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Lorentz invariance of absorption and extinction cross sections of a uniformly moving object
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The energy absorption and energy extinction cross sections of an object in uniform translational motion in free
space are Lorentz invariant, but the total energy scattering cross section is not. Indeed, the forward-scattering
theorem holds true for comoving observers but not for other inertial observers. If a pulsed plane wave with
finite energy density is incident upon an object, the energies scattered, absorbed, and removed from the incident
signal by the object are finite. The difference between the energy extinction cross section and the sum of the
total energy scattering and energy absorption cross sections for a non-comoving inertial observer can be either
negative or positive, depending on the object’s velocity, shape, size, and composition. Calculations for a uniformly
translating, solid, homogeneous sphere show that all three cross sections go to zero as the sphere recedes directly
from the source of the incident signal at speeds approaching c, whether the material is a plasmonic metal (e.g.,
silver) or simply a dissipative dielectric material (e.g., silicon carbide).
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I. INTRODUCTION

The insertion of a stationary object between a distant source
of light and a detector leads to a reduction in the energy
received in a finite interval of time by the detector. This
reduction, often quantified as the extinction cross section, has
long been known to be exactly related to a specific component
of the amplitude of the forward-scattered light when the object
is made of a linear material and is illuminated by a plane wave
[1, p. 39]. An intuitive way to derive this relationship, called
the extinction formula [1, Sec. 4.21], was provided by van de
Hulst in 1949 [2].

By virtue of the principle of conservation of energy,
extinction must be due to scattering and absorption. In 1955,
the sum of the total scattering and absorption cross sections was
related exactly to the copolarized scattering amplitude in the
forward direction by Jones [3] and Saxon [4] independently.
Three years later, de Hoop [5] provided a derivation simpler
than that of Jones [3] and equivalent to that of Saxon [4]. This
relationship is variously called the cross-section theorem [5],
the extinction theorem [1, p. 39], the optical theorem [6–8],
[9, p. 73], and the forward-scattering theorem [10–12]. We
prefer the last of these names.

A plane wave has finite power density. If the object is
stationary, power is removed from an incident plane wave
by absorption and elastic scattering. A plane wave with its
amplitude modulated by a pulse has finite energy density.
We may use the forward-scattering theorem to compute the
energy removed from a pulsed plane wave by integrating over
the energy removed from each spectral component. The total
energy removed from an incident pulsed plane wave is equal
to the sum of the energy absorbed by the object and the total
energy scattered in all directions.

The extinction formula may also be used to compute the
energy removed from a pulsed plane wave by a uniformly
translating object. However, scattering is inelastic due to the
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two-way Doppler shift [13] except in the forward direction.
Accordingly, although the extinction cross section has to be
equal to the sum of the absorption and the total scattering cross
sections in the comoving inertial frame of reference [3–5], that
equality is not guaranteed prima facie in the laboratory frame
of reference, which is also inertial. The comoving frame is
attached to the object and therefore translates with the same
velocity as the object itself in the laboratory frame.

Therefore, we decided to calculate the total scattering,
absorption, and extinction cross sections of a uniformly
translating object in free space illuminated by a pulsed plane
wave. Since Einstein first investigated electromagnetic scat-
tering by a moving mirror [14,15], researchers have computed
the electromagnetic fields scattered by uniformly translating
objects [16–22]. Most of this research has been focused on the
scattering of plane waves. In a recent paper, we implemented
a frame-hopping approach to compute backscattered signals
from uniformly translating spheres made of silicon carbide
(SiC) [13], with the incident signal being a pulsed plane wave.
In another paper [23], we defined and computed total energy
scattering cross sections for uniformly translating arbitrarily
shaped objects in the laboratory frame.

Adopting the same approach, we calculated
(i) the total energy scattering, energy absorption, and

energy extinction cross sections of uniformly translating
spheres made of silver and silicon carbide in the comoving
frame (in which the object is at rest), and

(ii) the total energy scattering and energy extinction cross
sections of the same spheres in the laboratory frame.
We found that the energy extinction cross section (as computed
using the extinction formula) is the same in both inertial
frames, a conclusion that we confirmed analytically to hold
for any object, but the total energy scattering cross section has
different values in the two frames. We also found analytically
that the energy absorption cross section must be identical in
both frames.

