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State preparation and detector effects in quantum measurements of rotation
with circular polarization-entangled photons and photon counting
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Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation
measurement. In this paper, the method of entanglement transformation is used to produce NOON states in
circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold
coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity
strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the
Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly.
For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility
region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular
polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that
entanglement can be transformed into different frames for specific applications, serving as a useful scheme for
using entangled sources.

DOI: 10.1103/PhysRevA.96.053846

I. INTRODUCTION

Recent developments in quantum metrology have obtained
a superior performance for estimation precision that surpasses
the standard quantum limit (SQL) that bounds the classical
method [1], with the prominent example of entangled multi-
photon states improving interferometric techniques. Many of
these studies have investigated the so-called NOON states,

|N :: 0〉A,B = 1√
2

(|N,0〉A,B + |0,N〉A,B), (1)

which possess maximal path-entanglement between paths A

and B. In optics and more specifically in the frame of linear
polarization, a NOON state can be an equal superposition of
states that combine all N photons in either horizontal (H )
or vertical (V ) polarization mode, denoted as |N :: 0〉H,V .
By utilizing this kind of NOON state in a conventional
interferometer; for example, a Mach–Zehnder type, one can
acquire a phase N times faster than for classical light [2]. This
implies that the phase sensitivity is enhanced to surpass the
SQL and reaches the more fundamental Heisenberg limit [3],
and the phase resolution is enhanced to realize sub-Rayleigh-
resolution quantum lithography [4].

Although linearly polarized photons are not inherently
required to form a NOON state, the linear polarization frame
is used in most experiments because the linear polarizer can be
easily obtained and the phase estimation is of greater interest
[5–10]. However, it has been noted that a NOON state in the
frame of circular polarization, denoted as |N :: 0〉L,R where
L and R represent left- or right-circular polarization modes,
respectively, can be used to achieve a quantum-enhanced
rotation measurement similar to the phase measurement [11].
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Additionally, experimental research has been reported for the
probing of a delicate material system by means of near-
resonant Faraday rotation where the |N :: 0〉L,R states enable
a quantum enhancement [12]. Unfortunately, the number of
photons involved in a single detection is limited to two, much
less than what has been realized in the linear polarization frame
[5]. Given that the use of NOON states becomes increasingly
advantageous with increasing number of photons, a practical
scheme of rotation measurement in which |N :: 0〉L,R with a
larger N is utilized seems appealing and feasible.

The concept of entanglement transformation has been
widely exploited to produce entanglement in different degrees
of freedom from parametric downconversion photon pairs
[13,14]. From our perspective, entanglement transformation
from linear polarization frame to the circular polarization
frame is expected. In this paper, we point out that one can
easily make the frame transformation of NOON states from
|N :: 0〉H,V to |N :: 0〉L,R by a properly placed quarter-wave
plate. Since the states of |N :: 0〉H,V have been experimentally
generated up to N = 5 [5], we follow their result in our rotation
measurement scheme to produce |N :: 0〉L,R of the same size.
Photon counting is implemented in the measurement stage to
obtain N -fold coincidence, which plays a key role in achieving
super-resolution and supersensitivity. Most importantly, the
influence of source and detector imperfections on the estimate
performance is discussed in detail and the threshold for
obtaining better performance than that of the classical method
is given.

II. THE SCHEME: QUANTUM MEASUREMENT
OF ROTATION

The measurement setup of rotation is shown in Fig. 1. In
the following section, this kind of measurement scheme will
be discussed in the three stages shown in Fig. 1.
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FIG. 1. Illustration of quantum rotation measurement. The first polarizing beam splitter (PBS) that reflects horizontal polarized photons
and transmits vertical polarized photons is fed by coherent light (CS) and spontaneous parametric down-converted light (SPDC) in its two input
ports in polarizations H and V . The generated state, polarized at angle ±45◦ to the horizontal plane (X and Y polarizations), is transformed
by a QWP into the frame of circular polarization and is rotated by a rotation medium (RM). The photons are then projected onto horizontal or
vertical polarization states at the second PBS and two photon-number-resolving apparatuses on each polarization output record all the possible
outcomes.

