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Optical quantum protocols are reliant on the production of highly pure single photons. However, most
parametric heralded single-photon sources possess spectral correlations, limiting the purity of the produced
photon. The most common method for restoring the purity is with narrowband spectral filtering, which comes at
the cost of reducing the rate of heralding detection. Here, we characterize this trade-off analytically for a large
class of parametric sources. It is possible to achieve up to 20% heralding success probabilities with 90% heralded
photon purities.
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I. INTRODUCTION

Many optical quantum protocols would benefit from the
use of highly pure single photons, produced on-demand at
high rates. Presently there is no widespread source which
fulfills this role, but the most mature platform for producing
these photons is heralded single-photon sources [1–6], which
produce pairs of photons (“biphotons”) in nonlinear materials
through parametric processes, including spontaneous para-
metric down-conversion (SPDC) and spontaneous four-wave
mixing (SFWM). One of these photons is detected, “heralding”
the presence of the other. These sources have many desirable
properties, including high brightness and the ability to be
integrated into existing optical technologies. Furthermore, we
can draw on over 50 years of nonlinear optics research when
designing these sources. This makes them promising sources
for larger-scale quantum information science experiments.

However, parametric sources of photon pairs also typically
possess strong spectral correlations. Because this introduces
classical uncertainty as to the spectral mode of the heralded
single photon, the photon’s purity is diminished. This limits the
utility of such a source, as the quantum interference between
independent heralded photons is consequently reduced. It
is possible to engineer parametric sources to reduce these
correlations [7–16]; however this can be challenging to
implement. The most common and convenient solution is to
take an existing source and add a narrowband filter to the
heralding arm [17–21], which suppresses the correlations at
the expense of the rate at which photons are detected. Any
means to optimize this compromise is desirable.

Previous studies have considered increasing single-photon
purities through filtering, in the spatial domain [22] suited to
bulk sources as well as in the spectral domain [23–27] more
often considered for integrated sources. Similar techniques
can be used to optimize two-photon states for squeezing [28].
However, these studies have not fully explored the photon
pair spectral correlation space, are not always well-connected
to experiments, and tend to examine the problem through a
single lens.
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In this work, we build upon these previous efforts and cal-
culate analytical expressions for several important quantities,
focusing on the spectral regime most relevant to integrated
single-mode waveguide sources. In particular, we develop
two methods for calculating the purity of the single photon
resulting from detecting a filtered herald photon, as well as the
probability of detecting said herald. Additionally, we calculate
the shape of the Hong-Ou-Mandel (HOM) interference dip
resulting from the interference of two such photons. In
Sec. II, we introduce our general formalism and present a
method relying on direct integration over the biphoton state.
This method lends itself well to finding analytical results
and making direct connections between the aforementioned
quantities and the physical parameters of the state. In Sec. III
we present a second method working in the spectral mode
basis, utilizing the Schmidt decomposition [29]. This second
method illuminates the underlying multimode physics. Using
these results, in Sec. IV we explore the parameter space of
a certain class of biphoton states and filters. We demonstrate
that, even for intial states with low purities, favorable trade-offs
between the purity and the heralding success probability are
achievable after filtering. We also suggest alternate schemes
for increasing the purity of heralded photons that do not rely
on filtering.

II. DEFINITIONS AND DIRECT INTEGRATION METHOD

A. Biphotons

Parametric photon sources are spectrally multimode in
nature, and as such any accurate description of their output
states must also be multimode. These sources, such as the
idealized ones shown in the dashed boxes in Fig. 1, have
output states comprised mostly of vacuum, with some higher-
order components including the two-photon component we
are primarily concerned with. When the photons in the pair
produced by the source can be discriminated in some degree
of freedom (for example, polarization), the pair state can be
expressed as

|II〉A =
∫

dωdω′�(ω,ω′)â†
X(ω)â†

X̃
(ω′)eiωτX |vac〉 . (1)