This paper is laid out as follows. Section II describes the
analytical procedures used to compute the three cross sections.
Section III presents the cross sections for homogeneous
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spheres as functions of diameter and velocity. The paper
concludes with some remarks in Sec. IV. Vectors are indicated
by boldface, unit vectors are decorated with carets, and dyadics
[24] are indicated by double underbars. Frequency-domain
quantities are decorated with tildes, and script symbols are
used for time-domain vectors.

II. ANALYTICAL PROCEDURES

We used the frame-hopping technique described in detail
elsewhere [13] to compute scattering by a uniformly moving
object in free space. The laboratory frame is denoted by K ′
with space-time variables (r ′,t ′), and the comoving frame is
denoted by K with space-time variables (r,t). The origins and
axes of K ′ and K coincide at time t ′ = t = 0, and the origin of
K lies inside the object. The incident pulse was taken to reach
the origin of K ′ around t ′ = 0. The velocity of the object in K ′
is denoted by v. Primed variables are used in K ′ and unprimed
variables are used in K .

The electric and magnetic fields of the incident pulsed plane
wave in K ′ are given by

E ′
inc(r ′,t ′) = Ê

′
incf (τ ′), (1a)

B′
inc(r ′,t ′) = q̂ ′

inc × E ′
inc(r ′,t ′)
c

, (1b)

where τ ′ = t ′ − q̂ ′
inc · r ′/c, q̂ ′

inc is the direction of propagation
in K ′, Ê

′
inc is a fixed unit vector parallel to the electric field,

and c is the speed of light in free space. The function

f (τ ′) = cos(2πνcτ
′)F (τ ′) (2)

contains νc as the frequency of the carrier plane wave and the
pulse function F (τ ′) has compact support.

If f (τ ′) is square integrable [25], we may calculate the
incident signal’s energy density U ′

inc (with units of energy
per area) by integrating the magnitude of the instantaneous
Poynting vector over all time [24, p. 66]; thus,

U ′
inc =

∫ ∞

−∞

|E ′
inc(r ′,t ′)|2

η0
dt ′ =

∫ ∞

−∞

|f (τ ′)|2
η0

dτ ′ < ∞, (3)

where η0 is the intrinsic impedance of free space.
The electric and magnetic fields of the incident signal in K

are

E inc(r,t) = Eincf (ψτ ), (4a)

Binc(r,t) = q̂ inc × E inc(r,t)
c

, (4b)

where [13, Eq. (6)]

τ = t − q̂ inc · r/c,

Einc = γ

[
L−1 · Ê

′
inc + v ×

(
q̂ ′

inc × Ê
′
inc

c

)]
,

q̂ inc = q̂ ′
inc · L − γ v/c

ψ
, L = I + (γ − 1)v̂v̂, (5)

v̂ = v/v, v = |v|, ψ =
(

1 − q̂ ′
inc · v

c

)
γ,

γ = (1 − v2/c2)−1/2,

and I is the identity dyadic. The direction of propagation,
amplitude, spectral content, and electric field direction (polar-
ization) of the incident signal may all differ in general between
K and K ′.

The magnitude of the incident electric field in K is scaled
by the Doppler shift ψ relative to that of the incident electric
field in K ′, that is [26, Eqs. (3.60) and (3.61)],

|Einc| = ψ |Ê′
inc|. (6)

Hence, the energy density of the incident signal in K is

Uinc =
∫ ∞

−∞

|E inc(r,t)|2
η0

dt

=
∫ ∞

−∞

|ψE ′
inc(r,ψt)|2

η0
dt = ψU ′

inc. (7)

The incident energy density in K is scaled by ψ relative to
the incident energy density in K ′, which matches the ratio of
energies of a single photon in K and K ′ [27, p. 31].

Let W ′
sca denote the total scattered energy, W ′

abs the absorbed
energy, and W ′

ext the reduction in the energy received by
a detector in the forward direction in K ′, when the object
is present. These energies are finite because of the finite
energy density of the incident signal. Next, we define the total
energy scattering (C ′

sca), energy absorption (C ′
abs), and energy

extinction (C ′
ext) cross sections in K ′ with units of area as

C ′
sca = W ′

sca/U ′
inc, C ′

abs = W ′
abs/U ′

inc, C ′
ext = W ′

ext/U ′
inc.