A. State-preparation stage

In the stage of state preparation, the state |N :: 0〉L,R

is produced by entanglement transformation from linear to
circular polarization. To analysis this process, we first expand
|N :: 0〉L,R onto a two-mode Fock basis of linear polarization
as (see Appendix A for derivation in detail)

|N :: 0〉L,R = CN

N∑
k=0

(
N

k

)1/2

[ik + iN−k]|k〉H |N − k〉V .

(2)

where CN = (1/
√

2)N+1. With |N :: 0〉H,V and |N :: 0〉R,L

expressed in the same basis, we can now investigate the
entanglement transformation. It is well known in classical
optics that a circularly polarized light can be obtained by
placing a quarter-wave plate behind a linearly polarized light.
We confirm that this process still holds for photons in Fock
states. Consider an input state of |N :: 0〉H,V to be transformed
by a quarter-wave plate for which the fast axis is rotated
away from the H direction by angle β; then, the unitary
transformation associated with the impact on the input state
can be expressed as [15,16]

ÛQWP(β) = ei2βĴy ei(π/2)Ĵz e−i2βĴy . (3)

The fidelity of the output state |ψout〉 with |N :: 0〉L,R is FN ≡
|L,R〈N :: 0 | ψout〉|2. By simple calculation, we obtained that
FN saturates to unity when β = 45◦, implying the perfect
transformation from |N :: 0〉H,V to |N :: 0〉R,L. Finally, in
our scheme, the readily generated linearly polarized NOON
overlap is transformed into circular polarization-entangled
photons as is shown in Fig. 2. The corner-like shape in Fig. 2(c)
illustrates the tendency of all photons to collectively stay in
the same mode.

B. Rotation stage

The produced state propagates to accumulate a rotation
of the optical polarization with an angle of θ , in a rotation
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FIG. 2. Scheme of state preparation and theoretical properties
of the generated states. (a) NOON states in the frame of linear
polarization are produced by mixing H polarized collinear degenerate
spontaneous parametric down-conversion (SPDC) and a V polarized
coherent state at a polarizing beam splitter and are further transformed
into the circular polarization frame by a quarter-wave plate (QWP).
(b) |N :: 0〉R,L overlap in the linear polarization basis. X and Y

contribute ±45◦ polarization, respectively. Bar heights represent the
probability for m, n photons in polarization modes X, Y , respectively.
(c) The same as panel (b) but in the circular polarization basis.
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medium (RM) in the rotation stage. The effect of RM can
be realized by a DOVE prism [17], or by a magneto-optic
material that induces a resonantly enhanced Faraday rotation
with respect to the applied axial magnetic field B [12], or
simply by setting a relative angle between the reference frames
of state-preparation and measurement setup [11]. The rotation
is encoded onto each of the NOON states, resulting in

|ψN 〉 = 1√
2

(eiNθ |N,0〉R,L + e−iNθ |0,N〉R,L). (4)

The coherent superposition of eiNθ |N,0〉L,R and
e−iNθ |0,N〉L,R lies at the heart of the entanglement. To
ensure the feasibility of our scheme, it must be verified
first and actually has been experimentally demonstrated by
Afek et al. [5]. In their scheme for phase measurement,
similar superpositions expressed by Eq. (4), which leads to
the observation of superresolution and supersensitivity. This
is the general method to take advantage of entangled sources
and is also implemented in our scheme.

