 is to consider the lossless solution from
Eq. (6) (for γ � 1), and hence to obtain the set of values
{θs,φs} from (6). In Fig. 1(a), we illustrate Pr(n) as in (14),
giving us a very close equal probability distribution for n = 0
and n = 1.

As known, Pr(n = 0) = Pr(n = 1) ≈ 1/2 are not suffi-
cient conditions for quantum superposition by themselves,
as fully mixed classical states can have the same proba-
bilities. Hence, to evidence the quantumness of our prepa-

ration, in Fig. 1(b) we have numerically computed the
Wigner quasiprobability distribution defined as W (x,p) =
1
π

∫ ∞
−∞ 〈x + x ′|ρ̂m|x − x ′〉e−2ipx ′

dx ′ [69]; the true quantum
nature arises as a consequence of the considerable negative
part of W (x,p).

Furthermore, one may wonder whether we can set an upper
bound of the weak-coupling condition |λη| � 1. Certainly,
the above ensures that the Hilbert space is properly truncated
up to just one single phonon. However, we can fine tune
this assumption up to λ � 0.25, at the cost of having Pr(n =
2) ≈ 1.4% [see Fig. 1(c)]. The benefits of having stronger λ

are to increase the postselection outcome probability P(θ,φ),
and also as λ increases, the qubit superposition becomes less
susceptible to {θs,φs} fluctuations (as we will study in the
next section). Suitable mechanical qubit candidates are found
to be in the range of 0.05 < λ < 0.2 with an average spin
postselection probability of 2% < Pav < 24%.

The generated qubit in our work can be understood in the
context of quantum coherence. As known, in quantum optics,
it is well established that two or more quantum states of a
single mode can interfere with themselves if they have nonzero
coherence. Recently, in the domain of the quantum information
science, this feature has also been demonstrated to be related
to the amount of quantum entanglement [70]. For a given
N × N matrix ρ̂ = ∑N

{i,j}=0 ρi,j |i〉〈j |, the quantum coherence

is defined as C = ∑N
{i �=j}=0 |ρi,j | [63]. In particular, for a 2 × 2

matrix, C is reduced to (for [x̂,p̂] = i
2 )

C = |〈0|ρ̂m|1〉| + |〈1|ρ̂m|0〉| = 2
√

〈x̂〉2 + 〈p̂〉2. (17)

From the above expression, it is straightforward to obtain
the maximum value Cmax = 1 for the qubit case. Moreover, it
relates the quantum coherence with the mechanical properties
that we can, in principle, extract from an experiment. In
addition to this, Eq. (17) shows the impossibility to generate
a mechanical qubit superposition by its quantum evolution
alone (i.e., by tracing out the spin state), as the expectation
values are always zero in this case. Also, a postselection
on the σ̂z eigenstates will not reach the required amount of
coherence to generate a qubit superposition, as 〈±2λ|x̂| ±
2λ〉 = ±2λ,〈±2λ|p̂| ± 2λ〉 = 0.

In the top panel of Fig. 2, we plot the mechanical
coherence, the mean values of the position, and the momentum
quadratures. There, we show three cases corresponding to
three different φs angles, where the coherence reaches approx-
imately its maximum value (t = π and γ = 0.01) for its corre-
sponding θs , and it coincides with (i) the maximum of 〈x̂〉post

(〈p̂〉post = 0), (ii) the maximum of 〈p̂〉post (〈x̂〉post = 0), and
(iii) a combination of both, respectively. This is also confirmed
from Eq. (17). In the bottom panel of Fig. 2, we show
their corresponding probabilities, where if λ = 0.05, then
Pav ≈ 2%.

B. Open spin-mechanical dynamics in a nonzero temperature
reservoir and spin postselection inaccuracies

As shown above, we solved the dynamics of the open
quantum system uniquely involving the mechanical energy
losses within a thermal reservoir at zero temperature. Although
this might be considered as a first-step approximation towards

053851-3



MONTENEGRO, COTO, EREMEEV, AND ORSZAG PHYSICAL REVIEW A 96, 053851 (2017)