(8)

We also define normalized total energy scattering (Q′
sca),

energy absorption (Q′
abs), and energy extinction (Q′

ext) cross
sections as

Q′
sca = C ′

sca/A, Q′
abs = C ′

abs/A, Q′
ext = C ′

ext/A, (9)

where A is the projected area of the object (when at rest) on
the plane to which q̂ ′

inc is perpendicular. We also define energy
cross sections and normalized energy cross sections in K as

Csca = Wsca/Uinc, Cabs = Wabs/Uinc, Cext = Wext/Uinc,

(10)

and

Qsca = Csca/A, Qabs = Cabs/A, Qext = C/A. (11)

Standard definitions of cross sections are based on time-
averaged power and time-averaged power density for
monochromatic fields [9, Sec. 3.4], whereas our definitions
are based on total energy and energy density.

A. Total scattered energy

In the far zone, the scattered signal in a specific direction
q̂sca in K can be represented as [13, Eq. (25)]

E sca(q̂scar,t) = Êscag(q̂sca; t − r/c)

r

+ (q̂sca × Êsca)h(q̂sca; t − r/c)

r
, (12a)

Bsca(q̂scar,t) = q̂sca × E sca(q̂scar,t)

c
, (12b)
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where the unit vectors Êsca and q̂sca are mutually orthogonal,
and the functions g(q̂sca; t − r/c) and h(q̂sca; t − r/c) depend
on many factors. The presence of q̂sca as an argument of these
functions indicates that the scattered signals depend in general
on the scattering direction. The functions g and h depend
on the incident signal as well as the velocity, size, shape,
orientation, and composition of the object. Both functions may
be computed by taking the inverse Fourier transform of the
scattered field phasors or by direct computation in the time
domain by a numerical technique such as the finite-difference
time-domain method [28].

The angular energy density of the scattered signal in a given
direction q̂sca in units of energy per solid angle is

Ŭsca(q̂sca) =
∫ ∞

−∞

r2|E sca(q̂scar,t)|2
η0

dt

=
∫ ∞

−∞

g2(q̂sca; t − r/c) + h2(q̂sca; t − r/c)

η0
dt,

(13)

and the total scattered energy in K is

Wsca =
∫ π

0

∫ 2π

0
Ŭsca(θ,φ) sin θdφ dθ, (14)

where θ and φ are the angles of q̂sca.
The far-zone fields of the scattered signal may be trans-

formed from K to K ′ to yield [13, Eqs. (27) and (29)]

E ′
sca(q̂ ′

scar
′,t ′) = E′

scag(q̂sca; (t ′ − r ′/c)ψ ′)
r ′

+ (q̂ ′
sca × E′

sca)h(q̂sca; (t ′ − r ′/c)ψ ′)
r ′ ,

(15a)

B′
sca(q̂ ′

scar
′,t ′) = q̂ ′

sca × E ′
sca(q̂ ′

scar
′,t ′)

c
, (15b)

where [13, Eq. (23)]

E′
sca = [L−1 · Êsca − v × (q̂sca × Êsca)/c]γ

q̂sca · (L · q̂ ′
sca − γ v/c)

(16a)

q̂ ′
sca = γ v/c + q̂sca · L

ψ ′ , (16b)

and

ψ ′ =
(

1 + q̂sca · v

c

)
γ (17)

is the Doppler shift from K to K ′. Note that the functions
g and h are the same in K ′ as they are in K , although their
arguments are different. Note also that ψ ′ depends on q̂sca.

By analogy with Eqs. (5) and (6), the magnitude of the
numerator of the right side of Eq. (16a) is equal to ψ ′. The
magnitude of the denominator of the right side of Eq. (16a)
may be evaluated by first obtaining the expression for q̂sca in
terms of q̂ ′

sca by swapping the primed and unprimed variables
in Eq. (16b) and replacing v by −v to obtain

q̂sca = −γ v/c + q̂ ′
sca · L

(1 − q̂ ′
sca · v/c)γ

(18)

and then substituting L · q̂ ′
sca − γ v/c = (1 − q̂ ′

sca · v/c)γ q̂sca;
then the magnitude of the denominator of the right side of
Eq. (16a) is (1 − q̂ ′

sca · v/c)γ . By comparison with Eq. (17),
(1 − q̂ ′

sca · v/c)γ is the Doppler shift from K ′ to K in the q̂ ′
sca

direction and is equal to 1/ψ ′ because the shift from K to
K ′ and back to K in that direction must be unity. Since the
far-zone scattered field is transverse to the scattering direction
in both K and K ′,

|E′
sca|

|Êsca|
≡ |q̂ ′

sca × E′
sca|

|q̂sca × Êsca|
= ψ ′2. (19)

