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Bragg-induced power oscillations in PT -symmetric periodic photonic structures
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We study Bragg-induced power oscillations in Fourier space between a pair of optical resonant transverse
modes propagating through a periodic PT -symmetric lattice, represented by a refractive index that includes gain
and loss in a balanced way. Our results imply that thePT -symmetric system shows exceptionally rich phenomena
absent in its Hermitian counterpart. It is demonstrated that the resonant modes exhibit unique characteristics,
such as Bragg power oscillations controlled via the PT symmetry, severe asymmetry in mode dynamics, and
trapped enhanced transmission. We have also performed numerical simulations in (1+1) and (2+1) dimensions
of propagating Gaussian beams to compare with analytical calculations developed under a two-waves model.
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I. INTRODUCTION

More than a decade ago, a very interesting idea has been
put forward by Bender and co-workers on the existence of
non-Hermitian Hamiltonians exhibiting a real-valued energy
spectrum below a symmetry-breaking point at which the
spectrum undergoes a phase transition to the complex plane
[1–5]. These non-Hermitian Hamiltonians are very useful for
modeling optical systems with a controlled balance between
amplification and attenuation, meaning that the refractive
index obeys the property n(x) = n(−x)∗. Therefore the PT
symmetry concept was soon extended to optical systems by
identifying the real part of the potential with the refractive
index of the lattice and the imaginary one with gain or loss
[6,7]. Complex potentials have received then, in recent years,
enormous attention considering the development of these
new artificial structures where one may tailor the refractive
index according to one’s need. Theoretical work based on the
paraxial approximation has reported results on the propagation
of light beams transversely to an optical lattice that indicate
that the input beam power is not conserved along propagation
[8]. Experimental work based on PT Hamiltonians has been
suggested in optical media with a complex refractive index
[9–12], and PT symmetry breaking has been firstly reported
in experiments based on a passive optical coupler [13]. Bloch
oscillations have been proposed [14] and demonstrated inPT -
symmetric photonic lattices [15], exhibiting rich phenomena
not present in conservative systems. Also, experimental reports
on light transport in PT -symmetric temporal lattices have
demonstrated that such symmetric periodic structures might
act as unidirectional invisible media near a spectral singularity
[16]. Spectral singularities are resonant energy eigenvalues
that represent states characterized by infinite reflection and
transmission coefficients. Spontaneous PT symmetry break-
ing and nonreciprocal power oscillations have been observed
in a study on the behavior of a PT optical coupled system
[17]. Overall, one may conclude that the applications of PT
symmetry to optical systems should provide new ways to
control light propagation, unraveling a world of remarkable
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effects with tremendous impact on optical materials, devices,
and networks [18].

Motivated by these exciting reports, in this work we wish
to investigate the role of PT symmetry on optical power
oscillations, due to the propagation of wide optical beams
in complex periodic lattices, whereby the coupling between
the beam and the periodic structure results in Bragg-induced
power oscillations between transverse modes related by the
Bragg resonance condition [19,20]. More specifically, we
wish to investigate the consequences of extending the model
presented in [19] to the complex domain. It is well known that
by doing this, one opens up the way to strange and fascinating
properties, particularly on the verge of spectral singularities. In
this case, a close examination of Bragg scattering processes has
demonstrated that spectral singularities are associated with the
secular growth of plane waves that satisfy the Bragg condition
and also that they occur at the PT symmetry-breaking point.
Furthermore, it has been reported that, in contrast with wide
beams, a wave packet with a broad momentum distribution
leads to a saturation of the secular growth of scattered waves
[21,22]. In the following we choose a PT potential periodic
function to investigate the influence of PT symmetry on
the behavior of Bragg-induced power oscillations between a
pair of Bragg-resonant modes excited by wide optical beams.
Based on the two-waves model complemented by numerical
simulations of the wave equation by using a Gaussian beam
input, we investigate the Bragg-resonant mode behavior below
and above the phase transition point, and we obtain all the
peculiar universal features of non-Hermitian Hamiltonians,
such as nonreciprocal behavior of the Bragg modes, power
oscillations, and secular growth of plane waves. Furthermore,
we find additional features on the spectral behavior, such as
mode trapping and asymmetric mode power transfer.