The phase term corresponds to a temporal delay τX between
spatially distinct modes X and X̃, which becomes relevant
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FIG. 1. A diagrammatic representation of a two-photon inter-
ference experiment. Here â

†
i are creation operators corresponding

to mode i = (X,X̃,Y,Ỹ ,Z,W ). The area within each dashed box
indicates a single heralded photon source, labeled A or B, with a time
delay of τi on the heralded arm. The shaded boxes on the heralded
arms represent spectral filters. The inset image above the left source
gives a typical example of the frequency correlations between signal
and idler photons.

when we consider HOM interference. The joint spectral
amplitude (JSA) �(ω,ω′) incorporates the multimode nature
of the photon pair production. To allow for the consistent
interpretation of the JSA as a probability amplitude we
require

∫
dωdω′|�(ω,ω′)|2 = 1. Often the JSAs associated

with parametric processes such as SPDC and SFWM are highly
correlated in frequency, as seen in the top of the left dashed
box in Fig. 1. A heralded single photon generated from such a
correlated state will have low purity, due to its projection into
a mixture of frequency modes upon the detection of the herald
photon [23]. Without any spectral filtering, this purity is given
by [30]

P = Tr [(|I〉A 〈I|A)2]

=
∫

dωdω′dω′′dω′′′�(ω,ω′)�∗(ω′′,ω′)

× �∗(ω,ω′′′)�(ω′′,ω′′′), (2)

where

|I〉A 〈I|A = TrX̃[|II〉A 〈II|A]. (3)

When correlations are present, P < 1. Spectral filtering can
restore the purity.

B. Heralding with filters

In order to quantify the effects of filtering, we must first
model a filter. We consider a filter as a frequency selective
beam splitter, with transmittance tX̃(ω) and reflectance rX̃(ω).
Transmitted photons are those that make it to the detector, and
the reflected photons are discarded. Then the measurement

operator for the herald photon is given by

F̂X̃ =
∫

dω|tX̃(ω)|2â†
X̃

(ω) |vac〉〈vac| âX̃(ω), (4)

where the transmission is given by |tX̃(ω)|2. Conditioned on
the photon in mode X̃ being successfully detected, the reduced
state is

ρ̂X = 1

S TrX̃[|II〉A 〈II|A F̂X̃]

= 1

S

∫
dωdω′dω′′|tX̃(ω′)|2�(ω,ω′)�∗(ω′′,ω′)

× â
†
X(ω) |vac〉〈vac| âX(ω′′)ei(ω−ω′′)τX (5)

The normalization constant S corresponds to the probability
of a successful herald detection, which is found by the
requirement that Tr [ρ̂X] = 1, giving

S =
∫

dωdω′|tX̃(ω′)|2|�(ω,ω′)|2. (6)

The heralded single-photon purity is then simply

P = Tr
[
ρ̂2

X

]
= 1

S2

∫
dωdω′dω′′dω′′′|tX̃(ω′)|2|tX̃(ω′′′)|2

× �(ω,ω′)�∗(ω′′,ω′)�∗(ω,ω′′′)�(ω′′,ω′′′). (7)

In the limit where the filter has perfect transmission over the
spectral band of the photon (e.g., |tX̃(ω)|2 = 1), this reduces
simply to the unfiltered purity found in Eq. (2), P = P ,
and S = 1. For a sufficiently narrowband filter, P → 1.
However, in this limit, S → 0 (in Sec. III we provide a
Schmidt-mode perspective on these limits). In Sec. IV, we
address the question of whether there exists a regime between
these limits which allows for the useful operation of the
source.

C. Hong-Ou-Mandel interference

As purities are often characterized in two-photon in-
terference experiments, it is useful to consider a HOM
setup as shown in Fig. 1. Two identical sources A and B

generate biphotons |II〉A and |II〉B , such that the initial state
is

ρ̂in = |II〉A 〈II|A ⊗ |II〉B 〈II|B . (8)

Detecting the herald photons corresponding to â
†
X̃

(ω) and

â
†
Ỹ

(ω) leaves the system in the space spanned by mode

operators â
†
X(ω) and â

†
Y (ω), appropriate for HOM interference.