The angular energy density of the scattered signal in K ′ is then

Ŭ ′
sca(q̂ ′

sca) =
∫ ∞

−∞

r ′2|E ′
sca(q̂ ′

scar
′,t ′)|2

η0
dt ′

= ψ ′4
∫ ∞

−∞

{ |g[q̂sca; (t ′ − r ′/c)ψ ′]|2
η0

+ |h[q̂sca; (t ′ − r ′/c)ψ ′]|2
η0

}
dt ′, (20)

which yields

Ŭ ′
sca(q̂ ′

sca) = ψ ′3Ŭsca(q̂sca). (21)

The total scattered energy in K ′ is

W ′
sca =

∫ π

0

∫ 2π

0
Ŭ ′

sca(θ ′,φ′) sin θ ′dφ′dθ ′, (22)

where θ ′ and φ′ are the angles of q̂ ′
sca.

The total scattered energy in K ′ may now be expressed in
terms of the scattered energy density in K by using Eq. (21).
To do this, it is helpful to use two new coordinate systems
Krot and K ′

rot that are rotated such that v aligns with the unit
vectors ẑrot and ẑ′

rot, respectively. Krot is comoving with the
object, and its origin coincides with the origin of K . Likewise,
K ′

rot is stationary with respect to K ′, and the origins of K ′
rot and

K ′ coincide. The origins and axes of K ′
rot and Krot coincide

at time t ′ = t = 0. In Krot and K ′
rot, respectively, ψ ′ depends

only on θrot and θ ′
rot (measured from the zrot and z′

rot axes,
respectively) and is given in Krot by

ψ ′ =
(

1 + v

c
cos θrot

)
γ. (23)

We define the variables urot = cos θ ′
rot and wrot = cos θrot to

simplify the integration of the scattered energy density with
respect to the directions of q̂ ′

sca and q̂sca, respectively. In K ′
rot,

W ′
sca =

∫ 1

−1

∫ 2π

0
Ŭ ′

sca(cos−1 urot,φ
′
rot)dφ′

rotdurot. (24)

Next, we change the angular variables to Krot using

φ′
rot = φrot,

urot = q̂ ′
sca · ẑrot = cos θrot + v/c

1 + (v/c) cos θrot
= wrot + v/c

1 + (v/c)wrot
,

durot = 1 − (v/c)2

[1 + (v/c)wrot]2
dwrot = dwrot/ψ

′2, (25)
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Equation (21) and the foregoing substitutions transform the
right side of Eq. (22) to yield

W ′
sca =

∫ 1

−1

∫ 2π

0
ψ ′(θrot)Ŭsca(cos−1 wrot,φrot)dφrotdwrot.

(26)

Finally, we transform from Krot to K to get

W ′
sca =

∫ π

0

∫ 2π

0
ψ ′(θ,φ)Ŭsca(θ,φ) sin θdφdθ, (27)

where we emphasize that the Doppler shift ψ ′ depends on the
direction of q̂sca.

The transformation of the total scattered energy from K to
K ′ depends on the scattering pattern [29, Chap. 5] in K and
the object’s velocity. This contrasts with the transformation of
the incident energy density from K ′ to K in Eq. (7), which
depends only on the velocity.

The total scattered energy cross sections in K ′ and K are
not equal because numerical results in Sec. III show that
Wsca �=W ′

scaψ . Therefore,

C ′
sca = W ′

sca

U ′
inc

= W ′
scaψ

Uinc
�= Wsca

Uinc
= Csca. (28)

We therefore conclude that the total energy scattering cross
section is not Lorentz invariant.

B. Absorbed energy computation

The object absorbs energy by absorbing a certain number
of photons from the pulsed plane wave. The use of photons is
convenient, because the same photons will be absorbed in K ′
as well as K . However, the energy of an absorbed photon in K ′
differs from the energy of the same absorbed photon in K due
to the Doppler shift between the two reference frames. Suppose
that J photons are absorbed during the entire illumination by
the pulsed plane wave. If the frequency of the j th photon,
j ∈ [1,J ], is ν ′

j in K ′, the frequency of the same photon is
νj = ψν ′

j in K . The energy of the j th photon is E′
j = 2πh̄ν ′

j

in K ′ [27, p. 31] and Ej = 2πh̄νj = ψE′
j in K , where h̄ is

the reduced Planck constant. Thus, the absorbed energy in K ′
is related to the absorbed energy in K by

W ′
abs = Wabs

ψ
. (29)

By virtue of Eqs. (7) and (29), the total absorbed energy cross
sections in K ′ and K must be equal:

C ′
abs = W ′

abs

U ′
inc

= Wabs/ψ

Uinc/ψ
= Cabs. (30)

We therefore conclude that the energy absorption cross section
is Lorentz invariant.