- 0.8

-0.4

0.0

0.4

0.8

-0.8

-0.4

0.0

0.4

0.8

-0.8

-0.4

0.0

0.4

0.8

4.4 4.6 4.8 5.0 5.2 5.4
0.00
0.02
0.04
0.06
0.08
0.10
0.12

4.4 4.6 4.8 5.0 5.2
0.02
0.03
0.04
0.05
0.06
0.07
0.08

4.4 4.6 4.8 5.0 5.2 5.4

0.02
0.04
0.06
0.08
0.10
0.12

FIG. 2. Top panel: Quadratures on average after postselection
and the mechanical coherence as in Eq. (17) for different φs . The
superposition is achieved when coherence is maximal for a set
of postselected angles {θs,φs} satisfying (6) (vertical dashed line).
Bottom panel: Outcome postselected probabilityP for the same angle
window. Other parameters are t = π,γ = 0.01,λ = 0.05.

realistic experimental scenarios, it is further required to take
into account unavoidable detrimental effects due to the spin
decoherence and that are embedded in a thermal phonon
reservoir at nonzero temperature. To model this case, we
proceed to solve numerically a more general master equation
given by

dρ̂

dt
= −i[Ĥint,ρ̂] + γ (1 + nm)D[b̂] + γ nmD[b̂†]

+�(1 + nq)D[σ̂−] + �nqD[σ̂+] + γφ

2
D[σ̂z],(18)

where Ĥint = b̂†b̂ − λσ̂z(b̂† + b̂) and

D[Ô] = 1
2 (2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂) (19)

corresponds to the Lindblad term. Also, in the equation
above, n = [exp(h̄ω/kBT ) − 1]−1 is the Planck distribution,
with kB the Boltzmann’s constant and T the corresponding
temperature of the thermal phonon reservoir. Furthermore, the
scaled (by the mechanical frequency ωm) quantities {γ,�,γφ}
are the mechanical damping, spin-relaxation, and the spin
pure dephasing rates, respectively. For simplicity, we have
considered nm = nq = 10 throughout our numerics.

To quantify the robustness of our setup, we make use of
the fidelity, where for two quantum states, {�1,�2} is defined
as Tr[

√√
�1�2

√
�1]. In particular, as our target state is a

pure state, �1 = |ψm〉〈ψm|, where |ψm〉 = 1/
√

2(|0〉 + |1〉)
[71] is the mechanical qubit in the absence of any source
of decoherence. The fidelity then reduces to

fidelity =
√

〈ψm|�2|ψm〉. (20)

Now, we have all the ingredients to explore the limitations
of our mechanical qubit state preparation under a closer
experimental realization. First, let us commence by studying
our protocol in the absence of spin dephasing, i.e., γφ = 0 in
(18). In Fig. 3(a), we show the open evolution as a function
of the spin-relaxation rate � for two values of the mechanical
damping rate γ . As seen from the figure, in order to have a
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FIG. 3. The figure illustrates the open quantum dynamics for two
different values of the mechanical rate (γ ). (a) Solution of Eq. (18) in
the absence of the spin pure dephasing rate (γφ = 0) as a function of
the spin-relaxation rate �. The inset figure corresponds to the shaded
region of the main plot. (b) The evolution of the whole master equation
shown in Eq. (18). Other values are t = π,nm = nq = 10,λ = 0.05,
and we have postselected the spin as φ = 0 and θ according to Eq. (6).

fidelity above 0.85, we require a value of � < 10−3 [shaded
region in Fig. 3(a)]. In Fig. 3(b), we study the quantum
open dynamics for γφ �= 0. To achieve this, we fixed a “good
enough” spin-relaxation value found in the previous (shaded
region) figure and we proceed to plot the fidelity as a function
of the dephasing rate γφ for some values of {γ,�}. As shown
in the bottom panel of Fig. 3, the fidelity can reach values
up to above 0.86, even under the full spin-mechanical open
evolution.

Moreover, we have to recall that throughout our manuscript,
we have illustrated the operational coupling regime by
considering frequencies of the mechanical oscillator in the
range of MHz, therefore with a phonon-number occupancy of
nm ≈ 10 for a temperature of the order of mK. Nevertheless, it
is important to notice that even though we considered nm ≈ 10,
the occupation number of the phonons can indeed be relaxed
to higher values. Naturally, this statement will depend on
the mechanical quality factor (Q = γ −1) considered by us.
As seen from Fig. 3, we considered values of Q = 103 and
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FIG. 4. Probability number and Wigner distributions of (a) the
mechanical qubit preparation in the absence of any source of
decoherence, and (b) by solving the full master equation shown
in Eq. (18). Our protocol can be accommodated for decoherence
values of the order of {γ,�,γφ} = {10−3,10−4,10−3}. Other values
were taken as in Fig. 3.

