
PHYSICAL REVIEW A 96, 053845 (2017)

Anti-PT symmetry in dissipatively coupled optical systems
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We show that anti-PT symmetry can be realized in dissipatively coupled optical systems. Its emergence gives
rise to spontaneous phase transitions for the guided and localized photonic eigenmodes in the waveguide and cavity
systems studied, respectively. As a ubiquitous feature we demonstrate that constant refraction [analogous to unit
refraction in [Nat. Phys. 12, 1139 (2016)]] occurs in the PT -symmetric phase, which leads to several interesting
properties for the photonic system, such as flat broadband light transport and dispersion-induced dissipation.
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I. INTRODUCTION

A non-Hermitian Hamiltonian H can exhibit physics
beyond that of a closed system [1–6]. As a striking example,
parity-time (PT ) symmetry, defined by [PT ,H ] = 0 and
proposed by Bender and Boettcher [1], has drawn much
attention in recent years [6–18]. Such a system can possess
entirely real-valued eigenenergy spectra below the symmetry-
breaking threshold.

Optical systems provide ideal platforms for studying non-
Hermitian physics, because tunable complex potentials for
photons can be constructed by easily incorporating gain or loss.
The realization ofPT symmetry in photonic systems [8,13,15]
not only advances the study of non-Hermitian physics but also
leads to unprecedented properties in photonics, ranging from
the asymmetric light transport [8,11], simultaneous coherent
perfect absorption and lasing [9,10], etc. in earlier studies, to
the superprism effect [19] and enhanced metrological precision
[20] in more recent investigations. In addition to gain-loss
systems, the PT phase transition can also be measured in
topological photonic systems [21] and complex-frequency
band structures [22].

Anti-PT symmetry, with the commutator replaced by the
anticommutator, or {PT ,H } = 0, represents a generalization
of PT symmetry. Systems with anti-PT symmetry can
display distinct intriguing properties in the absence of any
gain medium [23–26]. The original proposal treated anti-PT
symmetry by assuming a balanced positive and negative
refraction [23]. Subsequent theoretical studies were based
on cold-atom lattices [24] and nonlinear optical systems
[25]. The first experiment reported recently employed dis-
sipative couplings between atomic spin waves from atoms in
transport [26].

For real applications, an implementation of anti-PT sym-
metry in an integrable and tunable linear photonic system
is highly desired. This paper presents an easy-to-implement
scheme for realizing anti-PT symmetry in practical photonic
systems, e.g., solid-state linear optical waveguides or optical
cavity configurations. Our proposal illuminates the paradigm
feature of the anti-Hermitian Hamiltonian with indirect dissi-
pative coupling. Unlike Hermitian couplings that balance the
gain and loss inPT -symmetric systems [8,15], anti-Hermitian
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couplings are exploited here to balance the detuning between
photonic modes. The resulting anti-PT symmetry causes a
spontaneous phase transition of the eigenstates (characterized
by PT symmetry breaking), which significantly influences
the eigenvalues as well as the transport properties. The
consequent constant-refraction in the symmetry unbroken
regime gives rise to several interesting phenomena, such as
detuning-induced attenuation, which transfers a pure disper-
sion modulation into a pure dissipation modulation and enables
controlling of the loss rate for an open system.

II. COUPLED WAVEGUIDE SYSTEM

For light propagation along the z direction in a system
consisting of three waveguides as shown in Fig. 1(a), the total
field is expanded as E(r) = a(z)Ea(x,y) + b(z)Eb(x,y) +
c(z)Ec(x,y), with the guided modes denoted by m = a, b,
and c, respectively. The mode function Em(x,y) for the field
distribution is normalized such that |a(z)|2, |b(z)|2, and |c(z)|2
correspond to photon number flux carried by the corresponding
mode [27]. Modes a and b are coupled to the mode c through
near-field tunneling [8,28], while a and b are not directly
coupled. The system is described by the model Hamiltonian
Hc = κ1a

†c + κ2b
†c + H.c., where κ1 and κ2 represent the

hopping rate between mode a and c, and the hopping rate
between mode b and c, respectively. These hopping rates can
be rigorously calculated via the overlap integral between the
mode field distribution functions [28]. All mode annihilation
operators a, b, and c will be treated approximately as c-
numbers in the classical limit, with their associated quantum
noises neglected.

When mode c is lossy with an attenuation rate γ � κ1/2,
it can be adiabatically eliminated (see Appendix A). For
balanced coupling (κ2 ≈ κ1 = κ) and when the propagation
constant detuning �k1 (�k2) between mode c and mode a

(b) is small enough (|�k1|,|�k2| � γ ), the effective coupling
Hamiltonian reduces to Hc = i�(a†b + b†a), with the effec-
tive “dissipative” coupling rate � = |κ|2/γ . Interestingly, Hc

is anti-Hermitian (H †
c = −Hc), which plays a key role in our

implementation of anti-PT symmetry.
Using a vector � = eik̄z(a,b)T to describe the state of the

system with k̄ = (k′
a + k′

b)/2 and k′
a and k′

b the modified prop-
agation constants for the two respective modes, the equivalent
Schrödinger-like equation is given by (see Appendix A)

i∂z� = H�, (1)
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with the effective Hamiltonian

H =
(

� − i� −i�

−i� −� − i�

)
, (2)

and � = (ka − kb)/2 is the effective detuning. For the waveg-
uide model system, the time-reversal operation T transforms
a z-independent operator to its complex conjugate, while the
parity operator P exchanges locations of the modes [7,8].
Thus, it is easy to verify that our model Hamiltonian Eq. (2) is
anti-PT -symmetric, i.e.,

(PT )H (PT )−1 = PH ∗P−1 = −H. (3)

