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An absolute optical instrument is a region of space, typically defined by a spatially varying index of refraction,
in which bound ray trajectories are closed. Traditional examples of such devices include Maxwell’s fisheye and
the Eaton and Luneburg lenses. In this paper we employ the close analogy between classical mechanics and
geometrical optics to develop a general theory of absolute instruments based on the Hamilton-Jacobi equation.
Based on this theory, we derive many general properties of absolute instruments, and design a number of
previously unknown examples. We also show how absolute optical instruments are related to superintegrable
systems in mechanics and that the optical case is much less restrictive, which leads to an immense design space
of absolute optical instruments.
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I. INTRODUCTION

The ability to engineer a refractive index distribution to
accomplish a particular optical task without resorting to
trial-and-error numerical computation is a long-sought goal
in classical optics. With the advent of transformation optics
[1,2] and fabrication advances in recent years which allow the
construction of spatially graded refractive index distributions
both in two [3] and three dimensions [4], there has also
been a renewed interest in gradient index optics in general.
Here, we present a general and comprehensive theory which
allows construction of an entire class of optical devices from
first principles—the absolute instruments (AIs) [5–9]—which
cannot be designed through transformation optics and of
which, until now, only specific examples were known. These
lenses are fascinating because, unlike standard convex or
concave lenses which have an image plane, an AI can
stigmatically image every point in a three-dimensional (3D)
region of space. Two well-known examples of AIs that were
both mentioned by Born and Wolf [5] are a plane mirror (all
real points on one side of the mirror are virtually imaged
to the half space beyond the mirror) and Maxwell’s fisheye
(all real points have real images across a spherical inversion),
which is shown in Fig. 1(a). In addition to the two AIs already
mentioned, a few other lenses have been discovered within the
last two centuries, such as the Eaton lens [10], the Luneburg
lens [7] as shown in Fig. 1(b), the Miñano lens [8], and the
Lissajous lens [11]. Until now, known 3D AIs other than the
Lissajous lens have all had spherical symmetry in the refractive
index profile, and this specific case has been well studied
[9,12,13].

In this paper we focus on absolute instruments with
bound rays. They have the following known unique properties
[5,8,9,14,15].

(1) Under well-defined limitations, ray trajectories are
closed; light follows periodic motion.

(2) Every point in space is stigmatically imaged to either
itself or at least one other point. In other words, rays emanating
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from one point in space will, at some later time in a bound
system, converge to a single point.

(3) Wave optically, energy passing through a point in space
will eventually return to the same point in space in a bound
system.

(4) The frequency spectrum of the eigenmodes is equidis-
tantly spaced and degenerate, at least approximately [14,15].

These properties are very restrictive. Our task in this paper is
to find other general properties that absolute instruments have
in common, and use them to design such devices. The ultimate
goal is then to find all possible refractive index distributions
n(�r) that result in an absolute optical instrument with bound
light trajectories. It is impossible to reach this goal with the
methods of transformation optics, coordinate transformations,
or other usual methods of gradient index lens design. Instead,
we use methods of Hamiltonian mechanics and the Hamilton-
Jacobi theory that can be adapted to the optical case very well.
This enables us to find very general properties of absolute
instruments in both geometrical and wave optics.

The paper is organized as follows. In Sec. II we summarize
the optical-mechanical analogy, and in Sec. III we employ
Hamilton-Jacobi theory to find many general properties of AIs.
In Sec. IV, we relate the optical path length to the classical
action, and in Sec. V we find general properties of the spectra
of AIs using the WKB method. Finally, in Sec. VI, we apply
our methods to design absolute instruments, and we conclude
in Sec. VII.

II. MECHANICAL-OPTICAL ANALOGY

We begin with the close relationship between classical
mechanics and geometrical optics [16]. Consider a particle
of energy E moving in potential V (�r). The geometrical shape
of its trajectory is determined by Maupertuis’s principle [17]:

δ

∫ B

A

√
2m[E − V (�r)] dl = 0, (1)

where A and B are the initial and final point, respectively,
and dl is the path-length element. On the other hand, a
light ray trajectory in an optical medium with refractive
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FIG. 1. Ray trajectories in the (a) Maxwell fisheye and (b)
Luneburg lens (equivalent to harmonic oscillator). The center of the
potential is marked by a black dot.

index distribution n(�r) is determined by Fermat’s principle
of stationary time [5]:

δ

∫ B

A

n(�r) dl = 0. (2)

Now suppose that the refractive index profile n(�r) in the optical
problem is related to the potential V (�r) and energy E in the
mechanical problem by the relation

n =
√

2m(E − V )

γ
= | �p|

γ
(3)

where �p is the particle’s momentum and γ is a constant of
dimension kg m s−1. Then Eqs. (1) and (2) become identical,
so the two variation problems will have the same solutions;
light rays will follow trajectories which are identical in shape
to the trajectories of the particle.

This close relation between classical mechanics and geo-
metrical optics allows the transfer of results from one field to
the other: for example, if we find a mechanical potential in
which all bound trajectories are closed, we have automatically
found an absolute optical instrument. However, an important
and critical difference exists between the mechanical problem
and the optical problem: in classical mechanics, the energy
E of a particle traveling through a potential V is a variable
related to the particle itself and can have different values;
in the case of light rays in this analogy, E is a variable
related to the refractive index distribution by Eq. (3), so it
is a constant for light rays therein. It turns out that this feature
of fixed energy is in fact a great advantage when designing
AIs. Indeed, it is enough to find a mechanical system that has
closed trajectories for one fixed energy, and we automatically
generate an absolute optical instrument. Clearly, it is far less
restrictive to require closed trajectories for a single energy
than for a range of energies. This is, for example, the case
of Maxwell’s fisheye [18] shown in Fig. 1(a): its refractive
index n = 2/(1 + r2) corresponds to a mechanical particle
with energy E = 0 moving in the potential V = −2/(1 + r2)2,
but for a different energy E �= 0 the trajectories would no
longer be closed. Moreover, it turns out that in some coordinate
systems separation of the Hamilton-Jacobi equation is possible
for a fixed value of E while it is impossible if E can take any
value from some range; an example of such a situation is
given in Sec. VI D. This way, the set of AIs is obviously much

richer than the set of mechanical potentials that give closed
trajectories for a range of energies. Moreover, a situation that is
not very interesting from the mechanical point of view (closed
trajectories for a single energy) may be very interesting from
the optical perspective (leading to an absolute instrument).

Thanks to the mechanical-optical analogy, the problem
of designing AIs is very similar to the problem of finding
classical bound systems that are maximally superintegrable.
A superintegrable system is an integral system which admits
more integrals of motion than degrees of freedom. It is
known that maximal superintegrability leads to closed orbits
in bound mechanical systems; in this case there must be
2n − 1 independent integrals of motion in a system of n

degrees of freedom. For example, in 3D spherically symmetric
systems, the Bertrand theorem [19] states that only two
potentials are able to give closed orbits for particles with any
energy E, the Newtonian potential and the isotropic harmonic
oscillator, and both of these systems possess five constants
of motion; in the optical case, these systems correspond to
the Eaton lens and the Luneburg lens, respectively. Similarly,
other maximally superintegrable bound classical mechanical
systems also form families of absolute optical instruments.
Some excellent references which introduce such mechanical
systems and describe how they can be found are [20–26],
with a thorough recent review given by Miller, Jr. et al. [27].
Potentials such as the Winternitz potential [28] yield rich
families of AIs that have not been discussed in optics literature
before, for example.