II. TWO-WAVES MODEL

It is well known that a plane-wave input in general may
excite many resonant lattice modes. Here, we suppose that the
input power mode is Bragg resonant with the lattice so that the
incident plane wave excites mainly the two modes at the edges
of the Brillouin zone and ignore all other resonant modes [23].
More specifically, we consider a one-dimensional periodic
PT -symmetric potential V (x) function through which a wide
beam ψ(x,z) propagates. The propagation dynamics is then
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described by the dimensionless paraxial wave equation

i
∂ψ

∂z
+ ∂2ψ

∂x2
− V (x)ψ = 0, (1)

in arbitrary units. Let us define a potential function of the
form V (x) = α[cos2 x + iβ sin(2x)], with α,β representing
real parameters (with β positive). It is easy to verify that the
so-defined potential satisfies V (−x)∗ = V (x), and there is a
gain-loss parameter β that controls the degree of Hermiticity.
This parameter defines a spontaneous symmetry-breaking
point, βc = 1/2, above which the spectrum undergoes a phase
transition from the real to the complex plane. More specifically,
the spectrum is real for β < βc and becomes partially or
completely complex for β > βc [10]. We solve the wave
equation by writing the field as

ψ(x,z) =
∑

n=±1,±2...

ψn(z) exp(inkbx), (2)

where kb = 1 is the resonant transverse wave vector and the
index n indicates the nth mode that is Bragg resonant with the
lattice. Substituting (2) into (1), one arrives at the following
set of coupled differential equations:

i
dψn

dz
= anψn + bψn−2 + cψn+2 (3)

with

an =
(
n2 + α

2

)
(4)

and

b = α

2
(βc + β), (5)

c = α

2
(βc − β). (6)

Here we study the particular case where n = ±1 only. This
is the essence of the two-waves model, and it was shown to
give reliable results when the incident angle is coupled to the
edge of the first Brillouin zone [19]. Its validity will be further
discussed in Sec. V. Equation (3) is first order in z so that the
initial values ψ−1(0) and ψ1(0) must be specified for a unique
solution. To acquire a complete picture of the dynamics, we
now consider the following second-order linear differential
equation for ψ−1:

d2ψ−1

dz2
+ 2ia

dψ−1

dz
+ (cb − a2)ψ−1 = 0, (7)

where a = a−1 = a1. Equation (7) is derived from the system
of equations (3) for n = ±1 and considering ψ−3 = ψ3 = 0.
The equation satisfied by ψ1(z) is obtained from (7) by
performing the operation ψ−1 → ψ1. The general solutions
for the modal amplitudes ψ−1(z) and ψ1(z) are given by

{
ψ−1(z)
ψ1(z)

}
= 1

2

[{
ψ−1(0)
ψ1(0)

}
− i

{
γψ1(0)

γ ′ψ−1(0)

}]
× exp

[
− (α

2
+ 1

)
iz + |α|

2
kz

]

+1

2

[{
ψ−1(0)
ψ1(0)

}
+ i

{
γψ1(0)

γ ′ψ−1(0)

}]
× exp

[
− (α

2
+ 1

)
iz − |α|

2
kz

]
, (8)

where

γ = sgn(α)
(β − βc)

k
, (9)

γ ′ = sgn(α)
(β + βc)

k
, (10)

k = √
β2 − β2

c , and sgn(α) is +1 or −1 depending on the
sign of α. The initial conditions {ψ−1(0),ψ1(0)} together with
relations (8), (9), and (10) determine the system’s evolution.
Before we discuss some more involved peculiarities, note
the apparent asymmetry in the evolution of the two modal
functions that is solely due to the γ and γ ′ terms. This
parameter may be either real or complex depending on the
system being below (β < βc) or above (β > βc) the critical
phase point. To fully grasp the system’s dynamics, in the
following we separate the discussion in these two cases.