This result differs from the one [30, Eq. (61)] obtained by
Twersky, who did not consider that every photon-absorption
event must occur in both K and K ′. Instead, for eternal plane-
wave illumination, in both frames he determined the time-

averaged absorbed power by calculating the net energy flux
across a large sphere surrounding the object. Although this
calculation is correct in K [3,5], no sphere can enclose the
object for all time in K ′.

The energy absorption cross section Cabs may be calculated
from the standard (i.e., power-based) absorption cross section
C̃abs(νp) [9, Sec. 3.4] at each angular frequency of the incident
signal. Now, C̃abs(νp) = P̃abs(νp)/Ũinc(νp), where P̃abs(νp)
is the time-averaged absorbed power, and Ũinc(νp) is the
irradiance with units of power per area at frequency νp. The
incident signal in K is expressed in the frequency domain by
taking the discrete Fourier transform [31] of a discrete-time
version of the incident signal with sampling time ts and
duration Nts [13, Eq. (11)]; thus,

E inc(r,t) ≈ 2

N
Re

⎡
⎣ M∑

p=1

Ẽ
inc
p exp

(−i2πνpt + ikinc
p · r

)⎤⎦.

(31)

The wave vector and the wave number at each frequency
are kinc

p = q̂ inckp and kp = 2πνp/c, respectively. The integer
M = N/2 − 1 for even N and M = (N − 1)/2 for odd
N . The sampling rate 1/ts is chosen to be greater than
twice the maximum frequency of the incident signal, and
the duration Nts must be greater than the duration of the
scattered signal, which is determined by trial and error for any
specific scattering direction. The irradiance of each frequency
component of the incident signal is

Ũinc(νp) = 2
∣∣Ẽinc

p

∣∣2

N2η0
. (32)

For each frequency νp, the absorbed energy can be
calculated by multiplying C̃abs(νp) by the irradiance Ũinc at
that frequency and the duration Nts of the incident signal as

W̃abs(νp) = C̃abs(νp) Ũinc (νp)Nts = C̃abs(νp)
2

Nη0

∣∣Ẽ
inc
p

∣∣2
ts .

(33)

The total energy absorption cross section in K is then com-
puted by summing the absorbed energy over all frequencies of
the incident signal and dividing by the incident energy density,
i.e.,

Cabs = Wabs

Uinc
= 2

Nη0Uinc

M∑
p=1

C̃abs(νp)
∣∣Ẽ

inc
p

∣∣2
ts . (34)

Knowing Cabs, we can find C ′
abs = Cabs.

C. Computation of energy removed from incident signal

In K as well as in K ′, we can compute the energy removed
from the incident signal using the procedure to derive the
standard (power-based) extinction cross section [1, Sec. 4.21]
[32]. Analogously to Eq. (31), the forward-scattered signal
in K ′ can be expressed via the inverse discrete Fourier
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transform as

E ′
sca(q̂ ′

incr
′,t ′) ≈ 2

N
Re

⎧⎨
⎩

M∑
p=1

Ẽ
′sca
p (q̂ ′

inc)

r ′ exp[−i2πν ′
pt + (i2πν ′

p/c)q̂ ′
inc · r ′]

⎫⎬
⎭, (35)

where Ẽ
′sca
p (q̂ ′

inc) is numerically obtained for the pth discrete

Fourier component Ẽ
′inc
p of the incident field in K ′. Note that

Ẽ
′inc
p corresponds to the pth discrete Fourier component Ẽ

inc
p

of the incident field in K defined in Eq. (31).
The standard (power-based) extinction cross section in K ′

is given by [32, Eq. (8.113)]

C̃ ′
ext(ν

′
p) = 4π

k′
p

Im

{
Ẽ

′sca
p (q̂ ′

inc) · [
Ẽ

′inc
p

]∗
∣∣Ẽ

′inc
p

∣∣2

}
, (36)

where the asterisk denotes the complex conjugate. The energy
extinction cross section

C ′
ext = 2

Nη0U ′
inc

M∑
p=1

C̃ ′
ext(ν

′
p)

∣∣Ẽ
′inc
p

∣∣2
t ′s (37)

in K ′ then emerges from C̃ ′
ext(ν

′
p) by adopting the same way

as for the absorption cross section in Eq. (34).
In K , the standard power-based extinction cross section is