The mechanical-optical analogy, together with the feature
of fixed energy, opens a vast new field of investigation: we can
adapt the well-developed methods of theoretical mechanics,
in particular the Hamilton-Jacobi theory, to the situation when
the energy is set to a single value, and then find absolute in-
struments by finding potentials that give closed trajectories for
this energy only. We hope this interesting theoretical problem
will attract the attention of the mathematical community.

III. SEPARABLE HAMILTON-JACOBI EQUATION
LEADING TO ABSOLUTE INSTRUMENTS

Due to the Liouville-Arnold theorem, a system is maximally
superintegrable if and only if the Hamiltonian (expressed
in action-angle variables) is a linear combination of action
variables with integer coefficients, as explained clearly in
[24]. We thus start with the Hamilton-Jacobi equation for
a particle with mass m moving in a potential V (�r). Since
the Hamiltonian H = p2/(2m) + V (�r) does not depend on
time, we can write the action as S = S0 − Et , where E

is the conserved value of energy and S0 is the Hamilton’s
characteristic function (in the following we will call it simply
“action”). The Hamilton-Jacobi equation for S0 is

(∇S0)2

2m
+ V (�r) = E. (4)

We will assume that Eq. (4) is fully separable in an
orthogonal curvilinear coordinate system (q1,q2,q3). This
assumption allows us to express the action as a sum S0 =
S1(q1) + S2(q2) + S3(q3), and although separability is not a
requirement for superintegrability in general [29] it is likely
necessary for superintegrability in systems analogous to AIs
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[30–35] although we are unaware of a suitable proof. After
separation, the Hamilton-Jacobi equation takes the form

1

2m

3∑
i=1

1

h2
i

(
dSi

dqi

)2

+ V (q1,q2,q3) = E, (5)

where hi are Lamé coefficients. Separating Eq. (5), we get
equations for Si in the form

Si =
∫

dSi

dqi

dqi =
∫

pi(qi,E,α,β) dqi, (6)

where α and β are separation constants and pi = ∂Si/∂qi

are the canonical momenta associated with the coordinates
qi . Their particular functional dependence pi(qi,E,α,β) fol-
lows from Eq. (5). We also define the action variables
J1,J2, and J3 corresponding to full oscillations of the coor-
dinates q1,q2, and q3, respectively:

Ji(E,α,β) = 1

2π

∮
pi dqi = 1

π

∫ qi,+

qi,−
pi dqi . (7)

Here qi± denote the turning points of qi , i.e., the values
for which pi turns to zero. In the case of a coordinate that
does not oscillate forward and backward between the turning
points but rather changes monotonously (as in the case of
the polar coordinate ϕ for a particle orbiting the origin),
the corresponding action variable would instead be Ji =
1/(2π )

∫ qi+
qi−

pi dqi and qi∓ would correspond to the end points
of one full cycle of the coordinate qi . We will refer to such a
coordinate as a “cyclic” coordinate.1

The knowledge of the three functions Ji(E,α,β) enables, in
principle, eliminating the variables α and β and expressing the
energy as a function of J1,J2, and J3, i.e., E = E(J1,J2,J3).
Then we can calculate the frequencies of oscillations in each
coordinate as [17]

ωi =
(

∂E

∂Ji

)
Jj ,Jk

, (8)

where the partial derivative is taken with the other two,
Jj and Jk , fixed (i,j,k all different). Only if these frequencies
are commensurable (i.e., if their ratios are rational) will we get
closed orbits. This can be expressed by the relation

ω1

b1
= ω2

b2
= ω3

b3
≡ ω (9)

between the frequencies, where bi ∈ N and the greatest
common divisor of b1,b2, and b3 is unity; ω is the frequency of
the motion as a whole; the corresponding period is T = 2π/ω.

To calculate the partial derivatives (8), we employ the
Jacobian matrix of the transformation (E,α,β) → (J1,J2,J3)
and its inverse:

M = ∂(J1,J2,J3)

∂(E,α,β)
, M−1 = ∂(E,α,β)

∂(J1,J2,J3)
. (10)

We see that the first line of M−1 contains precisely the
desired frequencies ω1,ω2, and ω3. To express them, we invert

1We put the word “cyclic” into quotation marks to distinguish it
from the usual meaning of cyclic coordinates—the ones on which the
Lagrangian and Hamiltonian do not depend explicitly.

the matrix M using the method of minors. This yields the
frequencies

ω1 = (M−1)11 = M22M33 − M23M32

det M
, (11)

ω2 = (M−1)12 = M13M32 − M12M33

det M
, (12)

ω3 = (M−1)13 = M12M23 − M22M13

det M
. (13)

The conditions (9) then yield the following three conditions
for derivatives of the actions:

∂(Ji/bj + Jj/bi)

∂α

∂Jk

∂β
= ∂(Ji/bj + Jj/bi)

∂β

∂Jk

∂α
, (14)

where the triple indices (i,j,k) are cyclic permutations of
(1,2,3). Note that in these conditions there are no derivatives
with respect to energy E. This is advantageous and also natural
because we are interested in closed trajectories for a fixed
value of energy, so any energy dependence of the quantities is
irrelevant.

If we define the “total action” as

J ≡ b1J1 + b2J2 + b3J3, (15)

the conditions (14) can be rewritten as

∂J

∂α

∂Ji

∂β
= ∂J

∂β

∂Ji

∂α
, i = 1,2,3. (16)

In the following we show that these conditions imply that both
of the derivatives ∂J

∂α
and ∂J

∂β
are equal to zero. To do that, we

suppose for a moment that the contrary is true, i.e., that at least
one of the derivatives ∂J

∂α
and ∂J

∂β
is nonzero. Then it would

follow from Eqs. (16) that also the other one has to be nonzero
and so have to be all the other derivatives in Eqs. (16). Then we
could divide each equation by the respective ∂J

∂β

∂Ji

∂β
and obtain

∂J1
∂α

∂J1
∂β

=
∂J2
∂α

∂J2
∂β

=
∂J3
∂α

∂J3
∂β

, (17)

which could be rewritten using an identity (common in
thermodynamics),(

∂A

∂B

)
C

(
∂B

∂C

)
A

(
∂C

∂A

)
B

= −1, (18)

as (
∂α

∂β

)
J1

=
(

∂α

∂β

)
J2

=
(

∂α

∂β

)
J3

. (19)

This would imply that the action variables are functions of
one another or, equivalently, they all are functions of one
common function γ (α,β). Taking this γ as an alternative
separation variable along with another, independent, function
δ(α,β), it would follow that all J1,J2, and J3 are functions of
only one separation variable, which is an unphysical situation.
Therefore the assumption that some of the derivatives ∂J

∂α
and

∂J
∂β

are nonzero is wrong, and we are left with the only other
possibility—both of the derivatives must be zero:

∂J

∂α
= ∂J

∂β
= 0. (20)
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We have come to one of the key results of this paper: for
a mechanical system that has closed trajectories for a given
energy E, the total action J (for this energy) cannot depend on
the separation constants α and β. Similarly, by the mechanical-
optical analogy, the condition (20) is also the key property of
absolute optical instruments for which we define the quantities
Ji,J,ωi , etc., analogously using the relation (3).