C. Measurement stage

After leaving the rotation stage, the photons are projected
onto horizontal or vertical polarization states at the second
PBS, and coincidences of different combination are recorded
by two N -photon detectors. The probability for detecting
exactly m photons in H and N − m photons in V is

Pm,N−m(θ ) = |H,V 〈m,N − m|ψN 〉|2 (5)

for m = 0, . . . ,N . These probabilities are known to exhibit
superoscillations [11,12], and thus can increase the angle
sensitivity. The uncertainty of estimating θ by Pm,N−m is

�θm,N−m = �Pm,N−m∣∣ ∂Pm,N−m

∂θ

∣∣ , (6)

where the uncertainty associated with Pm,N−m is �Pm,N−m =
(Pm,N−m − P 2

m,N−m)1/2 [3,18,19]. This uncertainty is bounded
by the Heisenberg limit of the rotation measurement,
�θm,N−m � 1/2N , which is different from that of the phase
measurement by a constant factor of two [11].

To illustrate the detection performance of such a setup,
we take the condition of a pure |5 :: 0〉R,L state and perfect
photon-number-resolving detectors, for example. The results
are shown in Fig. 3. The probability of three photons in H

polarization and two photons in V polarization is calculated
and shows a de Broglie wavelength [2] of λ/5, as expected.
Notably, the peak value of P3,2 does not reach unity because
of the missing recorded events other than 3, 2 and 2, 3, and
for the same reason the sensitivity approaches the Heisenberg
limit (shown by the shaded area) but does not actually reach
it. With the peak value of a, the minimum sensitivity is
1/[2N

√
a]. The lack of saturation for the Heisenberg limit can

be addressed. There are two basic data processing methods.
The first is quite similar to the strategy of parity measurements
[20,21]. Considering that the coincidence fringes of Pm,N−m

for any even or odd m are in-phase, the superposition of all
the P2k,N−2k or P2k+1,N−2k−1 must be constructive. As for the
pure |N :: 0〉L,R input, it can be demonstrated that the peak
value of

∑[N/2]
k=0 P2k,N−2k or

∑[N/2]
k=0 P2k+1,N−2k−1 will saturate
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FIG. 3. Theoretical result of rotation measurement on the con-
dition of using pure |5 :: 0〉R,L state and perfect photon-number-
resolving detectors. (a) Simulated fivefold coincidences as a function
of rotation angle. P3,2 oscillates five times faster than predicted by
the Malus law, showing fivefold super-resolution. (b) Theory of angle
sensitivity. The Heisenberg limit, shaded area, is not reached because
of the inadequate utilization of all outcome events.

to unity and the therefore the Heisenberg limit is reached. For
the case with noise, even we take an even or odd superposition
of the coincidence fringes, the peak value will not saturate
to unity because the noise with higher or lower photons does
not contribute to coincidence. In this situation, another data
processing method of measuring the conditional probability
should be considered [7]. In this method,

∑[N/2]
k P2k,N−2k

or
∑[N/2]

k=0 P2k+1,N−2k−1 is normalized by the probability of
total coincidence PN = ∑N

k=0 Pk,N−k to obtain the conditional
probability as

P̃odd(θ ) = 1

PN

[N/2]∑
k=0

P2k,N−2k,

P̃even(θ ) = 1

PN

[N/2]∑
k=0

P2k+1,N−2k−1. (7)

It will be shown that either P̃odd(θ ) or P̃even(θ ) can be used
to saturate the angle sensitivity as close as possible to the
Heisenberg limit.

III. IMPACT OF SYSTEM IMPERFECTIONS

Due to the NOON-state-preparation method and experi-
ment limitations, the actual measurement result will deviate
from the ideal situation shown in Fig. 3. As discussed in
Ref. [22], the influence of the experimental limitations mainly
arises from imperfect states and detectors. Here, we first take
into account each of these aspects separately and then proceed
to the combined effect.