If there are strong spectral correlations between the herald
and heralded photons, the resulting interference visibility
will be poor due to the low heralded photon purity. For
a beam splitter with reflection R and transmission T (in-
dependent of frequency), this visibility is given simply by
V = RT P/[1 − (2 + P )RT ] [31], where P is the unfiltered
purity found in Eq. (2). How does this expression change when
we consider filtering?
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When both photons are successfully heralded when filtered,
the resulting reduced state is

ρ̂XY =S−1
X̂

S−1
Ŷ

TrX̃Ỹ

[
ρ̂inF̂X̃F̂Ỹ

]
=S−1

X̂
S−1

X̂

∫
dωX̃dωỸ dω1dω2dω′

1dω′
2

× |tX̃(ωX̃)|2�(ω1,ωX̃)�∗(ω′
1,ωX̃)

× |tỸ (ωỸ )|2�∗(ω′
2,ωỸ )�(ω2,ωỸ )

× â
†
X(ω1)â†

Y (ω2) |vac〉〈vac| âX(ω′
1)âY (ω′

2)

× eiτX(ω1−ω′
1)+iτY (ω2−ω′

2), (9)

where Si is given by Eq. (6) for the appropriate filter function
ti(ω). As we are interested in HOM interference dips, we
perform the beam-splitter transformation,

â
†
X(ω) → t â

†
W (ω) + râ

†
Z(ω), (10)

â
†
Y (ω) → r ′â†

W (ω) + t â
†
Z(ω), (11)

where r and r ′ are reflectances and t is the transmittance.
We note that while |r| = |r ′|, they have different phases. The
output state is transformed as ρ̂XY → ρ̂WZ . The probability of
detecting a photon at both output arms (a coincidence) is given
by

〈n̂Zn̂W 〉 = Tr [ρ̂ZW n̂Zn̂W ]

= 1 − 2RT

(
1 + S−2

∫
dωX̃dωỸ dωW dωZ

× |tX̃(ωX̃)|2|tỸ (ωỸ )|2�(ωW,ωX̃)�∗(ωZ,ωX̃)

× �∗(ωW,ωỸ )�(ωZ,ωỸ )ei(ωW −ωZ )(τX−τY )

)
, (12)

where R = |r|2 and T = |t |2 are the reflection and transmis-
sion coefficients, and the total number operator is

n̂i =
∫

dωâ
†
i (ω)âi(ω). (13)

Equation (12) describes the shape of the HOM interference
dip as a function of temporal delay �τ = τX − τY . In the
appropriate limits [for identical filters tX̃(ω) = tỸ (ω)], this
equation becomes

〈n̂Zn̂W 〉�τ→0 = 1 − 2RT (1 + P), (14)

〈n̂Zn̂W 〉�τ→∞ = 1 − 2RT, (15)

and so we can express the visibility of the HOM interference
fringe as

V ≡ 〈n̂Zn̂W 〉�τ→∞ − 〈n̂Zn̂W 〉�τ→0

〈n̂Zn̂W 〉�τ→∞ + 〈n̂Zn̂W 〉�τ→0

= RTP
1 − (2 + P)RT

. (16)

This has the same form as the unfiltered case, only with the
heralded single-photon purity accounting for the filtering, and
P � P .

FIG. 2. A cartoon of a double-Gaussian JSA, with the parameters
(σ1, σ2, θ1, θ2) labeled. Here σ1 and σ2 denote the widths of their
respective Gaussians, oriented at θ1 and θ2.

D. Analytical expressions

In this section, we develop closed form expressions for
the purity P , the heralding success probability S, and the
two-photon interference visibility V .