Q = 104 with nm ≈ 10. Here, we notice that the upward
γ (1 + nm) and downward γ nm energy transitions in the
Lindbladian are of the order of γ (1 + nm) ≈ γ nm ∼ 10−2.
Nowadays, mechanical oscillators can be prepared with Q =
105 [72], implying that our setup would still work considering
a thermal bath with nm ≈ 102. In fact, we have numerically
verified this, i.e., our nonclassical mechanical preparation
can still be generated for a set of values of {nm,γ,�,γφ} =
{102,10−5,10−4,10−3}, giving us Pr(n = 0) = 0.518 ± 0.024
and Pr(n = 1) = 0.447 ± 0.022.

Following with a similar analysis discussed before, in
order to exhibit the true quantumness of our mechanical
state preparation, we proceed to compute the probability
number as well as the Wigner quasiprobability distribution. In
Fig. 4(a), we show the state preparation under unitary (ideal)
evolution, whereas in Fig. 4(b), we consider the mechanical
qubit under both spin and mechanical decoherence embedded
in a nonzero thermal reservoir. There, the prominent negative
area of the Wigner distribution exhibits the nonclassical feature
of our mechanical state preparation. We can conclude that,
in principle, our protocol might be accommodated for a
set of values of the order of {γ,�,γφ} ≈ {10−3,10−4,10−3}
[50,73].

Lastly, it is important to notice that decoherence such as
shown in Eq. (18) does not constitute the whole detrimen-
tal effects that our state preparation protocol could suffer.
Although the open quantum dynamics, in fact, constitutes a
faithful approach towards a realistic evolution, it is important
to notice that our setup heavily relies on accurate pre- and
postselection of the spin. Hence we would like to model
the required accuracy in the preparation of these kind of
spin states. In order to do this, we numerically compute
a slight deviation of the values that fulfill the mechanical
qubit preparation, i.e., a set of angles {θ,ψ} that satisfy the
mechanical qubit preparation condition under ideal conditions,
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FIG. 5. Mechanical qubit preparation under nonideal spin pre-
and postselection and full decoherence dynamics. We have taken
inaccuracies of |�θ | � θ × 10−3 and |�φ| � φ × 10−3. Other values
are t = π,nm = nq = 10,γ = 10−3,� = 10−4,γφ = 10−3.

|λη|2(1 − sin θ cos φ) = 1 + sin θ cos φ. In other words, we
pre- and postselect the spin state within a modest perturbation
from those angles as follows:

∣∣ψf

〉 = cos

(
θ + �θ

2

)
|↑〉 + sin

(
θ + �θ

2

)
ei(φ+�φ)|↓〉,

(21)

such as |�θ | � θ and |�φ| � φ. In our understanding, this
final step gives us a closer experimental realization up to where
our protocol can be finally accommodated. The procedure then
is as follows. First, we preselect the spin state using Eq. (21)
with a random-generated distribution of �θ and �φ. It can be
seen that the ideal initial spin state considered by us throughout
our manuscript was the superposition 1/

√
2(| ↑〉 + | ↓〉), and

therefore the preselection will be considering |�θ | � π/2 and
|�φ| ≈ 0. Second, we let the system evolve for a time t = π

under the full master equation given in Eq. (18). Finally, we
proceed to postselect the spin state once again using (21). In
Fig. 5, we show the probability phonon distribution under
both full spin-mechanical decoherence and nonideal spin
pre- and postselection. To remain within a valid mechanical
preparation, we have taken an inaccuracy of 0.1% from
the central values {θ,φ}, i.e., |�θ | � θ × 10−3 and |�φ| �
φ × 10−3. The large standard deviation shown in the left panel
of Fig. 5 (λ = 0.05) can be easily understood as, for this case,
〈x̂〉 becomes sharper and narrower at exactly the value where
the coherence is maximal when λ � 1. Hence, an extremely
accurate set of angles {θ,φ} is demanded in order to prepare the
mechanical qubit; a slight deviation from these central values
will occur in a loss of quantum coherence. To overcome this
issue, the fact of having a moderate spin-mechanical coupling
strength λ � 0.25 takes a quite relevant role when the spin
postselection accuracy is taken into account. The benefits of
having stronger coupling values then arise; a deviation from
the central values does not present a crucial risk to destroy the
mechanical qubit preparation (as the mechanical quadratures
on average become wider), and therefore the accuracy of the
spin pre- and postselection can be relaxed (see the right panel
of Fig. 5).
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IV. MECHANICAL SINGLE FOCK AND SCHRÖDINGER’S
CAT PREPARATION