We now discuss the spontaneous phase transition of the
above model. Denoting its eigenstate as �± = (a±,b±)T

with corresponding eigenvalue β±, we can easily obtain
H (PT �±) = −β∗

±(PT �±) by using Eq. (3), which gives
the following two possibilities: (i) β± is pure imaginary
and PT �± = σ±�± with |σ±|2 = 1; (ii) β∗

± = −β∓ and
PT �± = σ±�∓ with σ ∗

±σ∓ = 1. They correspond to the two
different phases: the PT -symmetric phase (i), where each
eigenstate is also an eigenstate of the PT operator and thus
possesses the same level of symmetry as the Hamiltonian;
and the symmetry-broken phase (ii), where the PT opera-
tion transforms one eigenvector into the other, and neither
eigenstates are PT -symmetric themselves. The analytical
eigensolutions of the model Hamiltonian (2) show that the
system lies in the PT -symmetric phase with eigenvalues
β± = −i[� ± (�2 − �2)1/2] when the dissipative coupling
� > � (for � > 0). The corresponding eigenvectors are
�± = (±e±iφ,1)T with sin φ = �/�. In this phase, the
two eigenmodes share identically the same real propaga-
tion constant (constant-refraction effect) but with different
attenuation rates, and both modes exhibit balanced field
profiles since |a±/b±| = 1. As the coupling-to-detuning ratio
(�/�) decreases, the system remains in the symmetric phase
until � = �, the exceptional point (EP), at which the two
eigenmodes coalesce into a degenerate one. When � < �,
the system undergoes a transition into the symmetry-broken
phase with β± = −i� ± (�2 − �2)1/2 and �± = (ie±r ,1)T

(cosh r = �/�), where the two eigenmodes decay with the
same rate but propagate with different wave vectors and exhibit
an asymmetric field distribution |a+/b+| = |b−/a−| > 1.

This phase transition is illustrated for the two-dimensional
(2D) planar waveguide system shown in Fig. 1(b) in terms of
its fundamental transverse electric mode. The effective index
neff and the amplitude ratio |a±/b±| of the eigenmode versus
�/� are presented in Figs. 1(c)–1(e), which show clearly
that the ratio of �/� explicitly distinguishes the two phases.
In addition, the analytical results agrees well with the finite
element method (FEM) simulations.

The phase transition discussed above can significantly mod-
ify the transport properties of our system, whose evolution is
characterized by the operator U (z) = e−iHz. In the symmetric
phase, we find

U = e−�z

(
cosh sz − i �

s
sinh sz −�

s
sinh sz

−�
s

sinh sz cosh sz + i �
s

sinh sz

)
,

(4)

FIG. 1. (a) The coupled waveguide schematics for implementing
anti-PT symmetry. (b) Its structure illustration for the planar
waveguide system. The width of each waveguide is 0.3λ0. The
refractive index is 3.5 − 0.12i for the inner one third of waveguide c

(red region), while it is fixed at 3.5 for waveguide b and the rest of
waveguide c, and is adjustable for waveguide a (denoted by na). (c),
(d) Characteristics of the eigen-waveguide modes of the structure
shown in (b) with na = 3.5013. �/� is varied by changing the
distance d between the adjacent waveguides from 0.12λ0 to 0.2λ0.
The circles and squares are obtained by FEM simulations, and the
solid lines are obtained with the analytical theory.

with s = (�2 − �2)1/2, and in the symmetry-broken phase

U = e−�z

(
cos qz − i �

q
sin qz −�

q
sin qz

−�
q

sin qz cos qz + i �
q

sin qz

)
, (5)

with q = (�2 − �2)1/2. In thePT -symmetric phase according
to Eq. (4), the state evolves as hyperbolic functions and exhibits
no interference fringes along the z direction. While for the
symmetry-broken phase [Eq. (5)], oscillations of the mode
amplitudes occur along the propagation direction. Such a
contrasting difference can be observed with a setup of the
initial incidence from mode a. We find that, from Eqs. (4) and
(5), the splitting ratio |b/a|2 in the two phases becomes

∣∣∣∣ba
∣∣∣∣
2

=

⎧⎪⎪⎨
⎪⎪⎩

�2

s2 coth2 sz + �2
(� > �)

�2

q2 cot2 qz + �2
(� < �),

(6)

exhibiting completely different transport properties. In the
PT -symmetric phase, the energy of mode a gradually flows
to mode b and the splitting ratio always converges to unity
[see Fig. 2(a)]. In this case, the anti-Hermitian couplings
can balance the wave-vector detuning between modes a and
b and filter out the high-loss eigenmode after propagation.
Further increase of the detuning breaks this balance and brings
the system to the symmetry-broken regime, where energy
cyclically flows back and forth between the two modes [see
Fig. 2(b)], facilitated by the interference of the eigenmodes
with the same loss rate but different wave vectors.