Before we proceed, it is useful to define the population
inversion function W (z) which characterizes the spectral
energy exchange between the two resonant modes. We define
W (z) = |ψ1(z)|2 − |ψ−1(z)|2, representing the difference in
power spectra of the two modes. A PT -symmetric system,
in general, does not satisfy symmetric initial conditions and
thus one must distinguish two cases depending on the values of

ψ−1(0) and ψ1(0). Let us begin by choosing {ψ−1(0),ψ1(0)} =
{1,0}, so that,

W−1 = 1
4 [(|γ ′|2 − 1)e−(k+k∗)z − (1 + |γ ′|2)e−(k−k∗)z

−(1 + |γ ′|2)e(k−k∗)z + (|γ ′|2 − 1)e(k+k∗)z]. (11)

On the other hand, by choosing {ψ−1(0),ψ1(0)} = {0,1}, the
population inversion becomes

W1 = 1
4 [(1 − |γ |2)e−(k+k∗)z + (|γ |2 + 1)e−(k−k∗)z

+(|γ |2 + 1)e(k−k∗)z + (1 − |γ |2)e(k+k∗)z]. (12)

These expressions form the basis for the discussion of
population inversion in systems with PT symmetry within
the two-waves approach and will be used extensively in the
next sections.

III. POPULATION INVERSION BELOW THE PHASE
TRANSITION POINT

In the case 0 � β � βc one may define k = iκ with
κ = √

β2
c − β2 � 0, a real non-negative constant. Let us first

consider a real lattice for which β = 0. Then, |γ |2 = |γ ′|−2 =
1, k = iβc and Eqs. (11) and (12) give W−1 = − cos(|α|z/2)
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FIG. 1. (a) Population inversion W1 in a PT -symmetric lattice
as a function of the order parameter β and propagation distance for
β < βc, illustrating power oscillations. (b) The same for W−1 with β

chosen to be in the range [0,0.3] to make the color scale easier for
visualization. Notice how the color scale goes beyond the value of 1.
For this picture we have assumed α = 0.5.

and W1 = cos(|α|z/2) = −W−1, which are symmetric so that
the system executes full power spectra oscillations with a
complete periodic transfer of energy between the two modes
at every multiple of zp = 4π/|α| [19]. Things become very
different for a complex lattice. To illustrate how the population
inversion evolves in this scenario, we choose 0 � β � βc, so
that Eqs. (11) and (12) become

W1 = cos2

( |α|κz

2

)
− (βc − β)

(βc + β)
sin2

( |α|κz

2

)
, (13)

W−1 = − cos2

( |α|κz

2

)
+ (βc + β)

(βc − β)
sin2

( |α|κz

2

)
, (14)

which clearly highlights the asymmetry of the system due to
the factors γ and γ ′. The two-parameter families of functions
W−1(β,z) and W1(β,z) may be visualized in color plots to
illustrate power spectra oscillations when the lattice is below
the phase transition point. Let us turn to Fig. 1, where W1 and
W−1 are respectively plotted in Figs. 1(a) and 1(b), from which
many interesting conclusions are drawn. Figure 1(a) shows
that if β ≈ 0, one retrieves the conservative power oscillation
as a function of propagation distance, here described by
W1 ≈ cos(|α|z/2), with colors ranging from +1 (white) to
−1 (black) for all z. This means that power oscillations
are represented here by the successive regions of white and
black, in the sense that power is more present in mode ψ1 in
white regions and is more present in mode ψ−1 in dark ones.
Therefore in Fig. 1 white regions mean more power within
mode ψ1 and dark regions mean more power within mode
ψ−1. Gray regions mean that the power is shared between the
two modes in Fig. 1(a). On the other hand, Fig. 1(b) shows that
if the initial power spectrum is in the mode ψ−1, oscillations are
retrieved, although the spectra amplitudes are much larger in
mode ψ1 than the previous case, indicating that power transfer
is much more efficient to mode ψ1 than to mode ψ−1 (see
also Fig. 2). As β approaches the critical value βc, there is a
distortion of the vertical lines in Fig. 1, that is mainly due to the
term

√
β2

c − β2 inside the trigonometric functions in Eqs. (13)
and (14). To see more clearly what is actually happening at the
critical point, let us substitute β = βc directly in Eq. (13) to
obtain

W1(z) = 1. (15)
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FIG. 2. Gaussian beam propagation below the phase transition
point (β < βc) in both real (upper panels) and Fourier spaces (lower
panels), illustrating power oscillations with β = 0.2 and α = 0.5. Left
column: {ψ−1(0),ψ1(0)} = {0,1}. Right column: {ψ−1(0),ψ1(0)} =
{1,0}. Excited modes outside the first Brillouin zone are indistin-
guishable from the horizontal zero axis line.

