
PHYSICAL REVIEW A 96, 053827 (2017)

Quantum-interference-assisted photon blockade in a cavity via parametric interactions
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We propose a scheme to achieve a strong photon antibunching with a degenerate optical parametric amplifier
coupled to a cavity via unconventional photon blockade. The photon blockade occurs as a result of the suppression
of two-photon excitation due to a quantum interference effect between different transition paths. Via analytical
calculations, we find out the conditions for optimized photon antibunching in terms of parametric gain and the
parametric amplifier pump phase. Calculations of second-order correlation function demonstrate strong photon
antibunching. The numerical results are compared with the analytical results and both are in complete agreement.
Under the optimal parameters, the system can be used to generate sub-Poissonian light.
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I. INTRODUCTION

Single-photon sources are necessary for possible appli-
cations of photons in quantum information processing and
quantum communication. One of the ways of obtaining single
photons is via the mechanism called photon blockade (PB).
Using PB one can produce sub-Poissonian light from a cavity
when driven by a classical light field. It is a quantum optical
effect that arises as a result of the quantum anharmonicity
ladder in a nonlinear cavity. It is named so, because the
resonant injection of more photons into a nonlinear cavity
mode is prevented when one photon is already present in it
[1]. PB is observed through antibunching in photon correlation
measurements. There have been several proposals for achiev-
ing single-photon blockade in coupled cavity arrays [2–4],
one-dimensional optical waveguides [5], qubit-cavity coupled
systems [6], optomechanical systems [7–10] and circuit-QED
systems [11], and also multiphoton blockade in some setups
[12–14]. In analogy to PB, there are proposals for phonon
blockade also, in nanomechanical resonators [15–17]. On
experimental fronts, PB has been observed by resonant laser
excitation on a single trapped atom in a cavity [18], a single
atom coupled to a microtoroidal cavity [19], a single quantum
dot embedded in a strongly coupled cavity [20], and circuit-
QED systems [21,22]. There are several proposals that are
based on applications of PB which include a quantum-optical
Josephson interferometer [23], fermionization of photons in
an array of nonlinear cavities [24], and crystallization of
polaritons in arrays of lossy nonlinear resonators [25].

The most striking constraint in realizing PB is that it
requires a strong nonlinearity, either a Kerr nonlinearity of
the cavity mode [1] or atom-cavity coupling [18], whose
magnitude should well exceed the mode broadening. While
working in the single-photon regime, a strong nonlinearity is
not so easy to realize. However, in a recent work by Liew and
Savona [26], a new mechanism was invoked to realize PB,
based on quantum interference between excitation pathways
that is referred to as unconventional photon blockade (UPB).
It was shown that strong antibunching could be achieved
with a weak Kerr nonlinearity in a system consisting of two
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coupled polaritons. Realization of UPB has been predicted in
a few systems, such as a coupled single quantum dot–cavity
system [27], a lossy bimodal nanocavity where both the
modes are coupled to a quantum dot [28,29], symmetric and
antisymmetric modes in weakly nonlinear photonic molecules
[30], coupled nonlinear photonic molecules [31], coupled
single-mode cavities with third-order nonlinearities [32–36],
coupled cavities with second-order nonlinearity [37,38], Gaus-
sian squeezed states [39], and coupled optomechanical systems
[40,41].

In this work, we study the possibility of realizing UPB
in a cavity that includes a degenerate optical parametric
amplifier (OPA). Introducing the OPA, one can create new
paths for photon excitation that may lead to destructive
quantum interference in the two-photon excitation pathway
[42]. We find out the optimal conditions for achieving this.
The validity of the optimal conditions is also confirmed via
numerical simulations. We also analyze the effects of pure
dephasing induced decoherence on the UPB.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a model to describe the system and derive
the optimal conditions for strong antibunching. In Sec. III,
we analyze photon antibunching by calculating the equal-
time second-order correlation function numerically using the
optimal conditions and compare it with the analytical results.
Finally we summarize our results in Sec. IV.