The unique transport property in the PT -symmetric phase
promises several interesting applications. When � = 0, the
system supports a very lossy symmetric eigenmode �s =
(1,1)T /

√
2 (loss rate being 2�), and a lossless antisymmetric

mode �a = (1, − 1)T /
√

2. Thus, the symmetric mode can be
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FIG. 2. Characteristics of the state evolution in the structure
shown in Fig. 1(b) for d = 0.12 λ0. Panels (a) and (b) show the
transport properties in the PT -symmetric phase (na = 3.5, � =
0) and the symmetry-broken phase (na = 3.51, �/� = 0.3458),
respectively. Circles are obtained by FEM and the solid lines are
based on the analytical model. Panels (c) and (d) show the FEM
simulations for a conventional DC (d = 0.17 λ0) and the system
considered in panel (a). (c) Electric-field distributions [|E(x,z)|]. (d)
Splitting-ratio spectrum for a conventional DC [blue (steeper) curves,
L = 20.8 λ0] and an anti-PT -symmetric system [red (flatter) curves,
L = 300 λ0]. �λ denotes the deviation from the center wavelength
(at which |b/a|2 = 1).

filtered after a sufficient propagation length L, which can be
used to construct a mode filter as well as a 3dB splitter [by
sacrificing half of the total energy carried by the lossy mode
to make |b/a|2 = tanh2(�L) ≈ 1]. This transport behavior
differs from that in a conventional directional coupler (DC) or
a multimode interference (MMI) device [29], which relies on
the interference of the propagating modes and shows a strong
dependence on frequency and coupling length. For example,
a DC with a Hermitian coupling strength κ gives |b/a|2 =
tan2(κL) [28]. This difference is shown in Figs. 2(c) and 2(d),
which clearly illustrates the featured constant-refraction and
flat broadband transport of an anti-PT -symmetric system.
Such a 3dB splitting is also robust against variations of the
detuning �.

A second rather counterintuitive feature is detuning-
induced attenuation. For an input field in the antisymmetric
mode �a , the transmission coefficients for the symmetric
and antisymmetric modes are given by ta = �

†
aU (z)�a and

ts = �
†
s U (z)�a , respectively, after propagating through the

system. For a large optical depth α = �z (e−α � 1), we
obtain |ta|2 ≈ e−α(�/�)2

and |ts |2 � 1 in the PT -symmetric
phase. This indicates that we can turn a refractive index
modulation to a pure absorption modulation, e.g., when the
refractive index of one waveguide is tuned away from the
other one, the transmittance of the antisymmetric mode can
be changed from unity to a rather small value while the
excitation of the symmetric mode remains negligible (see
Fig. 3). The change of the refractive index here does not cause

FIG. 3. The dependence of transmittance for the antisymmetric
mode (|ta|2, red solid curve) and the symmetric mode (|ts |2, gray
dashed curve) on the change of the refractive index of waveguide
a (defined as na − 3.5) with an optical depth α ≈ 3.3. The inset
shows the total transmittance (|ta|2 + |ts |2, blue solid curve) and the
saturation value (brown dashed curve).

additional refraction as one would expect in a conventional
Mach–Zehnder (MZ) modulator, where the index modulation
induces an oscillation of |ta|2 and |ts |2. However, entering the
symmetry-broken phase, this absorption modulation gradually
becomes “saturated”, i.e., further increase of the detuning does
not continuously increase the attenuation, the transmittance
|ta|2 as well as |ts |2 begins to oscillate with |ta|2 + |ts |2
converging to e−2α (see the inset of Fig. 3).

III. MICROCAVITY REALIZATION

To facilitate anti-PT symmetry in the time domain and its
associated resonance effect, we consider a second realization
with optical cavity configurations, based on ring cavities
side coupled to waveguides. The anti-PT symmetry can be
implemented by an auxiliary lossy cavity with mode c to
form an effective dissipative coupling between modes a and
b [referred to as Config. 1; see Fig. 4(a)], in the same manner
as the waveguide system. Alternatively, the same dissipative
couplings can be obtained by connecting two separated cavities
with two common waveguides as shown in Fig. 4(b) (referred
to as Config. 2). In this latter case, the effective couplings can
be continuously tuned from Hermitian to anti-Hermitian [30].
The equation of motion for both configurations takes the form

i∂t� = H� + D, (7)

where � = eiω̄t (a,b)T represents the amplitudes of the two
cavity modes with ω̄ being the average resonance frequency
for modes a and b, D denoting a driving term, and the effective
Hamiltonian being given by

H =
(

� − iγ ′ −i�

−i� −� − iγ ′

)
, (8)

with � = (ωa − ωb)/2. For Config. 1, the parameters are � =
2κ2/γ and γ ′ = � + (γ0 + γi)/2, where γi denotes the same
intrinsic decay rate of mode a and b. In Config. 2, they are
� = γ0u and γ ′ = γ0 + γi/2, where u = eiθ is the propagation
phase factor in the common waveguide and can be treated as
frequency independent within the spectra of interest. The anti-
Hermitian coupling requires u = ±1 and we choose u = 1
here.

The anti-PT -symmetric Hamiltonian (10) gives rise to a
spontaneous phase transition for the eigencavity modes as well.
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FIG. 4. The coupled cavities schematics of (a) Config. 1 and
(b) Config. 2. Panels (c) and (d) show the evolution of the
eigenfrequencies in the complex plane for Config. 1 and Config. 2,
respectively. The circles and the solid lines are obtained respectively
by FEM and the coupled mode model for the corresponding 2D
structures sketched in the insets. The refractive index of the material
is 3.5. In Config. 1, a quarter of cavity c is modulated to have a varying
imaginary refractive index (from 0.031 to 0.06) which changes γ .
In Config. 2, the tuning of � is achieved by changing the inner
radius of the cavity b. The detailed structure parameters are given in
Appendix B.