Most JSAs have the form �(ω,ω′) ∝ φ(ω + ω′)
sinc(�kL/2), where φ(ω) is the pump’s spectral envelope and
the sinc function accounts for phase matching. We approximate
JSAs of this form as double-Gaussians,

�(ω,ω′)

=
√

|sin(θ1 − θ2)|
πσ1σ2

exp

[
−

(
ω sin θ1 + ω′ cos θ1√

2σ1

)2
]

× exp

[
−

(
ω sin θ2 + ω′ cos θ2√

2σ2

)2
]
. (17)

In this approximation, σ1 and σ2 are the widths of their re-
spective Gaussians, and θ1 and θ2 are their orientations, where
θ1 �= θ2. A diagrammatic representation of these parameters
can be found in Fig. 2. Although this approximation does not
account for the lobes generated by the sinc phase-matching
term, it is nonetheless a fair approximation for many JSAs
[28,30,32].

If the filter is Gaussian,

|tX̃(ω)|2 = exp
[−(ω − ω0)2/

(
2σ 2

f

)]
, (18)

where ω0 is the center frequency of the transmission filter
and σf is the filter bandwidth, then we can find closed form
expressions for the purity and heralded success probability.
We have

S =
√

2σ 2
f ε−1 sin2 (θ1 − θ2) exp

[
−ω2

0 sin2 (θ1 − θ2)

ε

]
(19)

and

P =
√

σ 2
1 σ 2

2 ζ

2
(
2σ 2

2 σf 2 cos2 θ1 + σ 2
1 ξ

)(
σ 2

1 sin2 θ2 + σ 2
2 sin2 θ1

) ,

(20)
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where

ε = σ 2
1 sin2 θ2 + σ 2

2 sin2 θ1 + 2σ 2
f sin2 (θ1 − θ2), (21)

ζ = σ 2
1 + σ 2

2 2σ 2
f − σ 2

1 cos (2θ2) − σ 2
2 cos (2θ1)

−2σ 2
f cos [2(θ1 − θ2)], (22)

and

ξ = σ 2
2 + 2σ 2

f cos2 θ2. (23)

Finally, when the filters on both sources are identical, we can
express the HOM dip analytically as

〈n̂W n̂Z〉

= 1 − 2RT

(
1 + P exp

[
− �τ 2σ 2

1 σ 2
2

2
(
σ 2

1 sin2 θ2 + σ 2
2 sin2 θ1

)])
.

(24)

We note that although the visibility as given by Eq. (16)
depends on the filter width through P , the shape of the HOM
dip as shown in Eq. (24) is otherwise independent of the filter
width. This says that while the depth of the HOM dip depends
on the filter width, the width (e.g., full-width at half-depth) of
the HOM dip does not change. This occurs as the heralding
spectral filter does not change the characteristic width of the
JSA along the ω (rather than ω′, see Fig. 2) axis, which the
heralded photon inherits. In the case where a spectral filter is
present on the heralded arm, the inherited spectrum of the
heralded photon does change and thus so do its temporal
properties (e.g., a narrower spectral filter yields a wider HOM
dip). The expressions for the purity in Eq. (7) and the heralding
success probability in Eq. (6) have a closed form in terms of
the parameters of the double-Gaussian and the filter.

This method has provided us with analytical results of great
utility. However, the details of the underlying physics are not
clear with the integral approach.

III. A SCHMIDT MODE PERSPECTIVE

In order to tease out the multimode physics inherent to
parametric photon sources, we now take an alternate approach
to analyze the heralded single-photon purity P and the
detection probability S. This method requires that we take
the Schmidt decomposition of the JSA. This decomposition is
expressed as

�(ω,ω′) =
∑

μ

pμ�μ(ω)�μ(ω′), (25)

where the Schmidt functions �μ and �μ correspond to the
spectral modes that constitute the JSA and form a complete
and orthonormal basis (see the Appendix for details). The
Schmidt coefficients are strictly positive and must satisfy∑

μ

pμ = 1, (26)

and furthermore the unfiltered purity [recalling Eq. (2)] is
related simply to the Schmidt number K through

P = 1/K ≡
∑

μ

p2
μ. (27)

Equations (25) and (27) make it clear that when the JSA is
separable (i.e., can be expressed as a product of two functions),
the Schmidt decomposition contains a single term (pμ = δμ,1)
and so P = K = 1. In all other cases, P < 1 and K > 1.
Note that when the probability of pair production is small, the
Schmidt number is also connected with the time-independent
second-order correlation function [32] g(2) = 1 + 1/K . When
the JSA is uncorrelated (separable), we should expect g(2) = 2.