In this section, we will explore how to obtain |0〉 or
|1〉 phononic states, as well as Schrödinger’s cat states
through spin postselection. The generation of Fock states
for linear systems such as quantum harmonic oscillators is
a challenging task to realize experimentally (see, for example,
Refs. [24,48,49,74–78]). For instance, the preparation of
arbitrary photon Fock states has been experimentally achieved
in superconducting quantum circuits [74,75,78], where a
superconducting phase qubit is driven by classical microwave
pulses, leading to the generation of the Fock states in a
waveguide resonator.

Here, it is worthwhile to note that both |0〉 and |1〉 are
particular solutions from (6). Needless to say, even when an
initial ground state for the mechanics is considered, one would
not expect this type of nontrivial solutions due to its dynamics
alone. This is because each spin component displaces the
mechanical state coherently by ±λ(1 − e−it ), and thus the
election of strong (weak) enough λ will exhibit higher (near to
|0〉) phononic excitations.

From the phonon distribution shown in (14), in the ab-
sence of any source of decoherence (c1 = 1,c2 = 0), Pr(n) ≈
e−4λ2

λ2n[1 + sin θ cos φ(−1)n], it is straightforward to see that
a simple choice of the postselected angle, e.g., θ = ±3π/2
(φ = 0), will result in a generation of odd (or even) phonon-
number distribution [mechanical Schrödinger’s cat state, as
shown in Fig. 6(a)].

In Fig. 6(b), we generate a phononic Schrödinger’s cat state
working in the strong-coupling regime (λ ≈ 1). Interestingly,
as λ decreases (λ � 0.25), we can prepare the oscillator into
a single Fock number state n = 1 (n = 0), with this being
a consequence of the odd (even) phononic distribution for
modest coherent amplitudes.

Finally, although we are able to prepare the mechanics
into a single-phonon Fock state, postselecting the qubit in the
weak-coupling regime becomes hard to achieve. This could
be easily seen as one proceeds to postselect the qubit into
the state, e.g., {θ = 3π/2,φ = 0},|ψ〉f = 1/2(−| ↑〉 + | ↓〉).
Thus the target qubit becomes more and more orthogonal with
the initial preparation. Of course, for λ → 0, then the outcome
probability P decreases rapidly to zero, as the mechanics
disentangles from the spin. Despite this, considering a coupling
of, let us say, λ = 0.1, the Fock state n = 1 can be prepared
with a probability of Pav = 3.8% on average.

V. BRIEF DISCUSSION ON THE AAV THEORY AND OUR
PREPARATION PROTOCOL

At this point, we would like to stress the high resemblance
of our protocol with the weak-measurement theory by Aha-
ranov, Albert, and Vaidman (AAV) [79,80]. Essentially, the
combination of a weak interaction and pre- or postselection are
shown to lead to an anomalous effect, namely, the weak-value
amplification (WVA) [79].

In our model, one has the main ingredients of the AAV
theory; hence it is interesting to study if any amplification
phenomena occur. To identify this, we propose to com-
pare the quadrature mean values obtained by postselection

(a)  
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(b)  

FIG. 6. (a) Mechanical Schrödinger’s cat state for t = π,φ =
0,θ = 3π/2,γ = 0.01, and λ = 1. (b) As a consequence of decreas-
ing the coupling, a single Fock number state n = 1 for the same set
of parameters is generated.

measurements (〈x̂〉post,〈p̂〉post) with those obtained by con-
sidering the σz eigenstates, i.e., 〈±λη|x̂| ± λη〉 = ±λ(1 −
cos t),〈±λη|p̂| ± λη〉 = ±λ sin t—similarly as in [81]. There-
fore, we define the position and momentum amplification
factors as Q ≡ 〈x̂〉post/2λ and P ≡ 〈p̂〉post/λ, evidencing, in
this way, the mechanical amplification on average in our
approach when {Q,P} > 1. It can be seen from Fig. 2 that
there are some cases (exactly when the mechanical qubit
superposition is reached) where (i) the position quadra-
ture is amplified up to a factor of Q ≈ 1/(2 × 0.05) = 10
(and the momentum is not), (ii) the momentum quadrature
is amplified P ≈ 1/(0.05) = 20 (and the position is not),
and (iii) a combination of both. However, we cannot always
identify the above amplification with the original WVA
framework since in our case the AAV approximation breaks
down [80] (see Appendix for more details).