In the PT -symmetric phase (� > �), the eigenmodes take
the same resonance frequency but different decay rates. For
� < �, the symmetry-broken eigenmodes take nondegenerate
resonance frequencies but exhibit the same decay rate. The
numerical verifications are shown in Figs. 4(c) and 4(d).
In Fig. 4(c), we consider Config. 1. As the decay rate of
mode c changes, the coupling rate � continuously varies,
and the evolution of the eigenfrequency ω̃± = ω̃′

± + iω̃′′
±

displays different trends before and after the EP (� = �). The
reversed evolution of the decay rate for one of the eigenmodes
(red curve) leads to loss-induced suppression and revival of
lasing, accompanied by a reversed trajectory to that of the
PT -symmetric Hamiltonian [31]. The dependence of the
eigenfrequency of Config. 2 on the detuning � is presented in
Fig. 4(d). In thePT -symmetric phase, increase of the detuning
does not split the resonance frequency of the two eigenmodes
but can significantly modulate the decay rates of these modes.
This effect can be used to turn a dispersive modulation to
a pure dissipative modulation of the cavity modes, with the
latter being crucial for some novel modulation schemes [32].
In the symmetry-broken phase, the dissipative coupling cannot
balance the large detuning, and the dispersive modulation
returns to its original role. Such dispersion-induced dissipation
effects do not appear in an ordinary non-Hermitian system,
where dispersive variation always simultaneously changes
refraction and loss.

Figure 5 shows the field distributions for the eigenmodes
of Config. 2. When � > �, one dark mode [Fig. 5(a)] and one
bright mode [Fig. 5(b)] with the same resonance frequency
are formed due to the preserved PT symmetry. The existence
of such a mode pair makes this system capable of imple-
menting the optical analogy of electromagnetically induced

FIG. 5. Field distributions of the eigenmodes for Config. 2. Panels
(a) and (b) show the two modes in the PT -symmetric phase with
�/� = 6.696, while panels (c) and (d) are for the symmetry-broken
phase with �/� = 0.79.

transparency (EIT) [33–36]. When � < �, the symmetry is
broken, and the two eigenmodes take the same coupling loss
but exhibit asymmetric field distributions [Figs. 5(c) and 5(d)].

To enhance the resolution of the EP, we propose to
probe the resonance structure by a time-domain measurement.
We consider the dynamical evolution of a short pulse in the
anti-PT -symmetric cavity system shown in Fig. 4(b). The
following analysis, however, is more general and is not limited
to this structure.

Transforming the equation of motion to the frame rotating
with the carrier frequency ω0 of the incident pulse d1(t) =
d̃1(t)e−iω0t , we obtain

i
d

dt

(
ã

b̃

)
=

(
� − δ − i(γi/2 + γ0) −iuγ0

−iuγ0 −� − δ − i(γi/2 + γ0)

)

×
(

ã

b̃

)
− i

√
γ0

(
d̃1

ud̃1

)
, (9)

where ã(t) = a(t)eiω0t , b̃(t) = b(t)eiω0t are the slowly varying
mode amplitudes, � = (ωa − ωb)/2 is the effective detuning
of the two cavities (assuming � > 0), and δ = ω0 − ω̄ is
set to be zero. With the input-output relations [37], the
transmitted amplitude d̃2(t) and the reflected amplitude d̃3(t)
are determined by

d̃2 = ud̃1 + u
√

γ0ã + √
γ0b̃, (10)

d̃3 = u
√

γ0b̃ + √
γ0ã. (11)

To obtain the anti-PT -symmetric Hamiltonian, we choose
u = 1, � = γ0. Then, by applying a Fourier transform to
Eq. (9) [e.g., ã[ω] = 1√

2π

∫ ∞
−∞ ã(t)eiωtdt], the transmission

and reflection coefficients are found to be given respectively
by

T [ω] = d̃2[ω]

d̃1[ω]
= 1 + c+

ω − ω̃+
+ c−

ω − ω̃−
, (12)

R[ω] = d̃3[ω]

d̃1[ω]
= c+

ω − ω̃+
+ c−

ω − ω̃−
, (13)
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where ω̃± = −i(γi/2 + �) ± (�2 − �2)1/2 are the eigenfre-
quencies of the model system, and c± are the excitation
coefficients of the supermodes given by

c± = −�(i
√

�2 − �2 ± �)√
�2 − �2

. (14)

Next, we consider the evolution of a Gaussian incident pulse
d̃1(t) = √

1/τ exp(−t2/τ 2) with its Fourier spectrum given by
d̃1[ω] = √

τ/2 exp(−ω2τ 2/4). As an example, we consider
the reflection amplitude d̃3(t), which is given by

d̃3(t) = 1√
2π

∫ ∞

−∞
d̃1[ω]R[ω]e−iωtdω. (15)

If the pulse duration is short enough to validate the condition
1/τ > max{|ω̃±|}, we can approximately set d̃1[ω] ≈ d̃1[0] =√

τ/2 and take it out of the integral in Eq. (15). Then, the
reflection amplitude is analytically expressed as

d̃3(t) ≈ √
πτ (c+e−iω̃+t + c−e−iω̃−t ). (16)

More generally, the pulse exhibits totally different dynam-
ics in different phases. In the PT -symmetric phase (� > �),
the reflection field amplitude given in Eq. (16) can be further
expressed as

d̃3(t) = �
√

πτ√
�2 − �2

[(� −
√

�2 − �2)e−γ−t

−(� +
√

�2 − �2)e−γ+t ], (17)

where γ± = γi/2 + � ± (�2 − �2)1/2 are the decay rates of
the supermodes. From Eq. (17), it can be found that the reflec-
tion signal contains two different decay rates, corresponding
to the bright (+) and dark (−) modes formed in the regime of
PT -symmetric phase. The amplitude of these two decaying
terms are different (|c+/c−| > 1) in this phase. The reflection
signal becomes zero at the time tc given by

tc = 1√
�2 − �2

ln[(�/�) +
√

(�/�)2 − 1]. (18)

When t < tc, the decay is dominated by e−γ+t , while the tail
of the signal decays like e−γ−t for t > tc.

