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Enhanced output entanglement with reservoir engineering
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We study the output entanglement in a three-mode optomechanical system via reservoir engineering by
shifting the center frequency of filter function away from resonant frequency. We find the bandwidth of
the filter function can suppress the entanglement in the vicinity of resonant frequency of the system, while
the entanglement will become strong if the center frequency departs from the resonant frequency. We obtain the
approximate analytical expressions of the output entanglement, from which we give the optimal center frequency
at which the entanglement takes the maximum. Furthermore, we study the effects of time delay between the
two output fields on the output entanglement, and obtain the optimal time delay for the case of large filter
bandwidth.
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I. INTRODUCTION

Cavity optomechanics [1] exploring the interaction between
macroscopic mechanical resonators and light fields, has
received increasing attention for the potential to detect of tiny
mass, force, and displacement [2–5]. The common optome-
chanical cavity contains one end mirror, being a macroscopic
mechanical oscillator or a vibrating membrane [6–11]. In these
optomechanical systems, the motion of a mechanical oscillator
can be affected by the radiation pressure of a cavity field, and
this interaction can generate various quantum phenomena,
such as ground-state cooling of mechanical modes [12–17],
electromagnetically induced transparency and normal mode
splitting [18–22], nonlinear interaction effects [23–26], and
quantum state transfer between photons with vastly differing
wavelengths [27–30].

Entanglement is the characteristic element of quantum
theory because it is responsible for nonlocal correlations
between observables and an essential ingredient in most
applications in quantum information. For these reasons, there
are a number of theoretical and experimental works on
entanglement between macroscopic objects such as between
atomic ensembles [31,32] and between superconducting qubits
[33–36]. Recently, quantum entanglement in cavity optome-
chanics has received increasing attention for the potential
to use the interaction to generate various entanglements
between subsystems. For example, quantum entanglement
between mechanical resonators [37–40], between different
optical modes [41–52], and between mechanical resonators
and light modes [53–57] have been studied theoretically and
the entanglement between mechanical motion and microwave
fields has been demonstrated in a recent experiment [58].

Here, we consider a three-mode optomechanical system
in which two cavities are coupled to a common mechan-
ical resonator (see Fig. 1). This setup has been realized
in several recent experiments [59–61]. Because in such a
system the parametric-amplifier interaction and the beam-
splitter interaction can entangle the two intracavity modes,
the output cavity modes are also entangled with each other.
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In previous works [50,52], the entanglement of two output
optical fields with their center frequencies the same as the
resonant frequencies of the cavities has been studied. In
Ref. [50], the entanglement between the two output fields is
enhanced obviously via reservoir engineering [62,63]: cooling
the Bogoliubov mode through enhancing mechanical decay
results in large entanglement between the two target output
fields. But these output entanglements in Refs. [50,52] will
be largely limited by the bandwidth of filter function, and
the optimal time delay in Ref. [50] between the two output
fields is only suitable for the case of little bandwidth of filter
function.

In this paper, we first study the effect of filter bandwidth
on the output entanglement between the two optical fields
without time delay. We find the bandwidth will strongly
suppress the output entanglement, specifically as the center
frequency of the output fields locates in the vicinity of resonant
frequency; whereas, the output entanglement will become
strong if the center frequency of output fields departs from the
resonant frequency. We will see that the physics behind this
phenomenon is the reservoir engineering mechanism because
shifting the center frequency can cool the temperature of the
system. We obtain all the approximate analytical expressions
of the output entanglement in various cases, from which we
give the corresponding optimal center frequencies making
the entanglement maximum. Finally, we study the effect
of the time delay between the two output fields on the
output entanglement according to the reservoir engineering
mechanism, from which we obtain the approximate analytical
expression of the optimal time delay for the case of large filter
bandwidth. We believe the results of this paper may be used
for reference by experimental and theoretical physicists who
work on entanglement or quantum information processing.

The rest of this paper is organized as follows. In Sec. II,
we introduce the three-mode optomechanical model with
a corresponding equivalent model, and the definition of
canonical mode operators of the two output optical fields. In
Sec. III, we study the entanglement between the two output
optical fields by shifting the center frequency of filter function
from resonant frequency, and we study the effects of time delay
on the output entanglement. Finally, the conclusions are given
in Sec. IV.
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FIG. 1. A three-mode optomechanical system with a mechanical
resonator (mode b̂) interacted with two cavities (cavities 1 and 2).
Cavity 1 is driven with a red-detuned laser, while cavity 2 is driven
with a blue-detuned laser. The entanglement between the output fields
of two cavities can be generated.