A. Imperfect state preparation

The state used here for rotation measurement is an overlap
of |N :: 0〉R,L for arbitrary N . For each N -photon component,
the fidelity with |N :: 0〉R,L does not saturate to unity com-
pletely. After we record the coincident rate of m photons in H

polarization and N − m photons in V polarization, a postse-
lection of the N -photon component is actually performed, and
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FIG. 4. Theoretical result of rotation measurement on the condition of practical source and perfect photon-number-resolving detectors.
(a)–(c) Coincident rate of events in which the number of photons of H polarization is odd. (d) Conditional probability obtained by
superimposing fringes in panels (a)–(c) and normalized by the proportion of a five-photon component in the overlap c. (e) Angle sensitivity
associated with the conditional probability of panel (d), Heisenberg limit, shaded area, is saturated at certain angle. (f) Fivefold visibility of
conditional probability vs the fidelity of five-photon components. The data points are fit by V5 = F5 with a root-mean-square error (RMSE) of
8.737 × 10−4.

the other component serves as noise and eventually reduces the
peak value of Pm,N−m, which is harmful for the sensitivity, as
discussed above. Taking c as the proportion of the N -photon
component in the overlap, it is obvious that c = PN and serves
as the normalization coefficient in the process of obtaining the
conditional probability as expressed in Eq. (7).

Except for the noise from the “non-N” components, there
exist “non-NOON” components among the N -photon compo-
nents that may affect the coincident signal rate. More specif-
ically, the fidelity of N -photon components with |N :: 0〉R,L

controls the visibility of the N -fold oscillations [23]. To study
the visibility of coincidence fringes, we consider an arbitrary
Pm,N−m in the form of a Fourier series:

Pm,N−m(θ ) =
∞∑

k=0

Ak cos(2kθ + δk). (8)

|AN/A0| is referred to as the N -fold visibility VN . For
pure sinusoidal oscillations with a constant background, the
N -fold visibility coincides with the conventional definition
of visibility. In our case, the actual probability for detecting
m photons in H polarization and N − m photons in V

polarization is given by

Pm,N−m(θ ) = Tr[ÛGR(θ )|ψ〉〈ψ |Û †
GR(θ )|m〉〈m|H

⊗ |N − m〉〈N − m|V ], (9)

where ÛGR(θ ) = ei2θĴy is a unitary operator describing the
rotation using the angular-momentum notation [15]. |ψ〉 is
the |N :: 0〉R,L overlap obtained in the state-preparation stage.
The result is shown in Fig. 4. Fringes of P1,4, P3,2, P5,0

can hardly possess a fivefold visibility of unity. However, a
superposition of these three fringes will lead to an improved
result, as shown in Fig. 4(d) where normalization has been
already performed. Using this fringe, the Heisenberg limit is
saturated at a certain angle. The fringe of Fig. 4(d) shows
nearly perfect fivefold super-resolution and the imperfection
is due to imperfect fidelity. We fit the experimental curves to
a Fourier series of the form expressed in Eq. (8) and truncated
at k = 5 and find that N -fold visibility is exactly equal to
the fidelity of the input state, as shown in Fig. 4(f). This is
quite understandable because “non-NOON” components are
orthotropic to the NOON state and will never contribute to an
N -fold fringe.
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FIG. 5. Effect of approximate photon-number-resolving detec-
tion on the condition of using the pure |5 :: 0〉R,L state. (a) Comparison
of the detected results of P3,2 between perfect and approximate
photon-number-resolving detector. For the approximate detector,
the overall transmission η = 0.8 and number of bins involved in
time-multiplexed process, M = 8, are given. The perfect case can be
regarded as η = 1 and M = ∞. (b) Peak values of approximately
detected P3,2 against M and η, normalized by that of the perfect case,
0.625. Red circle indicates the situation of panel (a).

B. Imperfect detection

The original proposal of recording the coincident rate
assumed completely-photon-number-resolving detectors that
implement projections onto all Fock states, which is far behind
the state of the art achievable by using current techniques
and experimental conditions [24]. Therefore, an approxi-
mate photon-number-resolving detection using a multiplexed
method is proposed [5,7,9,25]. This scheme takes advantage
of readily available components such as avalanche photodi-
odes and time-multiplexed devices [26]. In this scheme, the
incoming pulse is split into many spatially or temporally
separate bins, making the presence of more than one photon
per bin unlikely. Subsequently, all bins are detected with
two APDs. Photon-number resolution is then obtained by
summing the number of one-click outcomes from all of the
bins.