By direct substitution into Eqs. (7) and (6) the purity and
the heralding detection probability are given by

P = 1

S2

∑
μν

∣∣Qμν

∣∣2
pμpν, (28)

S =
∑

μ

Qμμpμ, (29)

where the overlaps with the filter and the Schmidt functions,

Qμν =
∫

dω|tX̃(ω)|2�μ(ω)�∗
ν(ω), (30)

provide a measure of the degree of mode mixing introduced by
the filter—the filter removes the orthonormality of the Schmidt
modes. In this formulation, it is easy to see that when the filter
has perfect transmission over the band of the photon [e.g.,
|tX̃(ω)|2 = 1], the overlaps reduce to Qμν = δμ,ν , and thus the
purity reduces to the unfiltered form P = ∑

μ p2
μ, and S = 1.

For a sufficiently narrowband filter, P → 1. However, in this
limit, S → 0, making the use of such a filter impractical.

With the Schmidt decomposition the shape of the HOM dip
is

〈n̂Zn̂W 〉 = 1 − 2RT

(
1 + S−2

∑
μνμ′ν ′

Qμμ′Qνν ′

× √
pμpνpμ′pν ′

∫
dωWdωZ�∗

μ′(ωW )�ν(ωW )

× �∗
ν ′(ωZ)�μ(ωZ)ei(ωW −ωZ)(τX−τY )

)
. (31)

This makes it eminently clear that the shape of the HOM dip
cannot depend on the width of the filter, which only appears
in the overlaps Qμν , whereas the width of the HOM dip is
determined by the integrals in Eq. (31). Another advantage of
these expressions is how easily they are evaluated numerically.
Whilst the Schmidt coefficients and functions can be found
analytically for double-Gaussian JSAs (see the Appendix), we
note that they can always be found numerically from a singular
value decomposition (SVD) of a discretized JSA.

IV. RESULTS AND DISCUSSION

A. Filtering double-Gaussians

Using these analytical results, we now explore the pa-
rameter space of double-Gaussian JSAs [recall Eq. (17)]
(σ1, σ2, θ1, θ2) and Gaussian filter widths σf . In Fig. 3, we
consider the trade-off between the heralded single-photon
purity P and the probability of successful herald detection
S for a set orientation (θ1 = π/4, θ2 = −π/4), with varying
aspect ratios (σ2/σ1) and normalized filter widths (σf /σ1).
As expected from Eqs. (17) and (20), P = 1 for any filter
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FIG. 3. (a) The heralded single-photon purity P for a JSA with
a varying aspect ratio (σ2/σ1) and normalized filter widths (σf /σ1).
(b) The heralding success probability S for a JSA with a varying
aspect ratio and normalized filter widths. In this figure, θ1 = π/4,
θ2 = −π/4, and σ1 = 1.

if σ2/σ1 = 1 as there is only a single Schmidt mode, and
P → 1 as σf /σ1 → 0. Something that is not clear directly
from Eqs. (7) and (6) is that high purities P > 0.9 can be
achieved for successful detection probabilities of S ∼ 0.2,
even for aspect ratios as high as 6. This is illustrated in
Fig. 4. Similarly, we can choose an aspect ratio (for Fig. 5,
σ2/σ1 = 5), set θ2 = θ1 − π/2 and vary the orientation of the
JSA. Generally we do not require θ1 + θ2 = π/2; however this
restriction makes the parameter space easier to examine. In the
case where θ1 = 0 and π/2 (i.e., the JSA is oriented vertically
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FIG. 4. The trade-off between heralded single-photon purity and
efficiency for several aspect ratios (A.R. = σ2/σ1). We note that up
to σf /σ1 ≈ 6, high purities P > 0.9 can be achieved for S ∼ 0.2.
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FIG. 5. (a) The heralded single-photon purity P for a JSA with
varying orientation (θ1 with θ2 = θ1 − π/2) and normalized filter
widths (σf /σ1). (b) The heralding success probability S for a JSA
with varying orientation and normalized filter widths. In this figure,
σ2 = 5 and σ1 = 1.