II. SYSTEM AND AN EQUIVALENT MODEL

We consider a three-mode optomechanical system in which
two cavities are coupled to a common mechanical resonator
(see Fig. 1).

The standard optomechanical Hamiltonian

H = ωmb̂†b̂ +
∑
i=1,2

[ωiâ
†
i âi + gi(b̂

† + b̂)â†
i âi] (1)

governs the system’s dynamics, where âi is the annihilation
operator for cavity i with frequency ωi and damping rate
κi , b̂ is the annihilation operator for a mechanics res-
onator with frequency ωm and damping rate γ , and gi is
the optomechanical coupling strength. In order to generate
the steady entanglement between the two output fields, we
drive cavity 1 (2) at the red (blue) sideband with respect to the
mechanical resonator: ωd1 = ω1 − ωm and ωd2 = ω2 + ωm.
If we work in a rotating frame with respect to the free
Hamiltonian, following the standard linearization procedure,
and make the rotating-wave approximation (in this paper, we
focus on the resolved-sideband regime ωm � κ1,κ2), then the
Hamiltonian of the system can be written as

Ĥint = G1b̂
†d̂1 + G2b̂d̂2 + H.c. (2)

Here, d̂i = âi − āi , āi being the classical cavity amplitude.
Gi is the effective coupling strength. The combined swapping
and entangling interactions in Ĥint lead to a net entangling
interaction between the two intracavity modes as discussed
in [47].

Based on Eq. (2), the dynamics of the system is described
by the following quantum Langevin equations for relevant
operators of mechanical and optical modes:

d

dt
b̂ = −γ

2
b̂ − i(G1d̂1 + G2d̂

†
2) − √

γ b̂in,

d

dt
d̂1 = −κ1

2
d̂1 − iG1b̂ − √

κ1d̂
in
1 ,

d

dt
d̂
†
2 = −κ2

2
d̂
†
2 + iG2b̂ − √

κ2d̂
in,†
2 . (3)

After the linearization, the cavity mode part is about the
fluctuations d̂i , so the coherent drive is no longer in
the drive terms of the equations and only contributes to the
effective coupling intensity Gi . Here, b̂in,d̂ in

i are the input
noise operators of mechanical resonator and cavity i (i = 1,2),
whose correlation functions are 〈b̂in,†(t)b̂in(t ′)〉 = Nmδ(t − t ′)
and 〈d̂ in,†

i (t)d̂ in
i (t ′)〉 = Niδ(t − t ′), respectively. Nm and Ni

are the average thermal populations of mechanical mode

and cavity i, respectively. In the following discussion, we
mainly study the effects of shifting filter center frequency,
and the filter bandwidth on the output entanglement, so we
assume these average thermal populations are zero (zero
temperature). In accordance with the Routh-Hurwitz stability
conditions [64], we focus on the regime of strong coop-
erativities Ci ≡ 4G2

i /(γ κi) � 1 and κi � γ in this paper;
the stability condition of our system can be obtained as
G2

1/G2
2 > max(κ1/κ2,κ2/κ1) for κ1 �= κ2, and the system is

always stable if κ1 = κ2 and G2 � G1 [47,50].
For simplicity, we adopt a rectangle filter with a bandwidth

σ centered about the frequency ω to generate the output
temporal modes. Then, the canonical mode operators of the
two output fields can be described as

D̂out
i [ω,σ,τi] = 1√

σ

∫ ω+

ω−
dω′e−iω′τi d̂out

i (ω′). (4)

Here, ω± = ω ± σ
2 , and τi is the absolute time at which the

wave packet of interest is emitted from cavity i. The frequency-
resolved output modes d̂out

i (ω) ≡ ∫
dω eiωt d̂out

i (t)/
√

2π are
related to the input d̂ in

i (ω) by scattering matrix S(ω) (see
Appendix A), which can be obtained straightforwardly from
the Langevin equations and input-output relations [65]. We
use the logarithmic negativity (see Appendix B) [66,67] to
quantify the entanglement between the two output cavity
modes D̂out