In the PT -symmetry-broken phase (� < �), Eq. (16)
becomes

d̃3(t) = 2��
√

πτ√
�2 − �2

sin (
√

�2 − �2t − φ)e−(γi/2+�)t , (19)

where φ = tan−1 [(�/�)2 − 1]1/2. In this region, the super-
modes exhibit the same decay rate but different resonance
frequencies. Additionally, these two modes are always equally
excited (|c+/c−| = 1), which gives rise to the high-contrast
beat of the output signal described by Eq. (19). The beat
frequency is determined by 2(�2 − �2)1/2, and the oscillation
decays exponentially as exp[−(γi/2 + �)t].

The numerical results based on Eq. (15) are presented in
Fig. 6. It is clear that in the PT -symmetric phase [Fig. 6(a)],
the reflection signal (blue shaded area) first decays with the rate
of the bright mode (blue dotted curve), and then approaches
the evolution of the dark mode (red solid curve) after tc. In
the symmetry-broken phase [Fig. 6(b)], the two supermodes
are equally excited (the red and blue curves coincide), and

units of units of

FIG. 6. Evolution of the reflected signal d3 (blue shaded area) in
Config. 2 at (a) �/� = 2 and (b) �/� = 1/3. The red solid curves
and blue dashed curves represent the contributions of ω̃+ and ω̃−,
respectively. The results are obtained by numerical integration of
Eq. (15) with τ = 0.2�−1 (0.8 ps).

the high contrast beat [with a unit contrast ratio and a period
T = π/(�2 − �2)1/2] can be measured.

IV. INFLUENCE OF IMPERFECTIONS IN
ACTUAL SYSTEMS

Our proposed schemes can be realized in silicon photonic
systems [38] [generalizations of our 2D calculations to three-
dimensional (3D) strip waveguides and ring cavities are
straightforward]. The required dissipation can be included
either by absorption (chemical doping) or radiation loss (using
gratings), and the refractive index modulation can be achieved
by plasma dispersion [39] or the thermo-optic effect [40]. Here,
we consider several common experimental imperfections that
can influence the anti-PT symmetry model we study. We
show that the basic features of our model system are robust
with respect to small imperfections.

First, we consider the influence of unbalanced loss rates
of the modes. In the coupled waveguide system, when the
separation distance d1 between the waveguide a and c differs
from the distance d2 between that of b and c, for instance,
caused by fabrication error, the coupling rates κ1 and κ2

will become unequal. Consequently, modes a and b would
bear different loss rates �1 = |κ1|2/γ and �2 = |κ2|2/γ ,
respectively. For the cavity configurations discussed later, this
kind of imperfections also exist, e.g., the intrinsic loss rates of
the two cavities are simply different. The unequal decay rates
break the anti-PT symmetry of the diagonal elements of the
Hamiltonian. Taking the waveguide system as an example, the
effective Hamiltonian [see Eq. (2)] is then replaced by

H =
(

� − i�1 −i
√

�1�2

−i
√

�1�2 −� − i�2

)
, (20)

whose eigenvalues now become [defining � = (�1 + �2)/2]

β± = −i� ±
√

�2 − �2 − i(�1 − �2)�. (21)

In the ideal case, the mismatch between the eigen-
propagation constants, �β = (β+ − β−) is pure imaginary
in the PT -symmetric phase (� > �), real in the broken-
symmetry phase (� < �), and vanishes at the EP (� = �).
With imperfections, the eigen-propagation constants reduce to
β± = −i� ± 1−i√

2
(�2

1 − �2
2)1/2 at � = �, which suggests that

�β is composed of equal real and imaginary parts. Although
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FIG. 7. (a) Evolution of the effective indexes of refraction for the hybrid waveguide system [see Fig. 1(b)] in the complex plane. The
different values of μ = {0, − 0.10,0.09,0.23} result from setting (d2 − d1)/d1 = {0, − 0.02,0.02,0.05}, respectively (d1 is fixed to be 0.12λ0).
� is increased by increasing the refractive index of waveguide a. Panels (b) and (c) show the correspondingly changed splitting ratio for the
two cases considered in Figs. 2(a) and 2(b), respectively.

the eigenmodes do not exactly coalesce, the relaxation rate
|�β| is still low as long as |�1 − �2| is sufficiently small. In the
vicinity of the EP, the two phases are not well defined because
�β takes comparable real and imaginary parts. However,
deviating from the EP, especially for regions satisfying |(�2 −
�2)/�| � |�1 − �2|, �β exhibits a dominant imaginary part
for � > � and a dominant real part for � < �.

The specific features of the PT -symmetric phase as well
as the symmetry-broken phase (e.g., the transport properties)
are determined by �β. When |Re(�β)/Im(�β)| � 1, the
refractionless propagation is preserved because the high-loss
mode rapidly decays before it can effectively interfere with the
low-loss mode. For |Re(�β)/Im(�β)| � 1, the oscillation of
the mode amplitudes can still be observed because the am-
plitudes of two modes are comparable within the interference
length |1/|Re(�β)|. Thus, the basic features of the two phases
remain in systems with small imperfections.

The imperfections can influence the size of the avoided
crossing [2(�2

1 − �2
2)1/2] at the EP. In Fig. 7, we show the

eigenvalue trajectory and the splitting ratio in the presence of
unbalanced decay rates characterized by μ = (�1 − �2)/�.
As shown in Fig. 7(a), increase of the imperfections causes the
eigenvalue trajectories to gradually deviate from the perfect
case. The finite �β at μ = 0 is due to imperfections of the
off-diagonal elements of the Hamiltonian to be discussed
below. Figures 7(b) and 7(c) plot the splitting ratio for the
cases considered [see Figs. 2(a) and 2(b)] for different values
of μ. The basic transport properties are preserved despite
imperfections, the small difference being that the splitting ratio
converges to a number slightly larger or smaller than unity in
the symmetric phase and oscillates with a varying amplitude
in the broken-symmetry phase.