II. THEORY

We consider a system consisting of a degenerate OPA inside
a Fabry-Perot cavity. The setup under consideration can be
modeled schematically as shown in Fig. 1(a). The Hamiltonian
for the system can be written as [42]

H0 = ωaa
†a + iG(eiθa†2 − e−iθ a2) + �(a†eiωl t + ae−iωl t ),

(1)

where a (a†) is the annihilation (creation) operator for the
optical mode, ωa is the resonance frequency of the cavity field,
and ωl is the driving laser frequency. Here, � is the driving
laser amplitude, G is the nonlinear gain of the OPA which is
proportional to the amplitude of the pump field driving the
OPA, and θ is the phase of the field driving the OPA.
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FIG. 1. (a) Schematic diagram of the cavity setup with an OPA
which is pumped by a laser (not shown here) to produce parametric
amplification in the cavity. (b) Transition paths of the system for
quantum interference. There are two paths leading to two-photon
excitation: from |0〉 to |1〉 and then |1〉 to |2〉, excited by the driving
field; and the direct transition from |0〉 to |2〉 due to the OPA. Quantum
interference can occur between these two paths.

In a rotating frame, the Hamiltonian is transformed to

H = �aa
†a + iG(eiθa†2 − e−iθ a2) + �(a† + a), (2)

where �a = ωa − ωl is the cavity-light detuning. The effect
of the OPA coupling, G, is usually to produce some change in
the cavity frequency of the system. The eigenstates of the OPA
Hamiltonian, i.e., Eq. (1) with � = 0, are squeezed number

states, given by S(ξ )|na〉, where S(ξ ) = eξ (eiθ a†2−e−iθ a2), with
ξ = 1

2 tanh−1( 2G
ωa

) (see Appendix). In this case the eigenval-

ues are given by Ena
= ωa(na cosh 2ξ + sinh2 ξ ) − G(2na +

1) sinh 2ξ . For G � ωa , it can preferably be assumed that
Ena

≈ ωana . Also, assuming a weak driving condition, i.e.,
� � κ , where κ is the cavity decay rate, the photon number
Hilbert space can be truncated to low values. Therefore, under
these assumptions, we truncate the states according to n � 2,
where |n〉 is the photon number Fock-state basis [31]:

|ψ〉 = C0|0〉 + C1|1〉 + C2|2〉, (3)

where Cn’s are the amplitudes of the quantum states for which
the corresponding occupation probability is given by |Cn|2.
The values of the coefficients Cn can be obtained by solving the
Schrödinger equation, also taking into account the dissipations
in the system:

i
d|ψ〉
dt

= H ′|ψ〉, (4)

where H ′ is the effective non-Hermitian Hamiltonian:

H ′ = �′
aa

†a + iG(eiθa†2 − e−iθ a2) + �(a† + a) (5)

with �′
a = �a − iκ/2. Substituting the state |ψ〉 and Hamil-

tonian H ′ into the Schrödinger equation i
d|ψ〉
dt

= H ′|ψ〉, we
obtain a set of equations for the coefficients:

i
∂C0

∂t
= �C1 − i

√
2Ge−iθC2,

i
∂C1

∂t
= �C0 + �′

aC1 +
√

2�C2,

i
∂C2

∂t
= i

√
2GeiθC0 +

√
2�C1 + 2�′

aC2. (6)

The steady-state solution can be found by solving the
coupled equations for the coefficients. For complete PB,
the probability of a photon in state |C2〉 equals zero when the
optimal condition is satisfied. Therefore, we consider C2 = 0
in Eqs. (6) for PB. Under the weak driving condition, the
first equation in Eqs. (6) is always approximatively satisfied.
Therefore, we only consider the last two equations for further
calculations:

�C0 + �′
aC1 = 0,

iGeiθC0 + �C1 = 0. (7)

It should be noted that in absence of the OPA, i.e., for G = 0,
one cannot find any nontrivial solution from Eqs. (7). After
finding out the necessary and sufficient conditions for these
equations to have a solution, more simplifications lead us to
the following optimum conditions:

Gopt = 2�2/

√
κ2 + 4�2

a,

θopt = arctan

(
−2�a

κ

)
. (8)

Interestingly, these conditions depend on the cavity-detuning,
driving laser amplitude and the cavity linewidth. Since the
optimal conditions correspond to the parameters of the pump
field driving the OPA, these are expected to be controlled by
tuning the OPA pump field. In passing, it may be worthwhile to
mention that the approximate analytical model developed here
was originally formulated by Bamba et al. [31], which again
was motivated by the numerical work of Liew and Savona [26].
Liew and Savona discussed the strong photon antibunching
effect in a pair of coupled quantum boxes by solving the
quantum master equation numerically. In the next section,
we solve the quantum master equation numerically using the
analytical optimum conditions, and find that numerical results
are in conformity with the approximate analytical model.