[32, Eq. (8.113)]

C̃ext(νp) = 4π

kp

Im

{
Ẽ

sca
p (q̂ inc) · [

Ẽ
inc
p

]∗
∣∣Ẽ

inc
p

∣∣2

}
. (38)

As kp = ψk′
p, |Ẽinc

p | = ψ |Ẽ′inc
p |, and Ẽ

sca
p (q̂ inc) · [Ẽ

inc
p ]

∗ =
ψ3 Ẽ

′sca
p (q̂ ′

inc) · [Ẽ
′inc
p ]

∗
, the identity

C̃ext(νp) = C̃ ′
ext(ν

′
p) (39)

follows. The energy extinction cross section in K is

Cext = 2

Nη0Uinc

M∑
p=1

C̃ext(νp)
∣∣Ẽ

inc
p

∣∣2
ts , (40)

leading to

Cext = C ′
ext, (41)

upon using ts = t ′sca/ψ , |Ẽinc
p | = ψ |Ẽ′inc

p |, and Uinc = ψU ′
inc.

We therefore conclude that the energy extinction cross section
is Lorentz invariant.

D. Conservation of energy in scattering by moving objects

In K , the object is stationary and the forward scattering
theorem [3–5,10,12]

Cext = Csca + Cabs (42)

holds; equivalently,

Wext = Wsca + Wabs. (43)

Although C ′
abs = Cabs and C ′

ext = Cext by virtue of Eqs. (30)
and (41), respectively,

C ′
ext �= C ′

sca + C ′
abs (44)

follows from Eq. (42) because C ′
sca �= Csca. Therefore the

energy removed from the incident signal in K ′ does not equal
the sum of the scattered energy and absorbed energy in K ′;
i.e.,

W ′
ext �= W ′

sca + W ′
abs. (45)

Scattering in K ′ is inelastic, because each spectral compo-
nent of the scattered signal is altered by a two-way Doppler
shift in every scattering direction. In K , no Doppler shift arises
and the scattering is elastic. The inelasticity of scattering in
K ′ results in a change in the kinetic energy of the object in
K ′. The energy removed from the incident signal should be
written as

W ′
ext = W ′

sca + W ′
abs + W ′

mech, (46)

where W ′
mech is the mechanical work done on the object by

the incident signal and has to be equal to the change in the
object’s kinetic energy. Thus W ′

mech may be obtained using
Eq. (46) after first computing W ′

ext, W ′
sca, and W ′

abs. Of course,
were we to posit a mechanical work Wmech in K , we would
have Wmech ≡ 0 since the object is immobile in K .

III. EXAMPLES: SILVER AND
SILICON-CARBIDE SPHERES

We computed the normalized energy cross sections of
uniformly translating spheres made of silver and silicon
carbide with diameters (in K) ranging from 10 to 500 nm and
velocities ranging in magnitude from 0 to 0.9c and directed
along either the ±ẑ′ or the ±x̂′ directions. We obtained the
frequency-dependent permittivity in K of silver from the
measurements of Hagemann et al. [33] and of silicon carbide
from the measurements of Larruquert et al. [34]; see also
Ref. [35].

The incident signal in K ′ was taken to be a plane wave with
its amplitude modulated by a Gaussian pulse and which travels
in the +ẑ′ direction with its electric field aligned along the x ′
axis. The electric field of the incident signal in K ′ is

E ′
inc(r ′,t ′) = x̂′ cos

(
2πcτ ′

λ′
c

)
exp

(
− τ ′2

2σ ′2

)
, (47)

where τ ′ = t ′ − z′/c, λ′
c is the free-space wavelength of the

carrier plane wave in K ′, and σ ′ is the width parameter of the
Gaussian pulse. Equation (3) yields the energy density of the
incident signal in K ′ as [36, Eq. (3.898.2)]

U ′
inc = σ ′√π

2η0

{
1 + exp

[
−

(
2πcσ ′

λ′
c

)2]}
. (48)

In K , the incident signal’s electric field is

E inc(r,t) = Einc cos

(
2πcτ

λc

)
exp

(
− τ 2

2σ 2

)
, (49)
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FIG. 1. Normalized total energy scattering (Q′
sca), energy absorption (Q′

abs), and energy extinction (Q′
ext) cross sections of a silver sphere

as functions of d for v ∈ {±βcx̂ ′,βc ẑ′, − βc ẑ′}, β ∈ [0,0.9], when λ′
c = 550 nm and σ ′ = 1.83 fs. The electrical size ξ = πd/λc in K .