1 [ω,σ,τ1] and D̂out
2 [−ω,σ,τ2]. Without loss of

generality, we set τ2 = 0, and we write D̂out
i [ω,σ,τi] as D̂i

for simplicity in the following.
It can be proven that our system can be mapped to a two-

mode squeezed thermal state [50]

ρ̂12 = Ŝ12(R12)
[
ρ̂ th

1 (n̄1) ⊗ ρ̂ th
2 (n̄2)

]
Ŝ
†
12(R12). (5)

Here,

Ŝ12(R12) = exp[R12D̂1D̂2 − H.c.] (6)

is the two-mode squeeze operator, with R12 being the squeez-
ing parameter, and ρ̂ th

i (n̄i) describes a single-mode thermal
state with average population n̄i . Hence, the output fields are
completely characterized just by three parameters: n̄1, n̄2, and
R12. The relationship between the two-mode squeezed thermal
state and our system can be obtained as follows:

n̄1 = 〈D̂†
1D̂1〉 − 〈D̂†

2D̂2〉 − 1 +
√

A2 − 4|〈D̂1D̂2〉|2
2

,

n̄2 = 〈D̂†
2D̂2〉 − 〈D̂†

1D̂1〉 − 1 +
√

A2 − 4|〈D̂1D̂2〉|2
2

,

R12 = 1

2
arctanh

(
2|〈D̂1D̂2〉|

A

)
. (7)

Here, 〈D̂†
1D̂1〉, 〈D̂†

2D̂2〉, and 〈D̂1D̂2〉 are the correlators of
the output cavity modes, which can be obtained by Langevin
equations (3) and input-output relations, and A = 〈D̂†

1D̂1〉 +
〈D̂†

2D̂2〉 + 1. According to Eqs. (5) and (6), the output
entanglement En of this two-mode squeezed thermal state (if
En � 0) can be simply given by

En = − ln
[
nR −

√
n2

R − (1 + 2n̄1)(1 + 2n̄2)
]

(8)
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with nR = (n̄1 + n̄2 + 1) cosh 2R12. It can be seen from
Eq. (8) that the entanglement will increase with the increase of
the squeezing parameter R12, whereas it will decrease with the
increase of the average populations n̄1,n̄2. In the following, it
can be seen that shifting the center frequency of filter function
from the resonance can evidently cool the temperature of the
system (decrease the average populations n̄1,n̄2).

III. CAVITY OUTPUT ENTANGLEMENT

For simplicity, we set equal cavity damping rate κ1 =
κ2 = κ , equal coupling G1 = G2 = G, and γ 
 σ,κ,G in
the following. We discuss the output entanglement on two
cases: shifting the filter center frequency ω from the resonant
frequency (the resonant frequency is zero in the rotating frame)
under the condition of small bandwidth (σ 
 κ) and large
bandwidth (σ = κ), respectively.

A. Small bandwidth

In this section we discuss the effects of small bandwidth σ

(σ 
 κ) on the entanglement between the two output fields.
If we shift the filter center frequency ω to satisfy 0 � ω � σ

2
(in the rotating frame), the approximate analytical expression
of the output entanglement can be simply written as

En ≈ πγ

2σ
. (9)

It can be seen from Eq. (9) that the entanglement between
output fields is not related to the filter center frequency ω

and the coupling strength G. And increasing the mechanical
decay rate γ can enhance the output entanglement in the
vicinity of resonant frequency ω = 0 just as what the author
did in Ref. [50], which is the reservoir engineering mechanism
because increasing the mechanical decay rate γ can cool the
Bogoliubov mode [50]. If the mechanical damping rate γ

satisfies γ 
 σ , the entanglement will almost equal zero. It
can also be seen from Eq. (9) that the output entanglement can
be largely suppressed by increasing the filter bandwidth σ .