The case of closed trajectories for different energies

Consider now a situation that is of great interest in
mechanics, namely, that the trajectories are closed for not only
one but for a range of energies. Then the condition (20) will
hold for a range of E, and hence the total action J (E,α,β) can
be a function of E only, i.e., J = f (E). Denoting the inverse
function by g, we can write

E = g(J ) = g(b1J1 + b2J2 + b3J3), (21)

and we can easily express the three periods,

ωi = ∂E

∂Ji

= big
′(J ), (22)

where the prime denotes a derivative. Combining this with
Eq. (9), we find that ω = g′(J ), so ω is a function of J . But
since J is a function of E, it follows that ω is a function
of energy, independent of α and β. We arrive at an important
result: in potentials that have the focusing property for a range
of energies, the time period is the same for all trajectories
with the same energy. We can verify this for two well-known
examples: in the Hooke potential it is indeed so because
the period is even equal for all energies; for the Newtonian
potential it is also true because there the period depends on
the length of the main axis of the elliptic orbit (Kepler’s third
law), which in turn depends on the energy only.

This means that in potentials that have closed orbits for
a range of energies, when particles are shot from a given
point with the same velocity in different directions, it will
take the same time for all of them to complete a closed path.
Note that this is not true for potentials that do not give closed
trajectories for different energies but only for one; for example,
a particle with zero energy moving in Maxwell’s fisheye
potential V = −2/(1 + r2)2 clearly has a shorter travel time
for a centered circular path than for a highly eccentric path.
What is the same even for Maxwell’s fisheye is the optical
time [time traveled by a light ray in the corresponding optical
medium n(�r)] which, in contrast to mechanical time, is the
same for different trajectories; we will show this in the next
section.

IV. TOTAL ACTION AS THE OPTICAL PATH LENGTH

Consider an absolute optical instrument. For the corre-
sponding mechanical system, i.e., a particle moving in a
potential V for which the total action (15) satisfies the
conditions (20), we define the quantity

I =
∮

�p d�l =
∮

p dl, (23)

where �p is the particle momentum vector, and the integral
is taken over the whole closed trajectory of the particle. By

the mechanical-optical analogy, Eq. (3), I is proportional
to the optical path length s = ∮

n dl of the closed light ray
corresponding to the particle trajectory because the magnitude
of the momentum �p is proportional to the refractive index n.
At the same time, we can express the integral (23) using the
coordinates (q1,q2,q3) as

I =
∮ 3∑

i=1

pi dqi, (24)

where pi are the canonical momenta associated with the
coordinates qi because the form

∑
i pi dqi is invariant with

respect to the point transformation (x,y,z) → (q1,q2,q3),
which is a special case of the Mathieu transformation [36].
Now, interchanging summation and integration in Eq. (24),
we can express I as

I =
3∑

i=1

bi

∮
pi dqi = 2

3∑
i=1

bi

∫ qi,+

qi,−
pi dqi. (25)

Here we have taken into account that to complete a closed
orbit the particle will require a time T = 2π/ω, which, due to
Eq. (9), contains bi periods of the coordinate qi ; therefore the
integral over one cycle of the coordinate qi has to be taken bi

times. Comparing now Eq. (25) with the actions Ji according
to Eq. (7), we see that

I = 2π

3∑
i=1

biJi = 2πJ. (26)

This way, the quantity I and hence also the optical path length
s of a closed ray along with it is proportional to the total action
defined in Eq. (15). From conditions (20) it then follows that
for absolute instruments the optical lengths of the rays should
not depend on the separation constants, i.e., they should be the
same for all rays. This is in fact a very natural requirement:
if rays form closed trajectories, there are infinitely many rays
by which one can get from a point back to the same point
again. Since the optical path lengths of all these rays should
be stationary due to Fermat’s principle, they must simply be
equal. This also gives the conditions (20) a clear physical
meaning.

Finally, we calculate the time period Tray needed for a ray to
complete a closed path. This period can clearly be expressed
in terms of the optical path length of the ray s defined above as
Tray = s/c, where c is the speed of light in vacuum. Note that
this period has nothing to do with the period Tparticle = 2π/ω of
motion of the equivalent mechanical particle. This is because
the “mechanical time” t and “optical time” τ are quite different
quantities [16] despite the close mechanical-optical analogy.
Indeed, we can express the differentials of both times using
the path element dl as

dt = dl

vparticle
= m

dl

p
, dτ = dl

vlight
= 1

c
n dl. (27)

Now, since the refractive index n is proportional to the particle
momentum p, we see that if n grows then dτ also grows while
dt decreases. This way, we cannot expect any direct relation
between the mechanical period Tparticle and optical period Tray.
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V. SPECTRUM OF ABSOLUTE INSTRUMENTS FROM
THE WKB METHOD

An important characteristic of an optical device with
bounded trajectories is the frequency spectrum of its eigen-
modes. It has been shown by two different methods [14,15] that
for spherically symmetric absolute instruments the spectrum
has distinct properties: it is equidistant and degenerate, at least
approximately. The reason for this is simple: if light rays form
closed loops in an AI, then after a certain time all light rays
emitted from a given point of AI must return to the same point
again. Motion of rays in an AI is therefore periodic, and the
same can be expected for waves, at least at high frequencies.
Now each wave in an AI can be decomposed into modes,
each of which evolves harmonically with its frequency. If the
total wave should repeat periodically, there should be some
common period of all the modes. In other words, their angular
frequencies should be multiples of some common fundamental
frequency.

In the following we show that the above characteristic of
the spectrum applies not only to spherically symmetric AIs but
also to the most general ones discussed in this paper. To do
this, we employ the WKB method and the fact that the action
variables J are closely related to the quantized semiclassical
phases.

For simplicity, consider a monochromatic scalar wave ψ

of wave number k = ω/c propagating in an AI with refractive
index n(�r). It is governed by the Helmholtz equation

�ψ + k2n2ψ = 0. (28)

This equation can be solved approximately by the WKB
method. To do that, we write ψ in the form ψ = ρ exp(iφ),
where φ is the phase, or eikonal, of the wave. Performing the
derivatives, neglecting the term �ρ with respect to ρ(∇φ)2,
and separating the real and imaginary parts, we get two
equations. One of them is the eikonal equation

(∇φ)2 = k2n2 (29)

and the other one is the equation for ρ:

2 ∇ρ∇φ + ρ�φ = 0. (30)

Clearly, Eq. (29) is very similar to the Hamilton-Jacobi
equation (4). The two equations become identical when we
make the identification described by Eq. (3) and in addition
set φ/k = S0/γ .