where λc = λ′
c/ψ and σ = σ ′/ψ . Thus,

Uinc = σ
√

π

2η0

{
1 + exp

[
−

(
2πcσ

λc

)2]}
(50)

follows straightforwardly to conform to the identity Uinc =
ψU ′

inc.
For every direction in K ′, we computed Ŭ ′

sca by rectangular
integration of the scattered power density over the duration
of the scattered signal. We used the 41-point Gauss-Kronrod
quadrature [37], [38, pp. 153–155] to integrate Ŭ ′

sca over θ ′ and
the 64-point rectangular integration to integrate over φ′ [38] in
order to compute W ′

sca. The set of nodes for the 41-point Gauss-
Kronrod quadrature contains the nodes for the 20-point Gauss-
Legendre quadrature as a subset. We checked for convergence
of the integration over θ ′ using the error estimate

δ′
θ =

∣∣∣∣W
′
sca,GK − W ′

sca,GL

W ′
sca,GK

∣∣∣∣, (51)

where W ′
sca,GK is calculated using the 41-point Gauss-Kronrod

quadrature and W ′
sca,GL is calculated using the 20-point Gauss-

Legendre quadrature. For all cases examined, δ′
θ < 0.21%. To

check for convergence of the integration over φ′, we defined
the error estimate

δ′
φ =

∣∣∣∣W
′
sca,64 − W ′

sca,32

W ′
sca,64

∣∣∣∣, (52)

where W ′
sca,32 and W ′

sca,64 are computed by 32-point and
64-point rectangular integration, respectively. In all cases we
computed, δ′

φ < 0.03%.

We computed C̃sca(νp) and C̃ext(νp) using analytic expres-
sions emerging from the exact Lorenz-Mie theory [9, p. 103],
and we used the forward-scattering theorem to compute

C̃abs(νp) = C̃ext(νp) − C̃sca(νp). (53)

We computed C̃ ′
ext(ν

′
p) using Eq. (36) and found it to satisfy the

analytically derived Eq. (39), thereby numerically confirming
the invariance constraint derived as Eq. (41). We first deter-
mined Cabs using Eq. (34) and then exploited the analytically
derived Eq. (30) to determine C ′

abs. Finally, we calculated
W ′

sca using Eq. (22) and obtained C ′
sca using Eqs. (8)(the first

equation) and (48).
The normalized total energy scattering, energy absorption,

and energy extinction cross sections of a uniformly translating
silver sphere are shown in Fig. 1 as functions of diameter
d (in K) and velocity, where the carrier wavelength of the
incident signal in K ′ is λ′

c = 550 nm and the width parameter
of the Gaussian function is σ ′ = 1.83 fs. The top panels in
Fig. 1 show the normalized cross sections when the sphere is
either directly advancing toward or receding from the source of
the incident signal at v = βc ẑ′, β ∈ [−0.9,0.9]. The bottom
panels show the normalized cross sections when the sphere
is moving transversely to the propagation direction of the
incident signal with v = ±β x̂′, β ∈ [0,0.9]. The solid and the
dashed red lines in the top panels show where the electrical
size ξ = πd/λc of the sphere in K equals 0.2π and 0.3π ,
respectively.

All three normalized cross sections have a maximum near
d = 100 nm when v = −0.3c ẑ′. Both Q′

sca and Q′
ext rise

053839-6
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FIG. 2. Same as Fig. 1, except that λ′
c = 1100 nm and σ ′ = 3.67 fs.

rapidly as ξ/π increases from 0.2 to 0.3. Due to the symmetry
of the sphere, Qabs and Qext (and thereby Q′

abs and Q′
ext) do not

depend on the propagation direction of the incident signal in K .
For a fixed d, Q′

abs and Q′
ext depend on velocity only through

the Doppler shift of the incident signal from K ′ to K . For
this reason, the panels that show Q′

abs and Q′
ext for velocities

parallel to ±x̂′ are affine transformations of a portion of the
panels for velocities parallel to ±ẑ′. This is not true for Q′

sca,
which is demonstrated by the fact that Q′

sca takes on greater
values in the proximity of {d = 100 nm,v = ±0.7cx̂ ′} than
for any velocity parallel to ±ẑ′.