III. RESULTS AND DISCUSSIONS

The realization of PB can be analyzed by the normalized
zero-time-delay second-order correlation function given by

g(2)(0) = 〈a†(t)a†(t)a(t)a(t)〉
〈a†(t)a(t)〉2

. (9)

This quantity characterizes the joint probability of detecting
two photons at the same time. For PB, we have assumed that the
cavity is driven by a weak classical field. The master equation
of the density operator ρ for the driven system reads as

ρ̇ = i[ρ,H ] + La(ρ), (10)

where La(ρ) = κ
2 (2aρa† − a†aρ − ρa†a) is the Liouvillian

operator for the optical mode. The steady-state value of g(2)(0)
can be found numerically by solving the master equation and
from the steady-state density matrix operator as

g(2)(0) = Tr(ρa†a†aa)

[Tr(ρa†a)]2
. (11)

Here, the quantum interference effect with different tran-
sition paths occurs as shown in Fig. 1(b). The quantum
interference can happen between the two paths: from |0〉 to

053827-2



QUANTUM-INTERFERENCE-ASSISTED PHOTON BLOCKADE . . . PHYSICAL REVIEW A 96, 053827 (2017)

FIG. 2. Numerical (red dots) and analytical (blue line) results
for the zero-time-delay second-order correlation function, g(2)(0),
as a function of normalized detuning �a/κ . OPA parameters are
G/κ = 8.94 × 10−5, θ/π = −0.352 in (a), G/κ = 4.85 × 10−5,
θ/π = −0.422 in (b), G/κ = 8.94 × 10−5, θ/π = 0.352 in (c), and
G/κ = 4.85 × 10−5, θ/π = 0.422 in (d).

|1〉 and then |1〉 to |2〉, excited by the driven field; and the
direct transition |0〉 to |2〉 assisted by the OPA.

A. Numerical solution

For the all the calculations in this paper, we have considered
�/κ = 0.01 for weak driving condition. In Fig. 2, we have
discussed the variation of the second-order correlation function
at zero-time delay, g(2)(0), for different optimum values
calculated according to Eq. (8). g(2)(0) is plotted as a function
of normalized detuning �a/κ for optimal values of G and
θ . The red dots show the numerical simulation results. In
Figs. 2(a) and 2(b), values of G and θ are considered to
satisfy Eq. (8) for the corresponding value of �a in the
red-detuned region. In Fig. 2(a), the optimized values are
Gopt = 8.94 × 10−5κ and θopt = −0.352π that correspond
to the optimum values for �a/κ = 1. As expected, g(2)(0)
shows a strong antibunching effect at an exact value of
�a/κ = 1, as precisely predicted by the optimal parameters
calculated analytically. In Fig. 2(b), optimized values are
G/κ = 4.85 × 10−5, θ/π = −0.422 for �a/κ = 2. In this
case also, g(2)(0) shows a strong antibunching effect at an exact
value of �a/κ = 2. In both these cases there is no antibunching
observed in the blue-detuning regime. For Figs. 2(c) and 2(d),
G and θ values are considered to satisfy the optimal parameter
calculations for �a in the blue-detuning regime. In Figs. 2(c)

FIG. 3. Time evolution of the second-order correlation func-
tion, g(2)(τ ). The OPA parameters are G1 = 8.94 × 10−5κ , θ1 =
−0.352π , G2 = 4.85 × 10−5κ , θ2 = −0.422π , G3 = 8.94 × 10−5κ ,
θ3 = 0.352π , and G4 = 4.85 × 10−5κ , θ4 = 0.422π .

and 2(d), optimum values are considered for �a/κ = −1
and −2, respectively. Here, Gopt = 8.94 × 10−5κ and θopt =
0.352π in Fig. 2(c) and G/κ = 4.85 × 10−5, θ/π = 0.422
in Fig. 2(d). Again, a strong antibunching is observed at
�a/κ = −1 and −2, respectively, as predicted by the optimal
conditions. Therefore, the simulation results obtained by the
solving master equation verify the optimized conditions in
Eq. (8) precisely.