Now, according to our assumption, Eq. (4) separates in the
coordinate system (q1,q2,q3) and therefore so does Eq. (29).
To solve it, we can follow the same procedure as we did for
Eq. (4), i.e., write φ as a sum

∑
i φi(qi) and solve an equation

analogous to Eq. (6) for each φi . In addition, however, for
each coordinate qi we now have to match the solution in the
classically allowed region to the solution in the classically
prohibited region where the wave has to die out evanescently.
As is well known [37], there is a semiclassical phase factor of
π/4 associated with each turning point qi,±. (In the case of a
“cyclic” coordinate defined in Sec. III, this factor is missing.)
Therefore the total change of the phase φi between the turning
points qi,− and qi,+,

�i ≡
∫ qi,+

qi,−

dφi

dqi

dqi, (31)

must be �i = (Ni + 1/2)π , where Ni = 0,1,2, . . . . On the
other hand, thanks to the above described identification φ/k =
S0/γ , we can express the phase change �i between the turning
points in terms of the action variable Ji using Eqs. (6), (7), and
(31). This gives the relation

�i = kπJi

γ
= (Ni + 1/2)π, (32)

which, in fact, is a quantization condition for k. To see its
meaning clearly, we employ the fact that for an AI the total
action (15) is a constant as we have shown. Using the relations
(3) and (26), we see that J = γ

∮
ndl/(2π ) = γ s/(2π ).

Inserting this into Eq. (32) and using Eq. (15), we find the
wave number corresponding to the mode (N1,N2,N3) as

kN1,N2,N3 = 2π

s

3∑
i=1

bi

(
Ni + 1

2

)
. (33)

This is the formula for the semiclassical spectrum of an
absolute instrument. Since bi ∈ N, we see that the spectrum
obeys the general patterns of AIs mentioned above. In a case
where one of the coordinates qi is “cyclic”, the term 1/2 in the
parentheses would be missing for that coordinate.

A. Wave period

Thanks to the fact that the eigenfrequencies ωN1,N2,N3 =
ckN1,N2,N3 of the modes obey the rule (33), there exists some
minimum time period Twave after which the phases of all modes
will advance by an integer number of 2π (up to a possible
common global phase). After this time, the wave in the AI will
resume its original state, so the wave motion will be periodic
as we expect. To find this period, we use the fact that the
greatest common divisor of the numbers bi is unity. The period
must then be simply Twave = 2π/(2πc/s) = s/c = Tray. This
is exactly what we would expect—the period of repetition of
the wave pattern is equal to the period of motion of rays in the
absolute instrument.

B. Spectrum of spherically symmetric absolute instruments

We now compare the general result (33) for an AI spectrum
with a previously derived formula for spectra of AIs with
spherical symmetry. In [14] it was derived by the WKB method
that the semiclassical wave numbers of the eigenmodes satisfy
the condition

k = 1

r0n(r0)

[
μ

(
N + 1

2

)
+ l + 1

2

]
, (34)

where r0 is the radius of the trajectory of a circular ray, μ

determines the angle δ swept by the radius vector between
two radial turning points as δ = π/μ, and N,l ∈ N0. Let us
check what our general formula (33) states in this case. We will
assume that μ = P/Q with P and Q integers. Then the angle
swept by the radius vector between two radial turning points
is δ = Qπ/P , so there are P cycles in the radial direction
per Q angular cycles, hence in Eq. (9) applied to spherical
coordinates (r,θ,ϕ) we have br = P and bθ = bϕ = Q. The
optical path length of the full orbit is then s = 2πQr0n(r0)
(we are taking the circular orbit that corresponds to Q full
rotations). Combining all this together and taking into account
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that the azimuthal angle ϕ does not have the factor 1/2 for the
reason described above, Eq. (33) gives the spectrum

k = 1

Qr0n(r0)

[
P

(
Nr + 1

2

)
+ Q

(
Nθ + 1

2

)
+ QNϕ

]

= 1

r0n(r0)

[
μ

(
Nr + 1

2

)
+ Nθ + Nϕ + 1

2

]
, (35)

which is exactly Eq. (34) if we identify N = Nr and l = Nθ +
Nϕ . This shows that our general method exactly matches the
previously known special case.

VI. APPLYING THE GENERAL METHOD TO DIFFERENT
COORDINATE SYSTEMS

We now apply the condition (20) in different situations.
Some of them are already known, such as the case of
spherically symmetric AIs [8,9]; in other cases we get new
absolute instruments. For simplicity, we will set the mass of
the particle to unity, m = 1, for the remainder of this paper.

A. Cartesian coordinates

In the first example, let (q1,q2,q3) be the Cartesian coordi-
nate system (x,y,z). The Hamiltonian

H = p2
x + p2

y + p2
z

2
+ V (x,y,z) = E (36)

separates if the potential is in the form V = Vx(x) + Vy(y) +
Vz(z). This leads to the action variables

Jx = 1

π

∫ x+

x−

√
2[α − Vx(x)] dx, (37)

Jy = 1

π

∫ y+

y−

√
2[β − Vy(y)] dy, (38)

Jz = 1

π

∫ z+

z−

√
2[E − α − β − Vz(z)] dz. (39)

From Eq. (20) we then get bxJ
′
x(α) − bzJ

′
z(E − α − β) =

0, where the prime denotes a derivative. Since this must
hold for any α and β, we immediately see that J ′

z(E −
α − β) cannot depend on β, so it must be a constant
and cannot depend on E either. Evaluating then the fre-
quencies according to Eqs. (11)–(13) using Eqs. (37)–(39),
we find that ωx = 1/(dJx/dα), ωy = 1/(dJy/dβ), and ωz =
1/(∂Jz/∂E)α,β . This way, the frequencies ωi depend neither
on the energy nor the separation constants. This is an important
conclusion that is specific to the 3D situation as it does not hold
for two-dimensional (2D) systems [38].

To find the possible forms of the potentials Vx,y,z, we write
explicitly the period of oscillation in x:

Tx = 2π

ωx

=
√

2
∫ x+

x−

dx√
α − Vx(x)

(40)

(we write only the expression for the x coordinate, as the
expressions are similar for the others). This equation is
invertible [17], and is equivalent to Eq. (4) in [38] and
Eq. (0.10) in [24], where it is extensively studied in the
context of AIs and superintegrable systems, respectively. Upon

inversion,

x+(Vx)−x−(Vx)= Tx

π
√

2

∫ Vx

0

dα√
Vx−α

= Tx

√
2Vx

π
, (41)

where we have used the fact that Tx is constant. Equation (41)
provides considerable freedom. It is only necessary that the
two branches x−(Vx) and x+(Vx) of the function inverse to
Vx(x) be nonincreasing and nondecreasing, respectively, but
otherwise one of them can be chosen arbitrarily and the other
branch is then calculated from Eq. (41). For the symmetric
case when x+(Vx) = −x−(Vx) we get Vx = ω2

xx
2/2, which

corresponds to the harmonic oscillator. Choosing this form
of potential for each of the coordinates x,y, and z yields the
Lissajous lens [11]. Another solution where the potential is
analytic, the Winternitz model [39], corresponds to the choice

Vx = 1

2
ω2

xx
2 + kx

x2
. (42)

Choosing the potentials Vx,Vy, and Vz in the most general
manner yields the generalized Lissajous lenses discussed in
Sec. IV of [38].