or horizontally), we find that P = 1 for any filter width, as the
Schmidt decomposition only has a single term. Outside this
regime, we again discover that heralded single photons of high
purity P > 0.9 are available for S ∼ 0.2, as seen in Fig. 6. We
note that the high S in Fig. 5(b) near θ1 = 0 is the result of
the long axis of the JSA being perpendicular to the Gaussian
filter. As a result, not as much light is filtered out as compared
with JSAs of other orientations, leading to a higher heralding
success probability.
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FIG. 6. The trade-off between heralded single-photon purity and
efficiency for several orientations. We note that, for orientations
between 0.25π and 0.42π , high purities P > 0.9 can be achieved
for S ∼ 0.2.
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FIG. 7. A double-Gaussian JSA with parameters (σ1,σ2,θ1,θ2) =
(6.0 ps−1, 0.70 ps−1, π/4 rad, 0.97 rad), corresponding to the source
in Ref. [23].

Given a heralded photon source, one application of these
results is the selection of an appropriate filter to enable
highly pure heralded single-photon generation at a reasonable
rate. For example, we consider the source from Ref. [23],
a periodically poled potassium titanyl phosphate waveguide.
The waveguide is pumped at ωp = 2πc/(400 nm), with a pulse
duration of τ = 0.2 ps). The phase-matching bandwidth is

�ωpm

2π
= sπ−1L−1√[

k′
β

(
ωp

) − k′
γ

(ωp

2

)]2 + [
k′
β

(
ωp

) − k′
γ

(ωp

2

)]2

= 0.13 THz, (32)

where s ≈ 1.392 is the first root of sinc2(x) = 1/2, and kβ,γ (ω)
are dispersion relations. Here k′

β,γ (ωi) = dkβ,γ (ω)
dω

|ω=ωi
. The

phase-matching angle is

θpm = arctan

[
k′
β(ωp) − k′

γ

(ωp

2

)
k′
β(ωp) − k′

γ

(ωp

2

)]
= 0.97 rad. (33)

We now relate these physical quantities to the
parameters of the double-Gaussian. The connections are
(σ1,σ2,θ1,θ2) = (�ωp/

√
ln 2,�ωpm/

√
ln 2,θp,θpm), where

θp = π/4 is the angle of the pump in the spectral domain
as determined by energy conservation, and we note that
�ωp = 1/τ is the pump bandwidth (related to this we
define σp ≡ �ωp/

√
ln 2, and σpm ≡ �ωpm/

√
ln 2). The

double-Gaussian JSA with these parameters can be seen in
Fig. 7. Without any filtering, the purity of a heralded single
photon from this source is approximately 5%. Intuition may
suggest that the appropriate filter is one which matches the
pump bandwidth �ωp. However, as shown in Fig. 8, while
there is a significant increase in the purity from σf = 5σp to
σf = σp, the purity doesn’t approach 90% until σf � 0.1σp.
Indeed, for this source we would require σf � 0.16σp to
have a HOM visibility higher than 50% (Fig. 9). Noting that
σpm < σp, a smarter choice might be σf = σpm = 0.12σp.
Then P = 78% and V = 64%. Whilst this still does not reach
90% purity, it is an improvement over matching the pump
bandwidth in this case.
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FIG. 8. The heralded photon purity (black) and heralding success
probability (blue/gray) for the JSA as shown in Fig. 7. The solid lines
show P and S for a single filter, and the dashed lines show P and S
for two filters (P2 and S2). The bandwidth of the filter being matched
to the pump bandwidth occurs for σf /σp = 1. The purity at this point
is not close to unity.