If the center frequency ω satisfies σ
2 < ω < κ

2 , and the
coupling strength G is weak coupling (G < κ), the analytical
expression of the entanglement can be simplified to

En ≈ − ln
20G4σ 2 + 3κ2ω4

3ω2(64G4 + √
2κ2ω2)

. (10)

The entanglement is plotted in Fig. 2(a) with parameters
γ = 1, σ = 10, κ = 105, G = κ/10. The black solid line is
the numerical results according to logarithmic negativity, while
the red dashed line is plotted according to the analytical
expression, Eq. (10). The entanglement is nonmonotonic with
the change of center frequency ω, and will reach a maximum
as the optimal center frequency ωopt ≈ 61/4G(σ/κ)1/2. The
entanglement will appear a peak value at resonant frequency
(ω = 0) for the case σ = 0 [50], but the peak will emerge
at some center frequency ω for the case σ �= 0. We can give
a clear reason for this phenomenon from Fig. 2(b) in which
the squeezing parameter R12 (red dashed line), the thermal
populations n̄1 (blue dotted line), n̄2 (black solid line) vs the
normalized center frequency ω/σ are plotted. It can be seen
from Fig. 2(b) that the two thermal populations n̄1,n̄2 are very
large (the temperature of the equivalent two-mode squeezing
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FIG. 2. (a) The entanglement vs the normalized center frequency
ω/κ . The black solid line is the numerical results, the red dashed
line is plotted according to the analytical expression, Eq. (10).
(b) The squeezing parameter R12 (red dashed line), the thermal
populations n̄1/103 (blue dotted line), and n̄2/103 (black solid
line) vs the normalized center frequency ω/σ . The parameters are
γ = 1, σ = 10, κ = 105, G = κ/10.

thermal state is very high) for ω < σ/2; then the entanglement
is almost zero. But if the center frequency ω becomes larger
(ω > σ/2), the two thermal populations n̄1,n̄2 will decrease
rapidly while the squeezing parameter R12 decreases very
slowly. Hence, the entanglement becomes larger with the
increase of center frequency ω until it reaches the highest
point. As a result, the optimal center frequency ωopt at which
the entanglement reaches a maximum must be greater than
σ/2.

If the coupling strength G is strong coupling (G > κ), and
the filter center frequency ω still satisfies σ

2 < ω < κ
2 , the

analytical expression of the entanglement can be simplified to

En ≈ −1

2
ln

[
G8σ 4 + G4σ 2ω4κ2 + 2ω10κ2

144G8ω4

]
, (11)

which reaches a maximum as the optimal center fre-
quency ωopt ≈ (G8σ 4/3κ2)1/10. The entanglement is plotted in
Fig. 3(a) with parameters γ = 1, σ = 10, κ = 105, G = 10κ .
The black solid line is the numerical results according to
logarithmic negativity, while the red dashed line is plotted
according to the analytical expression, Eq. (11). It can be
seen from Figs. 2 and 3 that the entanglement plotted by the
analytical expressions fits the numerical results very well. The
thermal populations n̄1,n̄2 of strong coupling decrease rapidly
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FIG. 3. (a) The entanglement vs the normalized center frequency
ω/κ . The black solid line is the numerical results, the red dashed
line is plotted according to the analytical expression, Eq. (11).
(b) The squeezing parameter R12 (red dashed line), the thermal
populations n̄1/107 (blue dotted line), and n̄2/107 (black solid
line) vs the normalized center frequency ω/σ . The parameters are
γ = 1, σ = 10, κ = 105, G = 10κ .

just like the case of weak coupling as the center frequency
ω > σ/2. The squeezing parameter R12 of strong coupling is
larger than that of weak coupling. That is the reason why the
entanglement of strong coupling will be larger than that of
weak coupling.

According to the above analysis, the optimal center fre-
quency ωopt must be greater than σ/2, and ωopt will be far
away from the resonant frequency ω (ω = 0) if σ is very
large. We will discuss the case σ = κ in the following.

B. Large bandwidth

For G < κ and large σ , such as G = κ/10 and σ = κ , the
entanglement will be very small. Hence, in this section, we just
discuss the entanglement of strong coupling G > κ with the
bandwidth σ = κ . Because of σ = κ � γ , the entanglement
will almost be zero when 0 � ω � κ

2 according to Eq. (9). The
analytical expression of the entanglement can be simplified
to

En ≈ ln

[√
2

(
3G4κ2

(
ω2 + 3κ2

4

) + G2κ2ω4 + ω8

3G4κ4 + 2G2ω2κ4 + ω8

)]
(12)

for κ
2 � ω � 7κ , and the optimal center frequency ωopt ≈√

Gκ . In Fig. 4(a), we plot the entanglement vs center
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FIG. 4. (a) The entanglement En vs the normalized center
frequency ω/κ: The red solid line is the entanglement plotted
with the optimal time delay, Eq. (14); the blue dashed line is
the entanglement plotted with the numerical optimal time delay
making the entanglement En maximum; the black solid line is
the entanglement plotted according to the analytical expression,
Eq. (12), without time delay; and the green dashed-dotted line
is the entanglement plotted by numerical results according to
the logarithmic negativity without time delay. (b) The optimal
time delay τopt (red solid line) according to Eq. (14) and the
numerical optimal time delay (blue dashed line). The parameters are
γ = 1, σ = κ = 105, G = 10κ .