Note also that whatever combination of potentials
Vx,Vy, and Vz we choose there is always an additional freedom
to later choose any E in the index of refraction n, as the energy
E will not affect the dependence of the action variables on the
separation constants.

B. Spherical coordinates

We now analyze the situation when the Hamilton-Jacobi
equation separates in spherical coordinates (r,θ,ϕ).

1. Spherically symmetric absolute instruments

First consider a spherically symmetric (central) potential
V (r) depending only on the radial coordinate. The Hamilton-
Jacobi equation

1

2

(
dSr

dr

)2

+ 1

2r2

(
dSθ

dθ

)2

+ 1

2r2 sin2 θ

(
dSϕ

dϕ

)2

+ V (r)=E

(43)

gives the separated equations

dSϕ

dϕ
= α,

(
dSθ

dθ

)2

+ α2

sin2 θ
= β2,

1

2

(
dSr

dr

)2

+ β2

2r2
+ V (r) = E. (44)

The separation variable α has the physical meaning of
projection of the angular momentum to the z axis. The action
variables are then

Jr = 1

π

∫ r+

r−

√
2[E − V (r)] − β2

r2
dr, (45)

Jθ = 1

π

∫ π−arcsin(α/β)

arcsin(α/β)

√
β2 − α2

sin2 θ
dθ = β − |α|, (46)

Jϕ = 1

2π

∫ 2π

0
|α| dϕ = |α|. (47)
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Note the fixed limits and the factor 1/(2π ) in Eq. (47), which
corresponds to the “cyclic” coordinate ϕ in the sense explained
in Sec. III. Now let us assume as in Sec. V B that there are
P radial cycles per Q cycles in θ and ϕ, so br = P and bθ =
bϕ = Q. Equation (20) then gives two conditions. The first
one, ∂(PJr + QJθ + QJϕ)/∂α = 0, is satisfied automatically
because Jr does not depend on α. From the second condition
∂(PJr + QJθ + QJϕ)/∂β = 0 it then follows that

∂Jr

∂β
= − 1

π

∫ r+

r−

β dr

r2
√

2[E − V (r)] − β2

r2

= −Q

P
. (48)

The integral in this equation expresses the turning angle δ, i.e.,
the angle swept by the radius vector between two radial turning
points if the particle has total angular momentum β [17]. This
way, Eq. (48) expresses the requirement that the turning angle
is a rational multiple of π , which is exactly the well-known
condition for trajectories in a central potential to be closed
[17]. If the energy is fixed, there are infinitely many such
potentials. A comprehensive analysis of the corresponding
refractive indices and a general method for how to generate
them are given in [9]. On the other hand, if we require the
condition (48) to hold for a range of energies, there are only
two potentials that satisfy it [19], namely, V (r) = −Cr−1 and
Cr2 (with C > 0).

Finally, we express Jr explicitly. Integration of Eq. (48)
gives Jr = const − βQ/P . It is not difficult to determine the
integration constant. Equations (46) and (47) tell us that Jθ =
Jϕ = 0 must hold when β = 0, and we know that J = PJr +
QJθ + QJϕ . This fixes the constant to J/P and we get Jr =
(J − βQ)/P .

2. Modifying spherically symmetric absolute instruments

It turns out that when we have a central potential corre-
sponding to an absolute instrument it is possible to modify it
by adding certain terms and the focusing properties will not be
lost, i.e., we get again an AI. We have found this interesting
property after inspiration from a paper by Evans [20]. To show
this, suppose that the potential V (r) satisfies the condition

(48), and take a different potential

V ′ = V (r) + k2
x

2x2
+ k2

y

2y2
+ k2

z

2z2
(49)

with arbitrary kx,ky,kz > 0. The Hamilton-Jacobi equation has
now three additional terms compared to Eq. (43). Repeating
the standard procedure, we find the action variables

Jr = 1

π

∫ r+

r−

√
2[E − V (r)] − β2

r2
dr = J − Qβ

P
, (50)

Jθ = 1

π

∫ θ+

θ−

√
β2 − k2

z

cos2 θ
− α2

sin2 θ
dθ = β − kz − |α|

2
,

(51)

Jϕ = 1

π

∫ ϕ+

ϕ−

√
α2 − k2

x

cos2 ϕ
− k2

y

sin2 ϕ
dϕ = |α| − kx − ky

2
,

(52)

where in Eq. (50) we have used the result from the previous
section. Note that the coordinate ϕ is no longer “cyclic”.

It is now easy to check that

J ′ ≡PJr+2QJθ+2QJϕ = J−Q(kx + ky + kz), (53)

where J refers to the total action for the potential V (r)
calculated in the previous section. If we now interpret J ′
as the total action for the problem with the potential (49),
we see that it satisfies the conditions (20) because it does
not depend on α or β. Moreover, from Eq. (53) we see
that the new coefficients from Eq. (9) are now b′

r = P and
b′

θ = b′
ϕ = 2Q. This shows that adding the special terms to the

central potential V indeed preserves the focusing properties of
the potential. However, thanks to doubling of the constants,
b′

θ = 2bθ and b′
ϕ = 2bϕ , compared to the potential V there

are now twice as many oscillations in the angles θ and ϕ per
one oscillation in r than in the previous case. Another differ-
ence is that the total action J ′ is now smaller than the previous
one J . A trajectory in the potential (49) with V (r) taken as the
Newtonian potential is shown in Fig. 2(a) and compared to the
situation without the additional terms [Fig. 2(b)].

0.05 0.10 0.15 0.20
x

0.02
0.04
0.06
0.08
0.10
0.12

y

0.05 0.10 0.15 0.20
x

0.05

0.10

y

)b()a(

FIG. 2. (a) The trajectory of a particle with energy E = −4 in the potential (49) with V (r) = −1/r being the Newtonian potential and
kx = 0.01, ky = 0.005, kz = 0. The initial condition was chosen such that the trajectory lies in the plane z = 0. The soft reflection from the
planes x = 0 and y = 0 is clearly seen. (b) For comparison we show the trajectory in a pure Newtonian potential V (r) = −1/r with the same
initial conditions.
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An interesting situation corresponds to the limit kx,ky,kz →
0. Then the effect of the additional terms is present only in the
immediate neighborhood of the planes x = 0, y = 0, and z =
0 where there are infinite potential barriers. This is equivalent
to an effect of three mutually orthogonal plane mirrors placed
in these planes. The focusing property of the potential V ′ is
then not surprising—compared to the potential V , the motion
of the particle is now simply “reflected” in the three mirrors,
so it occurs (or “is imaged”) only in a single octant of space.