This kind of photon-number-resolving detector is well
characterized by the positive-operator-value-measure (POVM)
formalism [27,28] in which all photon-counting operations
correspond to the POVM elements π̂n:

π̂n =
∞∑

k=0

θn,k|k〉〈k|, θn,k = [CML(η)]n,k, (10)

where n, k, and M denote the detection pattern, the photon
number, and the number of bins involved in the time-
multiplexed process, respectively. The POVM introduces
experimental imperfections via two matrices, CM and Lη,
which characterize weights and loss (see Appendix B for
explicit dependence).

We now elucidate the performance of such a photon-
number-resolving detector and its drawbacks compared with
the ideal case. We consider an input state of pure |5 :: 0〉R,L

and rewrite Eq. (9) to obtain the detecting signal as

Pm,N−m(θ )

= Tr[ÛGR(θ )|5 :: 0〉R,L〈5 :: 0|Û †
GR(θ )π̂H

m ⊗ π̂V
N−m]. (11)

Figure 5(a) shows the detecting result under such conditions.
We find surprisingly that the fringes of P3,2 are quite similar

to the theoretical prediction for the ideal case of Fig. 3(a). The
only difference is that the peak value shifts further away from
unity and can be solved by measuring the conditional probabil-
ity. Figure 5(b) shows the peak value of P3,2, normalized by the
peak value of the ideal case a = 0.625, varying with M and η.
The normalized peak value of P3,2 is mainly controlled by η as
it decreases sharply with the decrease of η. Increasing M does
enhance the normalized peak value but the effect becomes
inconspicuous for large M and the enhancement is quickly
degraded by a low η. For the actual available components and
optical arrangement, η can be barely higher than 0.5 [5,6,28];
in this case there is no need to arrange redundant bins in the
photon-number-resolving detectors.

It is notable that, on the one hand, the approximate photon-
number-resolving detector does not damage the visibility of
coincidence fringes on the condition of pure |N :: 0〉R,L input.
On the other hand, this does not mean that this effect is
also obtained for the noisy input conditions. Considering
the detecting principle of this kind of detectors, it is easy
to show that, for the POVM element of π̂n, the noisy input
states for which the photon numbers N < n, called low-photon
noise, will admit no influence on the measuring result (dark
count is omitted). In contrast, the states for which the photon
numbers N > n, called the high-photon noise, affect the
detection outcomes. This effect is absent on the condition
of pure |N :: 0〉R,L input and we discuss it in the next
section.

C. Imperfect state preparation and detection

Finally, we take the imperfect state preparation and de-
tection into account together and discuss their combined
effect. The effects of high photon noise and approximate
photon-number-resolving detection will both be magnified.
In this situation, Eq. (9) is rewritten to obtain the detecting
signal as

Pm,N−m(θ ) = Tr
[
ÛGR(θ )|ψ〉〈ψ |Û †

GR(θ )π̂H
m ⊗ π̂V

N−m

]
. (12)

Taking N = 5 as an example, the obtained results are plotted
in Fig. 6. Due to the detecting principle of the approximate
photon-number-resolving detector, a coincident outcome of
m,5 − m event may result from high-photon noise and,
consequently, the possibility of outcomes with a sum number
of five, P5, is no longer constant. Rather, this probability varies
with respect to the rotation angle as shown in the plot of
Fig. 6(a). Therefore, the conditional probability of detecting
events with even m becomes

P̃even(θ ) = 1

P5(θ )

2∑
k=0

P2k+1,5−2k−1. (13)