Exactly at the transition point, when the input power is located
initially in mode ψ1, it will remain trapped in this mode forever
independent of the propagation distance. There is a perfect
balance of energy exchange between lattice and wave field
such that a stable intensity evolution is achieved. When β is
smaller than βc, power oscillations are modulated, through the
PT symmetry of the lattice, with an increase in the oscillation
period. This behavior is evident by a close inspection of
Fig. 1 and also by Eq. (13), where β appears inside the sine
(cosine) and thus controls the oscillation period together with
the value of |α|. On the other hand, when the initial state of the
system is defined by {ψ−1(0),ψ1(0)} = {1,0}, the parameter
γ ′ suggests some peculiar behavior and, by taking the limit
β → βc directly, as was done earlier, we obtain from (14)

W−1 = −1 + |α|2
4

z2, (16)

where we used the fact that limp→0 sin2(
√

py)/p = y2. The
population difference exhibits secular growth during propa-
gation when β = βc exactly. This means that the lattice is
transferring energy preferably to mode ψ1(z), because W−1

will certainly become positive. To better visualize this, one
may write the total field (2) at β = βc [with {ψ−1(0),ψ1(0)} =
{1,0}],

ψ(x,z) = e−i(1+α/2)z
[
sgn(α)

αz

2i
eix + e−ix

]
, (17)

where it is easy to see that, indeed, the first amplitude factor,
which is responsible for the mode ψ1(z), grows linearly with
the propagation distance, while the mode at k = −1 remains
constant.

Next, we compare numerical results based on the propa-
gation of a wide Gaussian beam input with spatial spectral
power centered at the edge of the Brillouin zone, with the
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FIG. 3. Wide Gaussian beam propagation at the critical phase
point (β = βc) in both real (upper panels) and Fourier (lower
panels) spaces, with initial width X0 = 15p (p is the lattice period)
incident on a PT -symmetric lattice at the critical point. Left column:
{ψ−1(0),ψ1(0)} = {1,0}. Right column: {ψ−1(0),ψ1(0)} = {0,1}. Ex-
cited modes outside the first Brillouin zone are indistinguishable from
the zero horizontal axis line.

analytic ones obtained from the two-waves model. To this end
we solve Eq. (1) using a split-step Fourier method with a Strang
splitting, with the input

ψ(x,0) = exp

[
−1

2

(
x

X0

)2
]

exp(±ix), (18)

α = 0.5, and initial width X0 = 15p, where p is the lattice
period. Power oscillations are illustrated in Fig. 2, where the
propagation of a Gaussian beam in both real (upper panels) and
Fourier (lower panels) spaces is shown, below the transition
point, whether the initial condition is {ψ−1(0),ψ1(0)} = {0,1}
or {ψ−1(0),ψ1(0)} = {1,0}, presented in the left and right
panels, respectively. The asymmetry regarding the transfer of
power spectra between the two modes is clearly evident by
inspecting the Fourier amplitudes. Note the striking contrast
between the dynamics in these two cases. The initial Fourier
spectrum is centered at ki = −1 (left panels) or at ki = 1 (right
panels). Excited modes outside the first Brillouin zone, at
k = ±3 and beyond, are indistinguishable from the horizontal
zero axis line (not shown). Figure 3 shows the numerical
result of the Gaussian beam propagation in both real (upper
panels) and reciprocal (lower panels) spaces, with β = βc.
When {ψ−1(0),ψ1(0)} = {0,1} (right panels), one may clearly
see that the initial Gaussian beam propagates along a definite
angle with a steady intensity. This result is in good agreement
with the analytic result predicted by Eq. (15). On the other
hand, the initial condition {ψ−1(0),ψ1(0)} = {1,0} (left panels)
indicates that in this case, the lattice is giving energy to
the field and, as a result, the intensity increases indefinitely
during propagation. Notice the dominance of the ψ1(z) mode,
no matter where the input is; energy always flows higher
to this mode. Figure 4 shows the intensity as a function
of the propagation distance at x = 0. Due to the previous
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FIG. 4. Intensity at x = 0 as a function of the propagation
distance with the lattice at the critical point. The dashed line represents
the intensity obtained from the simulation with a Gaussian beam.
Continuous line is the analytic result from the two-waves model
[Eq. (17)]. For this simulation we have assumed α = 0.5.