Next, we consider the influence of an imperfect anti-
Hermitian coupling term. As presented in the Appendix A, the
nonvanishing detunings �k1 and �k2 give rise to a Hermitian
component to the coupling Hamiltonian, which also occurs in
the first type of cavity Config. 1. For Config. 2, the imperfection
arises from the deviation of the optical path θ = k0neffL from
2nπ . Taking Config. 2 as an example and assuming a small
phase deviation θ = k0neff�L caused by fabrication error in

�L, the effective Hamiltonian then changes into

H =
(

� − iγ ′ −i|�|eiθ

−i|�|eiθ −� − iγ ′

)
, (22)

with the eigenfrequencies changed to

ω̃± = −iγ ′ ±
√

�2 − |�|2ei2θ . (23)

Similar to the waveguide system discussed above, the
characteristics of each phase are determined by the ra-
tio |Re(�ω)/Im(�ω)|, where �ω = ω+ − ω− denotes the
eigenfrequency mismatch. At the EP, �ω is approximately
given by 2(1 − i)

√
2θ , which yields |Re(�ω)/Im(�ω)| = 1.

Away from the EP, for regions satisfying |(�/�)2 − 1| �
θ , |Re(�ω)/Im(�ω)| approaches |θ/[(�/�)2 − 1]| � 1 for
� > � and approaches |[(�/�)2 − 1]/θ | � 1 for � < �.
Thus, the basic properties of the symmetric and broken-
symmetry phase, e.g., the evolution dynamics of an input short
pulse discussed in Sec. III, remains observable. Figure 8(a)
shows the eigenfrequency trajectories for different phase
deviation θ with all other parameters the same as in Fig. 4(d),
and Fig. 8(b) plots the ratio |Re(�ω)/Im(�ω)| versus |�/�|.

FIG. 8. Influence of the imperfections on the second type reso-
nance structure. (a) Evolution of the eigenfrequencies in the complex
plane. (b) The ratio |Re(�ω)/Im(�ω)| versus |�/�|. The parameters
are the same as in Fig. 4(d) except that L is changed to be L + �L.
Two different values of �L, 0.002a0 and 0.005a0, are considered,
respectively corresponding to θ = 0.036 rad and 0.089 rad, and are
compared with the case of an ultrasmall θ of 10−5 rad.

053845-6



ANTI-PT SYMMETRY IN DISSIPATIVELY . . . PHYSICAL REVIEW A 96, 053845 (2017)

We find that the sharpness of the ratio around the EP
decreases rapidly as |θ | increases. For actual experimental
implementations, current silicon-based fabrication technology
can reduce the fabrication error �L to several nanometers,
which is sufficient for observing the interesting features we
predict in the two phases.

V. CONCLUSION

We show that anti-PT symmetry can be implemented
by using dissipative couplings in linear optical systems. The
existence of such a symmetry can induce a spontaneous phase
transition for the photonic eigenmodes. We illustrate several
interesting features endowed by the constant refraction in the
PT -symmetric phase, such as a flat broadband mode filtering
and dispersion induced dissipation. Further explorations can
address interesting behavior of amplification and lasing when
suitable gain mechanisms are introduced.

ACKNOWLEDGMENTS

This work is supported by the MOST 2013CB922004 of the
National Key Basic Research Program of China and by NSFC
(Grants No. 11374176, No. 91421305, No. 11654001, No.
11674390, and No. 91736106). F. Yang acknowledges helpful
discussions with Prof. X. S. Jiang of Nanjing University and
F. H. Yang of Peking University.

APPENDIX A: ADIABATIC ELIMINATION

In the coupled waveguide system [see Fig. 1(a) in the main
text] and the Config. 1 coupled cavity system [see Fig. 4(a)
in the main text], the dissipative coupling originates from the
adiabatic elimination of the auxiliary lossy mode. The detailed
derivation is provided below.

We use the coupled waveguide system shown in Fig. 1(a)
as an example. With the coupled-mode theory, the equations
of motion for the model read

da

dz
= −ik′

aa − iκ1c, (A1)

db

dz
= −ik′

bb − iκ2c, (A2)

dc

dz
= −ik′

cc − γ c − iκ∗
1 a − iκ∗

2 b, (A3)

where k′
m = km + κmm (κmm = 1

4

∫∫
�εm|Em|2dxdy, m = a,

b, c) is the modified propagation constant of the mode m,
κ1/2 = 1

4

∫∫
�εcE∗

a/b · Ecdxdy is the coupling coefficient of
mode a/b with mode c, and γ is the decay constant of the
auxiliary lossy mode c. The transversal field of each mode is
normalized as km

2k2
0

∫∫ |Em|2dxdy = 1. The equations for the

slowly varying amplitudes ã, b̃, c̃ are then given by

dã

dz
= −iκ1c̃e

i�k1z, (A4)

db̃

dz
= −iκ2c̃e

i�k2z, (A5)

dc̃

dz
= −γ c̃ − iκ∗

1 ãe−i�k1z − iκ∗
2 b̃e−i�k2z, (A6)

where �k1 = k′
a − k′

c, and �k2 = k′
b − k′

c. The solution of
Eq. (A6) can be formally expressed as

c̃(z) = − iκ∗
1

∫ z

0
dz′ã(z′)e−i�k1z

′
e−γ (z−z′)