The fringe is plotted in Fig. 6(b) and shows an obvious
visibility decline compared with the fringe in Fig. 4(d). The
fivefold visibility equals 75.06% and the sensitivity does
not saturate to the Heisenberg limit but is still lower than
the SQL. All of the results presented in Figs. 6(a)–6(c) are
obtained under conditions in which the detector parameters
are M = 15, η = 1 and the fidelity of five-photon components
with |5 :: 0〉R,L is 0.94. This is a quite ideal conditions,
especially for η = 1. The effect of increasing M has become
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FIG. 6. Theoretical result of rotation measurement on the con-
dition of practical source and photon-number-resolving detectors.
(a) Probability of outcomes with a sum photon-number of five.
(b) Conditional probability of the N -fold coincident events signal.
(c) Angle sensitivity associated with the conditional probability of
panel (b). The light and deep shaded areas indicate the SQL and the
Heisenberg limit, respectively. (d) Fivefold visibility of conditional
probability vs the SNR of the source.

unimportant. In this case, the high-photon noise becomes the
only problematic effect that is responsible for the degradation
of the detecting performance; as shown in Fig. 6(d), in this case,
with the increase of signal to noise ratio (SNR), the fivefold
visibility increases and approaches the upper limit, which is
exactly equal to the fidelity of five-photon components with
|5 :: 0〉R,L.

The quantum advantage of |N :: 0〉L,R is addressed by (FN ,
SNR, η, M). To advance toward quantum-enhanced rotation
measurements, it is important to determine the experimental
conditions required to surpass the SQL. We find numerically
that (FN , SNR, η) have the strongest effect on the sensitivity,
while M is a minor factor that is merely required to be greater
than N . For N = 5, the contour plot of minimum sensitivity
reached for certain combinations of (FN , SNR, η) is shown in
Fig. 7 where a slight difference can be obtained by changing
M . In general, lower η requires higher SNR to reach the
same minimum sensitivity. As FN decreases, the quantum
region, bounded by the leftmost contour line, decreases, and
the feasibility region shrinks more sharply as for the sensitivity
of higher level. To the best of our knowledge, currently there is
no efficient method to increase the SNR in the photon number
level. In fact, the coincident record serves as a general method
of postselection and can filter noise but is unfortunately limited
by the practical photon-number-resolving detector. This makes
the increase of even more significant η. To reach an even higher
sensitivity than that of the SQL, the fidelity of the produced
state with |N :: 0〉R,L is also crucial.

(a) (b)

(c) (d)

FIG. 7. Minimum sensitivity as a function of the overall transmis-
sion η and of the signal-to-noise ratio (SNR) for different values of the
fidelity of five-photon components F5: (a) F5 = 0.94, (b) F5 = 0.84,
(c) F5 = 0.74, (d) F5 = 0.64. Darker regions correspond to higher
sensitivity. The values of contour lines from left to right in each plot
are 0.22 (SQL), 0.20, 0.18, 0.16, 0.14, and 0.12. The Heisenberg limit
(0.1) is not reached.

IV. CONCLUSIONS

We have demonstrated a practical quantum rotation mea-
surement scheme from the state-preparation stage to the
measurement stage. In the state-preparation stage, the method
of entanglement transformation is used to produce NOON
states in circular polarization from a readily generated linear
polarization-entangled photon source. In the measurement
stage, the coincident rate is recorded and even or odd superpo-
sition is taken onto the obtained fringes. Both superresolution
and supersensitivity can be reached. Most importantly, we
have identified the major imperfections in the experiment: the
fidelity and SNR of the input state, the overall transmission,
and the time-multiplexed bin number of practical photon-
number-resolving detectors. We have shown that the first three
of these are the most detrimental to the sensitivity and conclude
that the joint analysis of these three factors may help reach a
different level of estimation performance by using equipment
advantageous for different factors.