Additionally we may place filters on both the heralding
and the heralded arms, with the expectation that this should
improve the purity [27]. This is less relevant to heralded single
photons as we do not wish to introduce uncertainty as to
whether our heralded photon passes through its respective
filter. Regardless, our method is easily extended to adding an
additional filter of transmission |tX(ω)|2 to the heralded arm.
From Eq. (5), we project into the subspace where the idler
photon has been transmitted through its own filter. In this case,
the purity is given by

P2 = 1

S2
2

∫
dωdω′dω′′dω′′′|tX̃(ω′)|2|tX̃(ω′′′)|2

× |tX(ω)|2|tX(ω′′)|2�(ω,ω′)�∗(ω′′,ω′)

×�∗(ω,ω′′′)�(ω′′,ω′′′), (34)
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FIG. 9. The coincidence probability for two identical heralded
single-photon sources characterized by the JSA as shown in Fig. 7,
showing the dip characteristic of HOM interference. The solid blue
line represents a filter width of σf = σp , leading to a visibility of
only 11%. The orange dashed line (σf = 0.16σp) yields a visibility
of 50%.

053842-6



EFFECTS OF FILTERING ON THE PURITY OF . . . PHYSICAL REVIEW A 96, 053842 (2017)

and

S2 =
∫

dωdω′∣∣tX̃(ω)
∣∣2∣∣tX(ω′)

∣∣2∣∣�(ω,ω′)
∣∣2

. (35)

Here the subscript 2 denotes the presence of two filters,
and S2 is the probability of both the herald and the
heralded photons passing through their respective filters.
The Schmidt mode versions of these expressions can be
found in the Appendix. As shown by the dashed lines in
Fig. 8, even with two identical filters matching the pump
bandwidth, the purity does not increase to 90%, although
there is an improvement at the cost of heralding success
probability.

B. Schmidt mode filtering

A natural question to ask is whether or not there are any
schemes for increasing the purity that do not have such a cost to
the probability of successful heralding. If we examine Eq. (4),
we might imagine that we could have slightly more freedom
(in particular, phase sensitivity), allowing us instead to
write

F̂ ′
X̃

=
∫

dωdω′tX̃(ω)â†
X̃

(ω) |vac〉〈vac| t∗
X̃

(ω′)âX̃. (36)

Noting that the JSA can always be Schmidt decomposed, we
can see that this would allow us to choose the filter to match
a particular Schmidt function, t(ω) = �a(ω). In this case, the
heralded single-photon purity is always P = 1. However to
do this, we must imagine a “phase-sensitive filter,” a device
that can distinguish between �μ(ω) and �∗

μ(ω), for any μ.
One possibility is a device which discretizes the input photon
spectrum into N frequency bins, which are passed into an
N × N array of frequency-space waveguide Mach-Zehnder
interferometers. The beam-splitter operation in frequency
space can be performed via Bragg-scattering four wave mixing
[33,34]. This allows for the spatial separation of each Schmidt
mode, and so we can imagine if we wished to interfere this
photon with another photon from a similar source, we simply
need to match the spatial modes at the output of two devices in
order to interfere the photons in the same Schmidt mode. Such
a device could in principle have arbitrarily low loss and thus
arbitrarily high heralding success probability S. If we only
wish to select a single Schmidt mode, with careful design we
can use a quantum pulse gate [35]. Both of these approaches
are a way to improve the heralded single-photon purity,
without the large amounts of loss associated with a narrowband
filter.