Of course, we could also modify the potential V by adding
fewer than three special terms discussed above, which would
correspond to one or two of the ki in Eq. (49) being zero.
In this case a similar analysis could be made and it would
be found again that we get an absolute instrument, now with
still different frequency constants b′′

r ,b
′′
θ , and b′′

ϕ . We leave this
analysis to the reader.

C. Rotational parabolic coordinates

Next we apply our method to the case of rotational parabolic
coordinates (σ,τ,ϕ) that are related to Cartesian coordinates
by

x = στ cos ϕ, y = στ sin ϕ, z = τ 2 − σ 2

2
. (54)

The Hamiltonian

H = p2
σ + p2

τ

2(σ 2 + τ 2)
+ p2

ϕ

2σ 2τ 2
+ V (σ,τ ) (55)

yields the Hamilton-Jacobi equation

(
dSσ

dσ

)2

+
(

dSτ

dτ

)2

+
(

1

τ 2
+ 1

σ 2

)(
dSϕ

dϕ

)2

+ 2(σ 2 + τ 2) V (σ,τ ) = 2(σ 2 + τ 2)E. (56)

Being inspired by the Hamilton-Jacobi equation for the radial
part of a harmonic oscillator in polar coordinates, we take the
potential in the form

V = B(σ 2 − τ 2) − 2A

σ 2 + τ 2
= −A + Bz

r
(57)

where A � 0 and B are constants. For B = 0, V reduces to
the Newtonian potential. We substitute Eq. (57) into Eq. (56)
and find the action variables

Jσ = 1

π

∫ σ+

σ−

√
2A + β + 2(E − B)σ 2 − α2

σ 2
dσ

= 2A + β

4
√−2(E − B)

− |α|
2

, (58)

Jτ = 1

π

∫ τ+

τ−

√
2A − β + 2(E + B)τ 2 − α2

τ 2
dτ

= 2A − β

4
√−2(E + B)

− |α|
2

, (59)

Jϕ = |α|. (60)

In evaluating the integrals for Jσ and Jτ we have assumed that
E < −|B|. The total action is then

J = bσ Jσ + bτJτ + bϕJϕ

=
(

bϕ−bσ

2
−bτ

2

)
|α|+

(
bσ√−2(E − B)

− bτ√−2(E+B)

)
β

4

+ bσ A

2
√−2(E − B)

+ bτA

2
√−2(E + B)

. (61)

The conditions (20) then require that the factors in front of β

and α are zero, which results in the conditions

bϕ = bσ + bτ

2
, (62)

E = −B
b2

σ + b2
τ

b2
σ − b2

τ

. (63)

Keeping aside the well-known case when V reduces to the
Newtonian potential (this corresponds to B = 0 and bσ =
bτ = bϕ), let us discuss the case of B �= 0. The condition
E < −|B| implies that if B > 0 we must have bσ > bτ , and if
B < 0 we must have bσ < bτ .

Equation (63) then reveals very interesting properties of
the potential (57): any combination of the coprime natural
numbers bσ and bτ , where bσ �= bτ , corresponds to a certain
energy value for which we get an absolute instrument. It is
not hard to see that such energies form a dense set on the
interval (−∞, − |B|). This way, we have found a potential
that has focusing properties for infinitely many energies, and
the character of the motion is different for different energies.
The trajectories for some of them are shown in Fig. 3.
Moreover, the potential (57) can even be modified by adding
k2
x/x

2 + k2
y/y

2 to it (but not k2
z /z

2), which does not destroy the
properties of the AI. The reason is similar to that in the case
of spherical coordinates in the previous section.

D. Bispherical coordinates

Next we take the bispherical coordinates (σ,τ,ϕ) related to
the Cartesian ones by

x = sin σ

cosh τ − cos σ
cos ϕ, (64)

y = sin σ

cosh τ − cos σ
sin ϕ, (65)

z = sinh τ

cosh τ − cos σ
. (66)

It is easy to show that for the potential

V = 1
2 f (τ )(cosh τ − cos σ )2 (67)

the Hamilton-Jacobi equation separates for a fixed energy
E = 0. Indeed, in this case we have the Hamiltonian

H = (cosh τ − cos σ )2

2

(
p2

σ + p2
τ + p2

ϕ

sin2 σ
+ f (τ )

)
= 0

(68)

and the Hamilton-Jacobi equation becomes(
dSσ

dσ

)2

+ 1

sin2 σ

(
dSϕ

dϕ

)2

+
(

dSτ

dτ

)2

+ f (τ ) = 0. (69)
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FIG. 3. Projections of trajectories into planes xy and xz in the potential (57) with A = 1 and B = 0.1 and different energies: (a) E =
−5B/4 (with bσ = 3, bτ = 1, bϕ = 2), (b) E = −5B/3 (with bσ = 4, bτ = 2, bϕ = 3), (c) E = −61B/60 (with bσ = 11, bτ = 1, bϕ = 6), and
(d) E = −109B/60 (with bσ = 13, bτ = 7, bϕ = 10).

Repeating the usual procedure with separation constants β � 0
and α, we find the action variables

Jϕ = |α|, (70)

Jσ = 1

π

∫ σ+

σ−

√
β2 − α2

sin2 σ
dσ = β − |α|, (71)

Jτ = 1

π

∫ τ+

τ−

√
−β2 − f (τ ) dτ. (72)

If we set bσ = bϕ , the condition ∂J/∂α = 0 is satisfied
automatically. The second condition ∂J/∂β = 0 then implies

∂Jτ

∂β
= − 1

π

∫ τ+

τ−

β dτ√
−β2 − f (τ )

= −bσ

bτ

. (73)

Compare now this equation with Eq. (48). Setting τ = ln r ,
f = 2r2V,E = 0, bσ = Q, and bτ = P , we can transform the
equations to one another. This means that whenever we find
some AI that separates in spherical coordinates as described
in Sec. VI B (call this AIspherical) we can find its counterpart
that separates in bispherical coordinates (call this AIbispherical).
This remarkable relation can be explained in a natural way.
It can be shown that the AIbispherical is related to the AIspherical

by a transmutation [16] by spherical inversion. The spherical
inversion is a conformal map (the only nontrivial 3D one), so it
transforms isotropic refractive index profiles again to isotropic
ones. Figure 4 shows trajectories in the potential (67) for two
different functions f (τ ) corresponding to transmutation of the
Hooke potential and the Newtonian potential.

Moreover, the transmutation argument can further be
extended to arbitrary AIs, also the ones without spherical
symmetry. This way, for any absolute instrument we can find
infinitely many of its partners by transmuting it by spherical
inversions with different centers and radii.
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FIG. 4. Projections of trajectories into planes xy and xz in the
potential (67) for two different functions f (τ ): (a) f (τ ) = e4τ − 2e2τ ,
which corresponds to transmutation of the Hooke potential (Luneburg
lens) in spherical inversion, and (b) f (τ ) = 2(e2τ − eτ ), which
corresponds to transmutation of the Newtonian potential (Eaton lens).
Each trajectory lies on a sphere because before the transmutation it
would lie in a plane, and spherical inversion transforms planes into
spheres.
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TABLE I. Maximally superintegrable potentials based on Evans [20].