− iκ∗
2

∫ z

0
dz′b̃(z′)e−i�k2z

′
e−γ (z−z′), (A7)

where the term c̃(0) at the entrance-associated mode c is taken
to be zero. The exponential kernel e−γ (z−z′) in the integrand
will decay to zero as z′ deviates significantly from z. Thus,
the lower limit of the integral can be chosen as z − α/γ if
we take e−α � 0. If the decay rate of mode c is large enough
and satisfies γ � |κ1|, |κ2|, then, from Eqs. (A4) and (A5), we
know that the changes of mode a and mode b are small within
the range α/γ of the integration. Then, we can set a(z′) ≈ a(z),
b(z′) ≈ b(z), and take them out of the integral in Eq. (A7) to
arrive at

c̃(z) ≈ − iκ∗
1 ã(z)

∫ z

z−α/γ

dz′e−i�k1z
′
e−γ (z−z′)

− iκ∗
2 b̃(z)

∫ z

z−α/γ

dz′e−i�k2z
′
e−γ (z−z′)

≈ −iκ∗
1

γ − i�k1
ã(z)e−i�k1z + −iκ∗

2

γ − i�k2
b̃(z)e−i�k2z. (A8)

Substituting Eq. (A8) into Eqs. (A4) and (A5), we adiabatically
eliminate mode c. The corresponding equations of motion for
mode a and b then reduce to

da

dz
=

(
−ik′

a − |κ1|2
γ − i�k1

)
a − κ1κ

∗
2

γ − i�k2
b, (A9)

db

dz
=

(
−ik′

b − |κ2|2
γ − i�k2

)
b − κ∗

1 κ2

γ − i�k1
a, (A10)

which facilitates the construction of the anti-PT -symmetric
Hamiltonian if the following conditions are satisfied: |κ2| ≈
|κ1| = |κ|, and γ � |�k1/2|. We then obtain

i
d

dz

(
a

b

)
=

(
k̄ + � − i� −i�

−i� k̄ − � − i�

)(
a

b

)
, (A11)

where k̄ = (k′
a + k′

b)/2, � = (k′
a − k′

b)/2 ≈ (ka − kb)/2, and
� = |κ|2/γ . This gives Eqs. (1) and (2) in the main text.

As discussed above, the condition for adiabatic elimination
is γ � |κ|. Thus, to check for the validity of this approxi-
mation, we introduce an adiabatic parameter ξ = |κ|/γ , and

units of units of

FIG. 9. Comparison between the calculations with (solid curves)
and without (circles) adiabatic elimination. Panels (a) and (b) compare
different values of ξ at the same ratio of �/� = 4.
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compare solutions from solving our model system with and
without adiabatic elimination.

The numerical results are presented in Fig. 9. The circles
are obtained by solving the rigorous coupled-mode equations
[Eqs. (A1)–(A3)], while the solid lines are obtained with
adiabatic elimination [Eqs. (A9) and (A10)]. From Fig. 9(a),
we find, as expected, that when ξ is small enough (ξ < 0.2), the
adiabatic elimination represents a good approximation. When
ξ becomes larger [Fig. 9(b)], the evolution of the lossy mode c

does not quite follow the instantaneous states of a and b, and
the adiabatic elimination becomes less accurate.

APPENDIX B: STRUCTURE PARAMETERS OF CAVITY
CONFIGURATIONS

The calculations for the optical cavity realization section
are based on the 2D structures shown in the inset of Figs. 4(c)
and 4(d) in the main text. These structures are designed to

achieve resonance at telecommunication wavelengths. For
Config. 1, the inner radius R and the width w of the cavity
a and c are R = 0.377a0 and w = 0.140a0 (a0 = 1.55 μm),
respectively. The width of the waveguide is designed to be
the same as the cavity for both configurations. Cavity b has
a smaller inner radius of R′ = R − 3 × 10−4w, which can be
used for fine detuning. The distance is 0.280a0 between the
waveguide and the cavity, 0.380a0 between the cavity a (b)
and cavity c, and 1.502a0 between the cavity a and b. The
imaginary refractive index of the modulated region changes
from 0.031 to 0.06 to gradually increase the loss rate of cavity
c. In the case of Config. 2, the inner radius and the width of
cavity a are the same as those of Config. 1. The distance is
0.140a0 between the cavity and the waveguide, and is L =
2.477a0 (which makes θ = 14π around the 1.55 μm telecom
wavelength) between the centers of the two cavities. The inner
radius of cavity b is changed (from R to R − 0.005w) to
increase the detuning � (from zero to 1.413�).

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[2] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[3] E. M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. Lett.

101, 150408 (2008).
[4] G. L. Celardo and L. Kaplan, Phys. Rev. B 79, 155108 (2009).
[5] I. Rotter, J. Phys. A: Math. Theor. 42, 153001 (2009).
[6] V. V. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys.

88, 035002 (2016).
[7] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[8] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

[9] S. Longhi, Phys. Rev. A 82, 031801 (2010).
[10] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,

093902 (2011).
[11] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen,

Y. Fainman, and A. Scherer, Science 333, 729 (2011).
[12] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S.

Rotter, Phys. Rev. Lett. 108, 173901 (2012).
[13] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,

D. N. Christodoulides, and U. Peschel, Nature (London) 488,
167 (2012).

[14] N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M.
Vinokur, Phys. Rev. Lett. 109, 150405 (2012).

[15] B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).

[16] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G.
Wang, and M. Xiao, Nat. Photon. 8, 524 (2014).

[17] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Science
346, 972 (2014).

[18] J.-Y. Lien, Y.-N. Chen, N. Ishida, H.-B. Chen, C.-C. Hwang,
and F. Nori, Phys. Rev. B 91, 024511 (2015).

[19] A. Cerjan, A. Raman, and S. Fan, Phys. Rev. Lett. 116, 203902
(2016).

[20] Z.-P. Liu, J. Zhang, K. Özdemir, B. Peng, H. Jing, X.-Y. Lü,
C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu, Phys. Rev. Lett. 117,
110802 (2016).