frequency ω/κ according to the analytical expression, Eq. (9),
Eq. (12) (black solid line), and the numerical results according
to the logarithmic negativity (green dashed-dotted line) under
the parameters γ = 1, σ = κ = 105, G = 10κ . It can be seen
from Fig. 4(a) that there is still large entanglement even with
large bandwidth (σ = κ). This is because shifting the center
frequency can effectively cool the two thermal populations
n̄1,n̄2 via reservoir engineering as discussed above. And the
tendencies of the two thermal populations n̄1,n̄2 and the
squeezing parameter R12 are almost the same as the previous
cases in Figs. 2(b) and 3(b); we do not discuss them anymore.

As in the above analysis, large bandwidth σ must strongly
influence the entanglement of the two output fields. According
to the definition of the canonical mode operators D̂i [see
Eq. (4)], the correlator of the output cavity modes 〈D̂1D̂2〉
is connected with time delay τ , while the other two correlators
〈D̂†

1D̂1〉 and 〈D̂†
2D̂2〉 are not. The expression 〈D̂1D̂2〉 can be
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written explicitly as

〈D̂1D̂2〉 =
∫ ω+

ω−

e−iτ
[8G2κ + (γ + 2i
)(κ2 + 4
2)]

−(γ 2 + 4
2)(κ2 + 4
2)2/(8G2κ)
d
.

(13)

The effect of time delay τ on entanglement En can be seen
easily from the equivalent two-mode squeezing thermal state.
From Eq. (7), we can see that the two-mode squeezing
parameters n̄1, n̄2, and R12 are affected by time delay τ

just through the correlator 〈D̂1D̂2〉. More specifically, n̄1,n̄2

will decrease and R12 will increase if the modulus |〈D̂1D̂2〉|
becomes large as other parameters are fixed except for time
delay τ . Hence, it is certain that the output entanglement
En will increase with the increasing of the modulus of the
correlator 〈D̂1D̂2〉. The optimal time delay τopt is the delay
which makes the |〈D̂1D̂2〉| reach a maximum. After obtaining
the approximate analytical expression about |〈D̂1D̂2〉| and
making some corrections, we find the optimal time delay is

τopt ≈
{

3G2κ

(
ω2− κ2

8

)
G4κ2+ω6 , ω � κ

2
πκ

2(2+π)G2 , 0 � ω < κ
2 .

(14)

We plot the output entanglement En with optimal time
delay τ (red solid line) based on Eq. (14), that with numerical
optimal time delay (blue dashed line) which makes the
entanglement En reach a maximum in Fig. 4(a), and the
corresponding time delays in Fig. 4(b) with the parameters
γ = 1, σ = κ = 105, G = 10κ , and they all fit very well. It
can be seen from Fig. 4(a) that the time delay τ strongly affects
the entanglement En as long as the center frequency ω is not
big enough compared with bandwidth σ , while it has no effect
on the entanglement En as ω � σ . The reason is that the
effect of increasing ω while fixing σ is equivalent to that of
decreasing σ while fixing ω. The time delay τ has no effect on
entanglement for the case of σ → 0. It can be seen according
to Eq. (13) in which the factor e−iτ
 can be extracted out of
the integration for small bandwidth σ with the result that the
modulus |〈D̂1D̂2〉| will be not related to τ . Hence, in the case
of σ → 0, the time scale τi for the filtered output fields in
Eq. (4) can be freely chosen. Finally, the output entanglement
becomes steep in the vicinity ω = σ/2 because of the special
rectangle filter, and takes a local minimum (Enmin ≈ 1.68) at
ω = σ/2 according to the numerical result [see the blue dashed
line in Fig. 4(a)].