analysis, one expects that the intensity evolves according with
|ψ(0,z)|2 = 1 + (|α|z)2/4, and we compare this evolution, in
long propagation distances predicted by the two-waves model
(solid line), with the evolution of a Gaussian beam (dashed
line). We find that in this case the contribution of other modes
apart from the two considered here indicates a tendency to
the spectral broadened induced saturation effect that is known
to neutralize secular growth reported in [21] (dashed line in
Fig. 4). Nevertheless, the initial overall behavior before the
saturation effect takes place, and the role of thePT -symmetric
lattice, are clearly captured by the two-waves model.

IV. POPULATION INVERSION ABOVE THE PHASE
TRANSITION POINT

When β � βc the system has undergone a phase transition,
meaning that eigenvalues of the Hamiltonian operator in
Eq. (1) have become complex or partially complex. This
has a tremendous consequence on the population inversion
described by Eqs. (11) and (12), which now reads

W−1 = − cosh2

( |α|kz

2

)
+ (β + βc)

(β − βc)
sinh2

( |α|kz

2

)
, (19)

W1 = cosh2

( |α|kz

2

)
− (β − βc)

(β + βc)
sinh2

( |α|kz

2

)
, (20)

clearly displaying uncontrolled diverging behaviors. After a
close inspection of Eqs. (19) and (20), one concludes that
the energy-transfer process is not symmetric with respect to
the excited modes in the sense that the energy flow is always
directed towards ψ1(z), no matter the initial condition one
chooses. This asymmetric mode evolution is typical of PT -
symmetric Hamiltonians. In Fig. 5 we illustrate this statement
by plotting W−1 (dashed line) and W1 (solid line) for β = 1
and α = 0.5 as functions of the propagation distance z. The
asymmetry in the dynamics of the pair is evident in view of
a privileged mode, namely, ψ1, for which power always flows
whether the initial state is populated or not.

Let us now compare the field intensity evolution of the
analytic approach with the Gaussian beam, as we did in the
previous section. By considering {ψ−1(0),ψ1(0)} = {0,1}, it is
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FIG. 5. Population inversion for a system above the phase
transition point as a function of the propagation distance z with with
β = 1 and α = 0.5. Dashed line: W−1. Solid line: W1. Clearly, the
lattice energy flows towards mode ψ1(z) are dominant.

straightforward to show that

|ψ(0,z)|2 = β

β + βc

cosh

(
|α|

√
β2 − β2

c z

)
+ βc

β + βc

,

(21)

which means that above the phase transition point, the model
predicts an exponential growth for the intensity, controlled
by the hyperbolic cosine function. Figure 6 depicts the field
evolution predicted by (21) compared with a Gaussian initial
condition. Thus one may conclude that the lattice is giving
energy to the field during propagation and that this energy
transfer is even more pronounced when the system is above
the phase transition point.

V. THE TWO-WAVES APPROXIMATION

One of the main reasons for the contrasting behavior
exhibited in Figs. 4 and 6 stems from the fact that the
two-waves approximation implies a shallow potential function,
for it determines the lattice coupling strength with other
beam modes, besides the pair considered. This strength is
represented here by the overall amplitude coefficient α, that we
have assumed equal to 0.5 in the previous discussed results. At
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FIG. 6. Field intensity evolution at x = 0 of a wave field during
propagation above the phase transition point with the same parameters
as Fig. 5. The dashed line represents the intensity from the numerical
simulation with a Gaussian beam. The solid line is obtained from the
two-waves approach.
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FIG. 7. (Dashed lines) Gaussian beam intensity evolution at x =
0 as a function of the propagation distance for three values of α.
(Solid lines) Corresponding two-mode approach 1 + (|α|z/2)2.