Potential and separation coordinates Action variables Notes

V1 = k(x2 + y2 + z2) + k1
x2 + k2

y2 + k3
z2

Cartesian
Jx = α

2
√

2k
−

√
k1
2

Jy = β

2
√

2k
−

√
k2
2

Jz = E−α−β

2
√

2k
−

√
k3
2

J = E

2
√

2k
−

√
k1
2 −

√
k2
2 −

√
k3
2

Special case of Secs. VI A and
VI B 2; bi = 1

V2 = − k

r
+ k1

x2 + k2
y2

spherical
Jr = −β − k√−2E

Jθ = β − α

Jϕ = α

2 −
√

k1
2 −

√
k2
2

J = −√
2k1 − √

2k2 + k√−2E

Special case of Sec. VI B 2;
br = bθ = 1,bφ = 2

V3 = k1x

y2
√

x2+y2
+ k2

y2 + k3
z2

V3,modified = V3 + k0r
2

spherical

Jr = − 1
2 β + E

2
√

2k0

Jθ = β−α+√
2k3

2

Jϕ = α −
√

k2−k1
2 −

√
k2+k1

2

J = −
√

k2−k1
2 −

√
k2+k1

2 + √
2k3 + E√

2k0

See Sec. VI E 1;
br = bθ = 2, bϕ = 1

A special case of the potential (67) corresponds to the
choice f = −1/ cosh2 τ , which gives V = −2/(1 + r2)2.
Remarkably, we obtain the same potential even when we
perform the above-described transmutation, i.e., f/(2r2) =
−2/(1 + r2)2 as well. Both of these potentials correspond
to Maxwell’s fisheye, which is a transmutation of itself in
spherical inversion.

Finally, we put the potential (67) into the form suitable for
ray tracing. Direct calculation shows that

V = 1

2

1(
1+r2

2

)2 − z2
f

[
arcsinh

z√(
1+r2

2

)2 − z2

]
. (74)

E. Superintegrable potentials as absolute instruments

As we have mentioned, a superintegrable system is a system
with more integrals of motion than degrees of freedom. The
additional integrals restrict the trajectory in the phase space,
so such systems are good candidates for absolute instruments.
In the following we discuss separately the cases of maximally
and minimally superintegrable systems.

1. Maximally superintegrable potentials

In a maximally superintegrable system with n degrees of
freedom, there are 2n − 1 independent integrals of motion,
so the motion is restricted to a one-dimensional manifold
in the phase space. Therefore maximal superintegrability
leads to closed orbits in bound systems, which immediately
gives AIs.

A great deal of literature exists on superintegrable me-
chanical systems. For example, Evans [20] has presented a
complete list of all 3D superintegrable systems with integrals
that are linear or quadratic polynomials in the momenta. With

the restriction to quadratic integrals, there are 11 orthogonal
coordinate systems in which the Hamilton-Jacobi equation
separates. Evans presents a table of maximally superintegrable
potentials with five integrals of motion, which we label V1−5

in line with his table ordering in [20]; in three of these
cases, V1, V2, and V5, the trajectories are closed and they
directly correspond to absolute optical instruments for any
energy. Although the trajectories are not closed in V3 and V4,
modifications to these potentials are possible which break the
restriction to quadratic integrals but which then result in new
AIs. For example, we have found that the term k0r

2 can be
added to V3, which prevents Jr from otherwise diverging.

We present the action variables for potentials V1, V2, and
our modified V3,modified = V3 + k0r

2 in Table I. (V5 differs from
V1 in an insignificant way so we omit it for brevity.) We see
that indeed for each case the total action does not depend on
the separation variables as required by Eq. (20). Note that
the potentials V1 and V2 are special cases of AIs discussed in
Sec. VI B 2.

2. Minimally superintegrable potentials

Evans [20] also presents a table of minimally superinte-
grable systems in three dimensions with four integrals of
motion; in these systems, the trajectories are not closed in
general, but are restricted to 2D surfaces in the phase space.
Moreover, in all of these minimally superintegrable systems
there is a great deal of freedom since each contains a function
F of some combination of coordinates to be chosen freely.
This raises an interesting question: is it possible to choose
some special form of F and/or a fixed value of energy such
that the trajectories become closed? The answer is that in many
cases it is so, which allows us to create absolute instruments.
In the following we show several examples.
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FIG. 5. Trajectories in the potential (75) with F (z) according to Eq. (83) with the parameters k = 1, k1 = k2 = 0, β0 = 0.9, E = 0 and
(a) br = bϕ = 2, bz = 5 and (b) br = bϕ = 6, bz = 7. The part of V depending on x,y is the Newtonian potential, so the projections of the
trajectories into the plane xy are the Kepler ellipses. This motion is combined with oscillations in the z direction.

First, we show this procedure for a potential from Table II
of [20]:

V9 = − k√
x2 + y2

+ k1x

y2
√

x2 + y2
+ k2

y2
+ F (z), (75)

which separates in cylindrical polar coordinates. The
Hamilton-Jacobi equation is

1

2

(
dSr

dr

)2

+ 1

2r2

(
dSϕ

dϕ

)2

+ 1

2

(
dSz

dz

)2

+ V9 = E (76)

and the separated equations for this potential are

1

2

(
dSr

dr

)2

+ k

r
+ α

2r2
+ β = E,

(
dSϕ

dϕ

)2

+ 2k2

sin2 ϕ
+ 2k1 cos ϕ

sin2 ϕ
= α,

1

2

(
dSz

dz

)2

+ F (z) = β. (77)

The action variables are then evaluated by the residue method:

Jr = 1

π

∫ r+

r−

√
2

(
E − β − k

r

)
− α

r2
dr

= √
α + k√

2(β − E)
, (78)

Jϕ = 1

π

∫ ϕ+

ϕ−

√
α − 2k2

sin2 ϕ
− 2k1 cos ϕ

sin2 ϕ
dϕ

= −√
α +

√
k2 + k1√

2
+

√
k2 − k1√

2
, (79)

Jz = 1√
2π

∫ z+

z−

√
β − F (z) dz. (80)

We immediately notice that E and β are together in the same
term under the square root in Jr , but Jz is nominally a function
only of β. For the total action J = brJr + bϕJϕ + bzJz to be
independent of β,E must therefore be a constant, and we can
set E = 0 without loss of generality. The condition ∂J/∂α = 0
implies br = bϕ , and the condition ∂J/∂β = 0 implies∫ z+

z−

dz√
β − F (z)

= brkπ

2bzβ3/2
. (81)

This equation can be inverted by the inverse Abel transforma-
tion, similar to the case of Cartesian coordinates in Sec. VI A.
This way we find

z+(F ) − z−(F ) = brk

2bz

∫ F

β0

β−3/2 dβ√
F − β

= brk
√

F − β0

bzF
√

β0
,

(82)

where β0 > 0 is the value of F at its minimum; we can choose
this parameter. Similarly to the case of Cartesian coordinates
in Sec. VI A, there is a great deal of freedom in choosing
F (z). One possible choice is to require that the function be
symmetric, z+(F ) = −z−(F ). We then obtain

F (z) =
γ 2 −

√
γ 4 − 16γ 2β2

0z2

8β0z2
, (83)

where we have denoted γ = brk/bz for brevity. The function
F is defined only on the interval [−zmax,zmax], where zmax =
γ /(4β0), and reaches the maximum of 2β0 at z = ±zmax. This
way, the planes z = ±zmax form boundaries of the device.
It may happen that for certain initial conditions the particle
will reach one of the boundaries and escape, so it would no
longer form closed trajectories. However, if z stays inside the
boundaries, the trajectories will be closed. Figure 5 shows the
trajectories for several choices of the constants br and bz.