V. CONCLUSIONS

We have demonstrated two methods for characterizing the
space between two well-known classes of JSAs, namely, JSAs
with an aspect ratio of one (or otherwise oriented horizontally
or vertically) that naturally produce heralded single photons
with unit purity, and JSAs far from these conditions that
require narrowband filtering to yield high purities, at the
cost of the heralding success probability (and consequently
the rate). Most importantly, we have found closed form
expressions for the heralded single-photon purity, heralding
success probability and HOM interference dip shape for a

broad class of JSAs. In addition to this, we have examined the
underlying mode structure in filtered heralded single-photon
generation in order to fully understand the physics involved.
We have also demonstrated that the width of the HOM dip
has no relation to the width of the herald filter, which our
Schmidt mode picture shows holds true for any biphoton state.
Furthermore, we show that when selecting filters, matching
the filter bandwidth to the pump bandwidth is not always the
best choice. Finally, we have suggested other methods for
improving the heralded single-photon purity which do not rely
on lossy filtering, such as the quantum pulse gate. This work
helps one to choose an appropriate filter for a given heralded
source.

APPENDIX

The orthonormality and completeness conditions of the
Schmidt basis are given by∑

μ

�∗
μ(ω)�μ(ω′) = δ(ω − ω′), (A1)∫
dω�∗

μ(ω)�ν(ω) = δμ,ν . (A2)

The Schmidt mode picture also captures the case of two
filters by direct substitution into Eqs. (34) and (35), arriving
at the two-filter expressions for the purity and probability of
both photons passing through their respective filters,

P2 = 1

S2
2

∑
μνμ′ν ′

√
pμpνpμ′pν ′QμνQμ′ν ′Q′

μν ′Q
′
μ′ν, (A3)

S2 =
∑
μν

√
pμpνQμνQ

′
μν, (A4)

where

Q′
μν =

∫
dω|tX(ω)|2�μ(ω)�∗

ν (ω). (A5)

The Schmidt functions can be found by taking advantage
of the spectral theorem, plus the complete and orthonor-
mal nature of the Schmidt functions. One construction
of this is as follows: by considering the reduced density
matrix elements, ρ1(ω,ω′′) = ∫

dω′�(ω,ω′)�∗(ω′′,ω′) [and
similarly for ρ2(ω′,ω′′′)], and inserting the definition of
the Schmidt decomposition described by Eq. (25), one can
show ∫

dω′′ρ1(ω,ω′′)�μ(ω′′) = pμ�μ(ω), (A6)

with a similar equation for ρ2(ω′,ω′′′). The eigenfunctions
associated with this problem, if found, are the Schmidt
functions themselves. For double-Gaussian JSAs, these are

�μ(ω) = (−i)μ
√

1

2μμ!�1π1/2
exp

(
− ω2

2�2
1

)
Hμ

(
ω

�1

)
,

(A7)

where Hμ(ω) are the Hermite polynomials and �1 is a scale
constant associated with �μ(ω). A similar equation exists for
�μ(ω), with the associated scale constant �2. These constants

053842-7



DANIEL R. BLAY, M. J. STEEL, AND L. G. HELT PHYSICAL REVIEW A 96, 053842 (2017)

are

�1 =
√

σ1σ2

|sin(θ1 − θ2)|
(

σ 2
1 cos2 θ2 + σ 2

2 cos2 θ1

σ 2
1 sin2 θ2 + σ 2

2 sin2 θ1

)1/4

, (A8)

�2 =
√

σ1σ2

|sin(θ1 − θ2)|
(

σ 2
1 sin2 θ2 + σ 2

2 sin2 θ1

σ 2
1 cos2 θ2 + σ 2

2 cos2 θ1

)1/4

. (A9)

The eigenvalues pμ follow a thermal distribution,
pμ = μ̄μ/(μ̄ + 1)μ+1, and satisfy K = (

∑
μ p2

μ)−1 = 2μ̄+1,
where we associate μ̄ with the mean photon occupation
number per mode. They can be expressed with respect to the

Schmidt number,

pμ = 2
(K − 1)μ

(K + 1)μ+1 , (A10)

which is itself expressed in terms of the parameters of the
double-Gaussian as

K =
√(

σ 2
1 sin2 θ2 + σ 2

2 sin2 θ1
)(

σ 2
1 cos2 θ2 + σ 2

2 cos2 θ1
)

σ 2
1 σ 2

2 sin2(θ1 − θ2)
.

(A11)
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