the symmetry-breaking point, β = βc, the intensity at x = 0
is obtained from Eq. (17):

|ψ(0,z)|2 = 1 + |α|z2

4
. (22)

So, the parameter α represents a correction to the parabolic
curvature of the intensity. This result is illustrated in Fig. 7,
where the evolution of the intensity at x = 0 of a Gaussian
input with the propagation distance is shown for three values of
α. It is clear that as long as |α| � 1, the analytic model reaches
a better agreement with more realistic beam sources for a
determined propagation distance. This is expected because the
propagating beam excites few modes for |α| � 1. In contrast,
larger values of α lead to the coupling with other modes.
To see the coupling effect promoted by α, we have plotted
in Fig. 8 the spectrum power correspondent to the intensity
shown in Fig. 7 for z = 15, where the appearance of another
mode at kb = 3 is clear. For this graph we have normalized the
maximum value of the Fourier modes so that the maximum
value of the mode seen at kb = 1 is 1. Note that increasing the
absolute value of α leads to the enhancement in the amplitude
of the additional Fourier mode and the mode at kb = 2 is

0
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FIG. 8. Fourier amplitudes correspondent to the intensity de-
picted in Fig. 7 for the same values of α at z = 15. The plot is
normalized such that the maximum value of the Fourier amplitude at
kx = 1 is 1.
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FIG. 9. Fourier amplitude with fixed α = 1.5 and various input
beam widths [Fig. 8(a)] and (a) X0 = 20p, (b) X0 = 15p, and
(c) X0 = 10p. The plot is normalized such that the maximum value
of the Fourier amplitude at kx = 1 is 1.

not excited at all for the lattice couples with odd integers
only, ±1, ±3, etc. [see Eq. (3)]. The coupling effect is also
apparent in Fig. 9, where the Fourier amplitudes corresponding
to Fig. 8(a), i.e., for fixed α = 1.5 and z = 15, and various
beam widths are depicted. Here, it should be noted that the
only effect promoted by narrow input beams is to broaden
the resonant Fourier amplitudes. However, their amplitudes
keep still, as the maximum value of their Fourier amplitude
is not modified. Particularly, the additional mode at kb = 3
becomes wider but not higher, and so one might conjecture
that this fact could be the reason why the analytic approach
yields such reliable results. More specifically, it suggests that
secondary modes are less efficiently excited due to the spectral
broadening. In this way one concludes that this maximum is
determined solely by the value of α and that efficient coupling
is determined fundamentally by the potential strength. This
result is quite reasonable by having in mind that a finite input
beam, in spite of providing additional modes to be excited,
does not promote the coupling, which is not going to happen
when the potential is too weak to induce secondary expressive
scattering processes. Therefore, the two-waves model, in spite
of its simplicity, describes quite well the overall behavior of
light propagation in a complex lattice in the case of shallow
potential functions and multimode optical fields.

VI. SPECTRAL POWER OSCILLATIONS IN (2+1)
DIMENSIONS

Let us now find whether our analysis can still give
reasonable results when extended to higher dimensions. To
this end, in the following we wish to investigate the mode-
trapping effect at the symmetry-breaking point, observed
above, considering a propagating two-dimensional (2+1)
optical field ψ(x,y,z). We then write the two-dimensional
version of Eq. (1),

i
∂ψ

∂z
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
− V (x,y)ψ = 0, (23)
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FIG. 10. Bragg-induced power oscillations in two-dimensional
beams with the lattice below the symmetry-breaking point for α = 0.5
and β = 0.2. Evolution of the Fourier amplitudes when the Fourier
spectrum of the incident beam is located at (left) (kbx,kby) = (1,1)
and (right) (kbx,kby) = (−1,−1). This plot is normalized such that
the initial Fourier amplitude in both cases is equal to unity.

with the PT -symmetric potential [10]

V = α{cos2 x + cos2 y + iβ[sin(2x) + sin(2y)]}. (24)

In a two-dimensional system there are four modes in the first
Brillouin zone that are effective coupled so that in 2D systems,
one must use the four-waves model instead. By expanding the
field according to Eq. (2),

ψ(x,y,z) =
∑

n,m=±1,±2,...