[21] V. Yannopapas, New J. Phys. 14, 113017 (2012).
[22] V. Yannopapas, Phys. Rev. A 89, 013808 (2014).
[23] L. Ge and H. E. Türeci, Phys. Rev. A 88, 053810 (2013).
[24] J.-H. Wu, M. Artoni, and G. C. La Rocca, Phys. Rev. Lett. 113,

123004 (2014).
[25] D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov,

Opt. Lett. 40, 4575 (2015).
[26] P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao,

Nat. Phys. 12, 1139 (2016).
[27] K. Fang, Z. Yu, and S. Fan, Phys. Rev. Lett. 108, 153901 (2012).
[28] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern

Communications (Oxford University Press, 2007).
[29] J. Leuthold, R. Hess, J. Eckner, P. Besse, and H. Melchior,

Opt. Lett. 21, 836 (1996).
[30] Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong,

Phys. Rev. A 82, 065804 (2010).
[31] B. Peng, Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi,

C. Bender, F. Nori, and L. Yang, Science 346, 328 (2014).
[32] Y.-C. Liu, Y.-F. Xiao, X. Luan, and C. W. Wong, Phys. Rev. Lett.

110, 153606 (2013).
[33] L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko,

Opt. Lett. 29, 626 (2004).
[34] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M.

Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[35] Q. Xu, P. Dong, and M. Lipson, Nat. Phys. 3, 406 (2007).
[36] Y.-C. Liu, B.-B. Li, and Y.-F. Xiao, Nanophotonics 6, 789

(2017).
[37] C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin,

2004).
[38] D. J. Lockwood and L. Pavesi, Silicon Photonics II (Springer,

Berlin, 2011).
[39] R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123

(1987).
[40] G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).

053845-8

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevB.79.155108
https://doi.org/10.1103/PhysRevB.79.155108
https://doi.org/10.1103/PhysRevB.79.155108
https://doi.org/10.1103/PhysRevB.79.155108
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevLett.109.150405
https://doi.org/10.1103/PhysRevLett.109.150405
https://doi.org/10.1103/PhysRevLett.109.150405
https://doi.org/10.1103/PhysRevLett.109.150405
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1103/PhysRevB.91.024511
https://doi.org/10.1103/PhysRevB.91.024511
https://doi.org/10.1103/PhysRevB.91.024511
https://doi.org/10.1103/PhysRevB.91.024511
https://doi.org/10.1103/PhysRevLett.116.203902
https://doi.org/10.1103/PhysRevLett.116.203902
https://doi.org/10.1103/PhysRevLett.116.203902
https://doi.org/10.1103/PhysRevLett.116.203902
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1088/1367-2630/14/11/113017
https://doi.org/10.1088/1367-2630/14/11/113017
https://doi.org/10.1088/1367-2630/14/11/113017
https://doi.org/10.1088/1367-2630/14/11/113017
https://doi.org/10.1103/PhysRevA.89.013808
https://doi.org/10.1103/PhysRevA.89.013808
https://doi.org/10.1103/PhysRevA.89.013808
https://doi.org/10.1103/PhysRevA.89.013808
https://doi.org/10.1103/PhysRevA.88.053810
https://doi.org/10.1103/PhysRevA.88.053810
https://doi.org/10.1103/PhysRevA.88.053810
https://doi.org/10.1103/PhysRevA.88.053810
https://doi.org/10.1103/PhysRevLett.113.123004
https://doi.org/10.1103/PhysRevLett.113.123004
https://doi.org/10.1103/PhysRevLett.113.123004
https://doi.org/10.1103/PhysRevLett.113.123004
https://doi.org/10.1364/OL.40.004575
https://doi.org/10.1364/OL.40.004575
https://doi.org/10.1364/OL.40.004575
https://doi.org/10.1364/OL.40.004575
https://doi.org/10.1038/nphys3842
https://doi.org/10.1038/nphys3842
https://doi.org/10.1038/nphys3842
https://doi.org/10.1038/nphys3842
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1364/OL.21.000836
https://doi.org/10.1364/OL.21.000836
https://doi.org/10.1364/OL.21.000836
https://doi.org/10.1364/OL.21.000836
https://doi.org/10.1103/PhysRevA.82.065804
https://doi.org/10.1103/PhysRevA.82.065804
https://doi.org/10.1103/PhysRevA.82.065804
https://doi.org/10.1103/PhysRevA.82.065804
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1364/OL.29.000626
https://doi.org/10.1364/OL.29.000626
https://doi.org/10.1364/OL.29.000626
https://doi.org/10.1364/OL.29.000626
https://doi.org/10.1103/PhysRevLett.96.123901
https://doi.org/10.1103/PhysRevLett.96.123901
https://doi.org/10.1103/PhysRevLett.96.123901
https://doi.org/10.1103/PhysRevLett.96.123901
https://doi.org/10.1038/nphys600
https://doi.org/10.1038/nphys600
https://doi.org/10.1038/nphys600
https://doi.org/10.1038/nphys600
https://doi.org/10.1515/nanoph-2016-0168
https://doi.org/10.1515/nanoph-2016-0168
https://doi.org/10.1515/nanoph-2016-0168
https://doi.org/10.1515/nanoph-2016-0168
https://doi.org/10.1109/JQE.1987.1073206
https://doi.org/10.1109/JQE.1987.1073206
https://doi.org/10.1109/JQE.1987.1073206
https://doi.org/10.1109/JQE.1987.1073206
https://doi.org/10.1049/el:19920051
https://doi.org/10.1049/el:19920051
https://doi.org/10.1049/el:19920051
https://doi.org/10.1049/el:19920051