VI. CONCLUDING REMARKS

We have proposed a feasible probabilistic method to gener-
ate a macroscopic mechanical qubit, as well as Schrödinger’s
cat and single Fock number states (n = 1) for the oscillator.
As opposed to previous works [58–60], we studied an
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open dispersive spin-mechanical system without any spin
and/or mechanical driving, but on nonideal spin postselection
measurements in the weak-to-moderate-coupling regime.

To understand the mechanical qubit superposition,
we derive a correspondence between the amplification of
the mechanical quadratures on average and the maximum
value of the mechanical quantum coherence—whereas the
single Fock number state is a direct consequence of low-
amplitude Schrödinger’s cat states.

From an experimental point of view, our scheme is shown
to be feasible under current technology, as we demonstrated
in Sec. III B where our scheme can be accommodated in the
presence of several sources of decoherence. Moreover, our
technique has a probability of production of 2% < Pav < 24%
in the range of 0.05 < λ < 0.2, respectively.

Lastly, as our protocol is mainly based on spin postselection,
we would like to illustrate how this procedure could be
addressed. First, in order to preselect the spin qubit, we
initialize the spin in the | ↑〉 state; subsequently, we apply
a (π/2)y rotation around the y axis that prepares the spin into a
coherent superposition. Second, on the spin postselection, we
apply a (θ/2)y rotation (θ is the postselected angle) to map the
coherent superposition into σ̂z eigenstates, and then a measure
on the spin | ↑〉 component will allow us to read out the desired
postselected state.
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APPENDIX: FAILURE OF THE MECHANICAL
QUADRATURE MEAN VALUE UNDER WEAK

MEASUREMENTS

Aharanov, Albert, and Vaidman’s (AAV) theory has rapidly
attracted serious interest and debate since its conception
in the late 1980s [79]. In the original paper, the attention
is centered on a new paradigm of quantum measurements,
where a combination of a weak interaction followed by a
strong (projective) measurement could lead to an anomalous
effect, namely, the mean values of physical observables go
beyond the eigenvalue spectrum. To illustrate this, the seminal
work considered a spin-1/2 particle passing through two
Stern-Gerlach apparatus. The first one is aimed to preselect
the spin-1/2 state via weak magnetic coupling (weak enough
not to significantly perturb the quantum state), whereas the
second one will postselect the particle state. Surprisingly,
the measurement result of the spin component could lie way
beyond its eigenvalue spectrum.

Commonly in the AAV framework, one is interested in
quantifying the quadratures on average of the mechanical
or meter state as they are closely linked to the weak-value
amplification. In the main text, as we pointed out, although
our protocol has some of the ingredients of weak measure-
ments, it breaks down shortly after considering our optimal
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FIG. 7. Comparison between the position of the mechanical
object on average calculated as in the main text (no approxima-
tions considered) (black solid line) and the one using the weak-
measurement approximation (red dashed line) [see Eq. (A9)].

values of coupling strength (λ) and postselection values
({θ,φ}).

In this Appendix, we will explicitly show how the
mechanical quadratures on average differ when these are
computed using standard rules from quantum mechanics—
where no approximations on the coupling strength have
been done—and the one following the weak-measurements
approximations [79,80]. In order to do this, let us recall the
Hamiltonian

Ĥint = b̂†b̂ − λσ̂z(b̂
† + b̂), (A1)

with unitary evolution operator

Û = eλσ̂z�̂e−ib̂†b̂t . (A2)
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In the above, we have defined �̂ ≡ ηb̂† − η∗b̂ and η ≡ 1 −
e−it . The initial state is |ψ(0)〉 = |ψi〉 ⊗ |αm〉, where |ψi〉 =
1/

√
2(| ↑〉 + | ↓〉) and |αm〉 is the mechanical coherent state.