ψn,m(z)einx+imy, (25)

and inserting Eq. (25) into Eq. (23) one obtains the following
coupled linear differential equation for the modes ψn,m(z):

i
dψn,m

dz
= aψn,m + b(ψn−2,m + ψn,m−2)

+c(ψn+2,m + ψn,m+2) = 0, (26)

where a = (n2 + m2 + α), and b and c are given by (5) and (6),
respectively. Although analytic solutions to this more general
case are still possible, they are quite cumbersome and, there-
fore, we attempt to solve Eq. (23) numerically with a Gaussian
initial condition to verify the mode-trapping phenomenon at
the symmetry-breaking point. More specifically, we suppose
that the coupling is effective only at the corners of the first
Brillouin zone, so that the initial Gaussian beam amplitude,
ψ(x,y,0), may be written as

ψ(x,y,0) = exp

[
− (x2 + y2)

2X2
0

]
exp(ikbxx + ikbyy), (27)

where X0 = 8p is the beam width and (kbx,kby) are the
components of the incident Fourier components. But first, let
us study the two-dimensional analog of Fig. 2. To this end, we
assume α = 0.5, β = 0.2 and the initial condition described by
Eq. (27). The Fourier amplitudes evolution for the particular
inputs centered at (kx,ky) = (±1, ± 1) are depicted in Fig. 10
as the propagation distance z increases. We clearly note the
typical PT asymmetry also present in the one-dimensional
counterpart. In Fig. 11 we plot the same Fourier amplitudes
as in Fig. 10 but with the lattice at the symmetry-breaking
point β = βc = 0.5. On the right part of this figure, one
can see that the lattice still supplies the field with optical
energy. The left part of Fig. 11, however, indicates that the
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FIG. 11. Two-dimensional mode trapping in a PT -symmetric
lattice for α = 0.5 and β = 0.5. The Fourier amplitude of the incident
beam is located at (left) (kbx,kby) = (1,1) and (right) (kbx,kby) =
(−1,−1). This plot is normalized such that the initial Fourier
amplitude in both cases is equal to unity.

initial mode located at (kx,ky) = (1,1) remains trapped in
its initial configuration. Therefore, one may conclude that
mode trapping and asymmetric mode power transfer are also
exhibited by two-dimensional complex lattices.

VII. CONCLUSIONS

To conclude, based on the two-waves model, a theoretical
study on the propagation of a wide beam through a transversal
periodic photonic lattice described by a PT -symmetric re-
fractive index is developed, focusing on the behavior of power
oscillations of a pair of resonant Bragg modes. As expected,
within the paraxial wave approximation, a symmetry-breaking
phase transition is obtained by varying a critical parameter β

that measures the depart of the system from its Hermitian

character. We have shown that small changes in this order
parameter dramatically affect the dynamics and there are three
regimes determined by β: for β < βc the beam power oscillates
between the two modes; for β > βc it increases exponentially
in a particular mode; while for β = βc, depending on the
initial condition, it remains constant or it grows as a quadratic
function. Thus, we obtain power oscillations in the symmetric
phase and biased mode trapping at the critical point. It should
be noted here that the same behavior has been reported
previously [24] as a universal behavior typical of phase
transitions, due to the fact that microscopic details are not
important. Therefore, the results found here should apply
to a wide class of PT systems. To investigate the validity
of the approximation, we have verified our results and their
limitations by simulating the propagation of finite-width
Gaussian pulses. Furthermore, extending the model to a
two-dimensional wave equation, we have also observed power
oscillations and power trapping. Although the results obtained
here are based on a simple model, we have shown that they are
exceptionally reliable. Due to its relative simplicity we hope
that the present model might offer insights into the study of
systems with generalized PT symmetries and an easy way
for testing PT concepts. Considering the enormous potential
of experimental researchers to produce artificial materials,
one might conjecture that PT -symmetric artificial systems
should unravel a new generation of optical materials and,
consequently, of optical devices.
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