Except for v = 0, the normalized energy extinction cross
section Q′

ext �= Q′
sca + Q′

abs. When the sphere recedes directly
from the source, Q′

ext > Q′
abs + Q′

sca, because the radiation
pressure on the sphere increases its kinetic energy. However, as
the radiation force reduces the sphere’s kinetic energy when the
sphere is advancing toward the source, Q′

ext < Q′
sca + Q′

abs.
Similarly, Q′

ext < Q′
abs + Q′

sca when v ‖ ±x̂′, transverse to
the propagation direction of the incident signal in K ′. The
scattering pattern of a moving object gets skewed toward the
direction of its velocity.

Figure 2 shows the normalized total energy scattering,
energy absorption, and energy extinction cross sections of
a silver sphere when λ′

c = 1100 nm and σ ′ = 3.67 fs. A
solid and a dashed line in every panel identify ξ = 0.2π and
ξ = 0.3π , respectively. As in Fig. 1, both Q′

sca and Q′
ext rise

rapidly as ξ/π increases from 0.2 to 0.3. Each of the three
normalized cross sections has a maximum in the proximity of
{d = 100 nm,v = −0.8c ẑ′}.

We also computed the normalized cross sections of a
silicon-carbide sphere, as shown in Fig. 3, for an incident signal

with λ′
c = 550 nm and σ ′ = 1.83 fs. The peak value of Q′

sca
is found in the proximity of {d = 150 nm,v = −0.9c ẑ′}. but
the peak value of Q′

ext occurs near {d = 500 nm,v = 0.7c ẑ′}.
Thus, as with the silver sphere, Q′

ext �= Q′
sca + Q′

abs when
v �= 0. The normalized cross sections rise sharply as ξ/π

increases from 0.2 to 0.3, and both Q′
sca and Q′

ext have a ridge
along the ξ = 0.3π curve.

IV. CONCLUDING REMARKS

We found analytically that the energy absorption and energy
extinction cross sections of an object in uniform translational
motion are Lorentz invariant, but the total energy scattering
cross section is not. For that reason, C ′

ext �= C ′
sca + C ′

abs from
the perspective of a stationary observer (i.e., in K ′) but Cext =
Csca + Cabs from the perspective of a comoving observer (i.e.,
in K). Thus, the forward-scattering theorem holds true for
comoving observers but not for other inertial observers.

Calculations for a uniformly translating, solid, homoge-
neous sphere showed that C ′

ext, C ′
sca, and C ′

abs depend strongly
on the sphere’s velocity, size, and composition. As the sphere
recedes directly from the source of the incident signal at speeds
approaching c, its electrical size in K goes to zero, which
causes the normalized cross sections to go to zero. Further-
more, whether the material is a plasmonic metal (e.g., silver) or
simply a dissipative dielectric material (e.g., silicon carbide),
the normalized energy extinction cross section increases
rapidly as the electrical size increases from 0.2π to 0.3π .

In terms of energy, W ′
ext �= W ′

sca + W ′
abs, whereas Wext =

Wsca + Wabs. The inequality W ′
ext �= W ′

sca + W ′
abs is due to the
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FIG. 3. Same as Fig. 1, except for a silicon-carbide sphere.

increase or decrease in the energy of the scattered photons
relative to the incident photons, depending on the two-way
Doppler shift in each scattering direction. The difference
between W ′

ext and W ′
sca + W ′

abs may be accounted for by the
change in the object’s kinetic energy W ′

mech. W ′
ext would only

equal W ′
sca + W ′

abs if the total energy of the scattered photons
in K ′ were equal to the total energy of the incident photons that
were not absorbed. For an object advancing directly toward the
source of the incident signal, all scattered photons will have
more energy than the incident photons that are not absorbed,
unless the former are scattered exactly in the forward direction.
For an object receding from the source of the incident signal,
all scattered photons will have less energy than the incident
photons that are not absorbed, unless the former are scattered
exactly in the forward direction. Thus, the total scattered
energy cross section cannot be Lorentz invariant in general, and
W ′

ext �= W ′
sca + W ′

abs for any object when it advances directly
toward or recedes directly from the source of the incident
signal. We found numerically that the change in kinetic energy

is positive for directly receding spheres, but it is negative for
directly advancing spheres as well as for spheres moving
transversely to the propagation direction of the incident
signal.

The transformation of the incident signal from K ′ to K can
change the directions of the electric field and the magnetic
fields. Due to the symmetry of the sphere, the scattering in
K does not depend on the direction of the electric field of
the incident carrier plane wave. However, scattering by other
objects greatly depends on the direction of that electric field,
which can then affect the total energy scattering cross section
[23, Sec. 3A].
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