Following the same procedure of the AAV theory, we proceed
to approximate the unitary operator at first order in the coupling
strength as

|ψ(t)〉 ≈ (I + λσ̂z�̂)|ψi〉 ⊗ |αme−it 〉. (A3)

This approximation remains valid if and only if λ � 1. To
obtain the relevant mechanical state, we postselect the spin,
giving us the following wave function:

|ψf 〉〈ψf |ψ(t)〉 = 〈ψf |ψi〉(I + λ〈σ̂z〉w�̂)|ψf 〉 ⊗ |αme−it 〉,
(A4)

where the weak value is defined by

〈σ̂z〉w ≡
〈
ψf

∣∣σ̂z|ψi〉〈
ψf

∣∣ψi〉
= A + iB. (A5)

From the above, the unnormalized mechanical state reads

|α〉 = (I + λ〈σ̂z〉w�̂)
∣∣αme−it

〉
. (A6)

On the other hand, let us consider M̂ a quantum observable
of the mechanical object. Therefore, its expectation value is
computed as usual,

〈M̂〉 = 〈α|M̂|α〉
〈α|α〉 (A7)

= 〈M̂〉0 + λ(A〈[M̂,�̂]〉0 + iB〈{M̂,�̂}〉0)

− 2iλB〈M̂〉0〈�̂〉0), (A8)

where 〈Ô〉0 ≡ 〈αme−it |Ô|αme−it 〉. We are interested to
contrast our results from the main work (〈x̂〉 = Tr[ρ̂x̂],
where ρ̂ is the mechanical state after the spin postselection
without any approximation) with the one presented in
Eq. (A8). Thus, let us consider M̂ = x̂ = (b̂ + b̂†)/2. In this
case, [x̂,�̂] = 1 − cos t,〈{x̂,�̂}〉 = i{(1 + 2|αm|2)Im[η] +
2Im[ηα∗2

m e2it ]},〈x̂〉 = Re[αme−it ], and 〈�̂〉 = 2iIm[ηα∗
meit ],

giving the final expression

〈x̂〉AAV = Re[αme−it ] + λA(1 − cos t)

− λB{(1 + 2|αm|2)Im[η] + 2Im[ηα∗2
m e2it ]}

+ 4λBRe[αme−it ]Im[ηα∗
meit ]. (A9)

In particular, we took the mechanical state initialized in
its ground state throughout our work. Hence, αm = 0 and the
mean value is then reduced to

〈x̂〉AAV = λ{A(1 − cos t) − B sin t}. (A10)

In Fig. 7, we illustrate the position mean value of the
mechanical oscillator as a function of the postselected angles
{θ,φ}. In Fig. 7(a), we consider the case where φ = 0.
As expected, if φ = 0 and θ → 3π/2, then 〈σ̂z〉w → ∞.
Therefore, Eq. (A6) becomes undefined. Of course, at exactly
the angle value of θ = 3π/2, the weak-measurement approx-
imation is not valid, as the original paper forbid orthogonal
spin postselection related to the initial spin state. However,
one should expect that in the vicinity of θ → 3π/2, the
weak-measurement approximation should hold. As seen in
Fig. 7(a) and discussed in the main text, when max(〈x̂〉post) [or
min(〈x̂〉post)] occurs, the mechanical qubit state is prepared.
However, the weak-measurement approximation becomes
irreconcilable with the exact calculation for an independent
choice of the coupling value λ. On the other hand, our protocol
holds for any set of {θ,φ} fulfilling |λη|2(1 − sin θ cos φ) =
1 + sin θ cos φ, including φ = 0 as shown in Fig. 7(a).

To explore the validity of the weak-measurement approx-
imation when φ �= 0 (no orthogonal states between spin pre-
and postselection), we have calculated 〈x̂〉 for φ = 0.08 [see
Fig. 7(b)]. There, the approximation is valid for λ � 0.01.
However, as discussed before, an experimental drawback of
having λ � 1 is that we require achievement of extremely
high precision in the spin postselection, and also the spin
outcome probability decreases. Thus, even though when φ �= 0
and λ � 1, the AAV is valid, the experimental disadvantages
become a major obstacle for the mechanical qubit preparation.
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