In addition, even though it was found that a considerable
quantum region remains in the parameter space considered in
this work, NOON states are notoriously sensitive to photon
loss. Other quantum states such as Gaussian [29] and optimal
states [30] can be used instead. In fact, our work is also
originally based on Gaussian states. The setup shown in
Fig. 2(a) mixing a coherent state and a squeezed vacuum
state at a beam splitter is a quite classical arrangement that
has been widely investigated. Schemes based on this kind
of setup for phase measurement have been reported [31,32].
We find that these schemes show different characteristics and
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satisfy different requirements. The main difference among
these schemes, including ours, is the data processing method.
That is, one can easily switch between these methods without
changing the arrangement of any optical or electrical elements
for the implementation of the experiments. The setups will
be effective for the needs of a particular case but not for the
typical method.

APPENDIX A: EXPANSION OF |N :: 0〉L,R ONTO
TWO-MODE FOCK BASIS OF LINEAR POLARIZATION

We begin the derivation of representation conversion by
defining the annihilation operator of an L- or R-polarized
photon as âL or âR . These operators and their Hermitian
conjugates satisfy the boson commutation relations:

[âi ,âj ] = [â†
i ,â

†
j ] = 0, [âi ,â

†
j ] = δij , (A1)

where i and j take on the values L and R. Given that a single-
photon state of linear polarization or circular polarization
satisfies the relations

|1〉R = 1√
2

(|1〉H + i|1〉V ) = 1√
2

(â†
H + iâ

†
V )|0〉,

|1〉L = 1√
2

(i|1〉H + |1〉V ) = 1√
2

(iâ†
H + â

†
V )|0〉, (A2)

one may conclude that (â†
H + iâ

†
V )/2 and (iâ†

H + â
†
V )/2 is the

creation operator of an L or R polarized photon. Namely,(
â
†
R

â
†
L

)
= 1√

2

(
1 i

i 1

)(
â
†
H

â
†
V

)
. (A3)

This can be further confirmed by comparing with the well-
known rotation operator [15]

Ĵy = − i

2
(â†

H âV − âH â
†
V ). (A4)

Since the L and R polarization states are eigenstates of
rotation, Ĵy can also be expressed as

Ĵy = 1
2 (â†

RâR − â
†
LâL). (A5)

By substituting Eq. (A3) into Eq. (A5), one can easily obtain
Eq. (A4), which is certainly the verification of Eq. (A3).

With the relation of Eq. (A3), we can now expand
|N :: 0〉L,R onto the two-mode Fock linear polarization basis:

|N :: 0〉L,R = CN

N∑
k=0

(
N

k

)1/2

[ik + iN−k]|k〉H |N − k〉V ,

(A6)

where CN = (1/
√

2)N+1.

APPENDIX B: EXPLICIT DEPENDENCE OF DETECTOR
CHARACTERIZER ON EXPERIMENTAL

IMPERFECTIONS

Lη characterize loss and [Lη]m,k is the conditional prob-
ability that k − m photons are loss when k − 1 photons are
incident. By using the abstract loss model [25], the loss of the
sources can be accounted by a single parameter η representing
the overall transmission. The nonzero loss matrix elements are
given by

[Lη]m,k =
(

k − 1
m − 1

)
ηm−1(1 − η)k−m, m,k = 1,2, . . . .

(B1)

CM characterize the weights and, for an approximate
photon-number-resolving detector that contains M bins in a
time-multiplexed setup, [CM ]n,m is the conditional probability
that n − 1 counts are detected when m − 1 photons are retained
from the loss. The calculation of the conditional probabilities
can be reduced to a simple stochastic model of distributing
m − 1 balls into M baskets and calculating the probability
that n − 1 baskets are occupied. Let Xn,m be the number of the
patterns for which m balls occupy n baskets, which satisfy the
recursion relation of

Xn,m = nm −
n−1∑
i=1

(
n

i

)
Xi,m. (B2)

Then, [CM ]n,m can be calculated by

[CM ]n,m =
(

M

n − 1

)
Xn−1,m−1/M

m−1. (B3)
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