A similar procedure can be applied to potentials V10, V12,
and V13 from Table II, with the following results for F10 and
F12, where here β0 is a rational number:

F10(θ ) = α0

(cos β0θ + sin β0θ )2
, (84)

F12(ϕ)=±1

2
csc2(2ϕ)

√
(cos(4ϕ) + 1)

[
4α2

0+4α0

√
α0 − k1

√
α0+k1+k2

1 cos(4ϕ) − 3k2
1

]+ csc2(2ϕ)(
√

α0 − k1

√
α0 + k1 + α0).

(85)
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TABLE II. Minimally superintegrable potentials based on Evans [20].

Potential and separation coordinates Action variables Notes

V6 = F6(r) + k1
x2 + k2

y2 + k3
z2

spherical
Jφ = |α|−√

2k1−√
2k2

2

Jθ = β−|α|−√
2k3

2

Jr = 1
π

∫ r+
r−

√
2E − 2F6(r) − β2

r2 dr

F6(r) analyzed in Sec. VI B 2
and [9].

V7 = k(x2 + y2) + k1
x2 + k2

y2 + F7(z)
Cartesian

Jx = α

2
√

2k
−

√
k1
2

Jy = β

2
√

2k
−

√
k2
2

Jz = 1
π

∫ z+
z−

√
2[E − α − β − F7(z)] dz

F7(z) analyzed in Sec. VI A
(special case)

V9 = − k√
x2+y2

+ k2
y2 + k1x

y2
√

x2+y2
+ F (z)

cylindrical

Jr = √
α + k√

2(β−E)

Jθ = −√
α +

√
k2+k1√

2
+

√
k2−k1√

2

Jz = 1√
2π

∫ z+
z−

√
β − F (z) dz

F (z) analyzed in Sec. VI E 2

V10 = k(x2 + y2 + z2) + k3
z2 + F10(x,y)

x2+y2

cylindrical

Jz = β

2
√

2k
−

√
k3
2

Jθ = 1
π

∫ θ+
θ−

√
α − 2F10(θ ) dθ

Jr = E−β

2
√

2k
−

√
α

2

F10(θ ) analyzed in Sec. VI E 2

V12 = − k

r
+ k1z

r(x2+y2)
+ F12(x,y)

x2+y2

spherical

Jr = −√
β + k√−2E

Jθ = √
β −

√
α−k1√

2
−

√
α+k1√

2

Jϕ = 1
π

∫ ϕ+
ϕ−

√
2(α − F12(ϕ) dϕ

F12(ϕ) analyzed in Sec. VI E 2

V13 = k

R
+ k1

√
R+y

R
+ k2

√
R−y

R
+ F13(z)

parabolic cylindrical
Jσ = i

8βE+8Ek−8(β+k)+k2
2

16(−α+E)3/2

Jτ = i
−8βE+8Ek+8(β−k)+k2

1
16(−α+E)3/2

Jz = 1
π

∫ z+
z−

√
2(β − F13(z)) dz

R = √
x2 + y2

F13(z) analyzed in Sec. VI E 2

For F12(ϕ), the negative branch should be chosen when ϕ is
small, and the positive branch can be chosen after the branch
cut for larger values of ϕ. F13(z) also has a closed algebraic
solution, but is many pages long and thus is not shown here.
Similar to F (z) in V9, F13(z) depends on E (as well as k, k1, k2,
and α0) and only works for rays within a certain z range.

We summarize the action variables for the minimally
superintegrable potentials of Evans [20] for an AI in Table II.
(V8 and V11 are very similar to V7 and V10, respectively, and
are omitted from the table.) In each case, the action variable
depending on the function F can be expressed using the
conditions (20), and the resulting equation can be inverted to
find the specific form of F . This way, each of these minimally
superintegrable systems will form an AI. Some of them will
even work for different energies, for example V10 or V12.

VII. CONCLUSION

We have analyzed general properties of focusing potentials
and absolute optical instruments by separating the Hamilton-
Jacobi equation. We have defined the total action that has
a simple interpretation in the optical case as the optical path

length of a closed ray. Using methods of theoretical mechanics,
we have derived a central result of this paper, namely, that the
total action should not depend on the separation variables for
the trajectories to be closed. This result has a nice interpretation
in the optical case where it corresponds to Fermat’s principle
of stationary time. We have also employed the WKB method
for finding the general properties of spectra of absolute
instruments; these properties perfectly agree with the ones
derived previously for special cases of AIs.

Then, enforcing the condition that the total action must be
independent of the separation constants in various coordinate
systems at a single energy E, we have found numerous absolute
optical instruments. In particular, we have applied our theory
to potentials with spherical symmetry, including their modifi-
cations, and to Cartesian coordinates to confirm the previously
known AIs. Working with bispherical coordinates, we have
found a class of AIs that turned out to be transmutations via
the spherical inversion of the spherically symmetric AIs. This
idea was then extended to any AI that can be transmuted by
inversion to obtain another AI. In the rotational parabolic
system, a remarkable AI was constructed in Sec. VI C
that gives different types of closed trajectories for different
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energies as shown in Fig. 3. From superintegrable potentials
already known in classical mechanics, we have identified
those which can form absolute optical instruments due to
the additional freedom from choosing a free function in them
and/or fixing the energy which had not been reported as AIs
before.

Nonetheless, the theory is still incomplete; although we
have attempted it, we have been unable to identify new AIs
in prolate spherical coordinates, for example, and we have
not yet examined some other coordinate systems in which
the Hamilton-Jacobi equation separates. We suspect that in
higher-order orthogonal coordinate systems, such as cyclidic
coordinates, additional AIs may be identified. Indeed, the

identification of superintegrable mechanical systems is an
active area of research. In this paper we tied this body of
literature to classical and wave optics, so that future advances
in mechanics would be immediately applicable here as well.

ACKNOWLEDGMENTS

The authors thank H. L. Dao for highlighting to us the work
of N. W. Evans, which led us to connect superintegrability
in mechanical systems to absolute optical instruments. T.T.
acknowledges the support of Grant No. P201/12/G028 from
the Czech Science Foundation (Grantová Agentura České
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