IV. CONCLUSIONS

In summary, we have studied theoretically the output
entanglement between two output cavity fields via reservoir
engineering by shifting the center frequency of the causal
filter function away from the resonance (ω = 0 in the rotating
frame) in a three-mode cavity optomechanical system. We
find that the nonzero bandwidth σ can largely suppress the
entanglement En, specifically En ∼ 1/σ in the vicinity of
resonant frequency; whereas, the output entanglement will
become strong if the filter center frequency departs from
the resonant frequency. This is because shifting the filter
center frequency can effectively cool the two-mode squeezing
thermal state which is equivalent to our model. We obtain

all the approximate analytical expressions of the output
entanglement, from which we give the corresponding optimal
center frequencies ωopt. In addition, we find the time delay τ

between the two output optical fields can evidently affect the
output entanglement. And we obtain the analytical expression
of the optimal time delay τopt in the case of large filter
bandwidth (σ = κ). Our results can also be applied to other
parametrically coupled three-mode bosonic systems, and may
be useful to experimentalists to obtain large entanglement.
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APPENDIX A: SCATTERING MATRIX

We can solve the Heisenberg-Langevin equations
in Fourier space. We define the Fourier transform
of operators by Â(t) = 1√

2

∫
e−iωt Â(ω)dω and

Â†(t) = 1√
2

∫
e−iωt Â†(−ω)dω. The frequency-resolved

output modes d̂out
i (ω) ≡ ∫

dω eiωt d̂out
i (t)/

√
2π can be

obtained via Fourier transform of operators d̂1(t),d̂2(t),b̂(t)
and the conjugate operators b̂†(t),d̂†

1(t),d̂†
2(t), and the standard

input-output relations d̂out
i (t) = d̂ in

i (t) + √
κi d̂i(t) (i = 1,2).

For convenience, we define the vectors υout/in(ω) =
(dout/in

1 ,d
out/in
2 ,bout/in,bout/in,†,dout/in,†

2 ,d
out/in,†
1 )T (ω).

After a straightforward calculation the solution for the
output fields can be written as υout(ω) = S(ω)υin(ω) with the
scattering matrix S(ω),

S(ω) = �M−1� + I, (A1)

where � is a diagonal matrix with diagonal element �jj =
(
√

κ1,
√

κ2,
√

γ ,
√

γ ,
√

κ2,
√

κ1), and

M =

⎛
⎜⎜⎜⎜⎜⎝

m1 0 −iG1 0 0 0
0 m2 0 −iG2 0 0

−iG1 0 m3 0 −iG2 0
0 iG2 0 m3 0 iG1

0 0 iG2 0 m2 0
0 0 0 iG1 0 m1

⎞
⎟⎟⎟⎟⎟⎠.

(A2)

Here, mj = iω − κj

2 (j = 1,2,3, and κ3 denotes the mechani-
cal decay rate γ ).

APPENDIX B: DEFINITION OF THE
LOGARITHMIC NEGATIVITY

Here, we review the definition of the logarithmic negativity
and apply it to quantify the entanglement of the filtered optical
output fields that can be described as

D̂out
i [ω,σ,τi] =

∫
dω′e−iω′τi f (ω′)d̂out

i (ω′). (B1)

For simplicity, we consider a square filter function centered at
ω with bandwidth σ , i.e.,

f (ω′) = θ
[
ω′ − (

ω − σ
2

)] − θ
[
ω′ − (

ω + σ
2

)]
√

σ
(B2)
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with θ [ω] the Heaviside step function. Hence, the filtered
optical output fields can be written as

D̂out
i [ω,σ,τi] = 1√

σ

∫ ω+

ω−
dω′e−iω′τi d̂out

i (ω′) (B3)

with ω± = ω ± σ
2 .

We can use the logarithmic negativity to characterize the
entanglement for the output light beams D̂out

1 [ω,σ,τ1] and
D̂out

2 [−ω,σ,τ2]. It can be calculated using the expression

En = max[0, − ln 2η] (B4)

with

η = 1√
2

√
� −

√
�2 − det V (B5)

and

� = det B + det B ′ − 2 det C. (B6)

The 4 × 4 covariance matrix V is defined as Vjj ′ = 1
2 〈ûj ûj ′ +

ûj ′ ûj 〉 with �̂u = {x̂1,p̂1,x̂2,p̂2}T . Here, x̂i = D̂i+D̂
†
i√

2
and p̂i =

D̂i−D̂
†
i√

2i
. The matrices B, B ′, and C are 2 × 2 matrices related

to the covariance matrix V as

V =
(

B C

CT B ′

)
. (B7)
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