An analytical expression for g(2)(0) in terms of the probabil-
ity coefficients can also be derived. The second-order degree
of coherence can be written as

g(2)(0) = 2|C2|2
(|C1|2)2

. (12)

In the weak-pumping limit, the ground-state population can be
assumed to be unity and the population in other levels can be
considered to be negligible. In that case, we may assume that
C0 ≈ 1. Then Eqs. (7) transform to

� + �′
aC1 +

√
2�C2 = 0,

i
√

2Geiθ +
√

2�C1 + 2�′
aC2 = 0. (13)

Hence, the coefficients to be used for the calculation of g(2)(0)
are obtained as

C1 = �(iGeiθ − �′
a)

�′2
a − �2

,

C2 = − �′
aC1 + �√

2�
. (14)

Now we can compare the analytical results with the numerical
simulation results. The blue lines in Figs. 2(a)– 2(d) correspond
to the analytical results. The analytical results are in complete
conformity with the numerical results. The black, dashed
line in Fig. 2 represents both the numerical and analytical
results for the G = 0 case, i.e., without the insertion of the
OPA medium in the cavity. We can see that without the OPA
medium, no antibunching is observed. Therefore by using the
OPA interactions, a strong antibunching with sub-Poissonian
quantum statistics for cavity field output can be achieved.
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FIG. 4. Numerical results for the zero-time-delay second-order correlation function, g(2)(0), as a function of normalized detuning �a/κ .
Other parameters are �/κ = 0.01. In (a) θ/π = −0.352 and in (b) θ/π = 0.352.

Figure 3 shows the time evolution of the second-order
correlation function g(2)(τ ) that is calculated as

g(2)(τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
〈a†(t)a(t)〉2

. (15)

g(2)(τ ) is proportional to the joint probability of detecting one
photon at time t = τ , provided another photon was detected
at time t = 0, at that position [43]. The plots show g(2)(τ )
for different optimal conditions. We can observe that at
τ = 0, g(2)(0) = 0 and for other delay times g(2)(τ ) > g(2)(0).
Therefore, it clearly demonstrates that the emitted photons are
antibunched and sub-Poissonian in nature.

To further investigate the antibunching effects, we cal-
culated g(2)(0) as a function of cavity-light detuning �a/κ

and OPA gain G/κ with optimized values of θ . In Fig. 4(a),
phase is assumed to be −0.352π , which corresponds to the
optimum value for �a/κ = 1. As expected, a strong PB
occurs near the red detuning with �a ≈ κ , and it occurs
at G/κ ≈ 8.94 × 10−5 as optimized precisely in Eq. (8).
However, for the blue-detuned regime with �a ≈ −κ , there
is no strong antibunching because the phase of θ = −0.352π

is not an optimized value in this case. In Fig. 4(b), θ/π = 0.352
corresponds to �a/κ = −1. Here also, a strong antibunching
occurs near the blue-detuned regime with �a ≈ −κ again
at G/κ ≈ 8.94 × 10−5; whereas, there is no PB in the red-
detuning regime in this case. It is to be noted that, since Gopt

expression is quadratic in �a , for red and blue detuning, the
Gopt value does not change. But the optimum value of OPA
pump phase is different in these two regimes.

Figure 5 illustrates the variation of g(2)(0) as a function of
cavity-light detuning �a/κ and OPA pump phase θ with an
optimized coupling strength G/κ = 8.94 × 10−5. A red-blue
detuning asymmetric feature for g(2)(0) is observed, which is
related to the OPA phase θ . For �a ≈ κ in the red-detuning
regime, g(2)(0) exhibits a strong sub-Poissonian quantum
statistics at a phase of θ/π ≈ −0.35. For this θ value, g(2)(0)
does not show any antibunching in the blue-detuning regime.
Similar features can be observed for the blue-detuning case
with �a ≈ κ with phases at θ/π ≈ 0.35. This proves that the
OPA pump phase has an important role in achieving strong
photon antibunching.

B. Effects of pure dephasing

Pure dephasing is a source of unwanted decoherences in
the system and it might affect the PB characteristics [41].
Therefore we analyze the effect of pure dephasing on the
antibunching properties of the cavity photons. The effects of
pure dephasing can be modeled by solving the master equation
after adding another Lindblad term of the form Lp(ρ) =
γp

2 [2a†aρa†a − (a†a)2ρ − ρ(a†a)2], in the master equation,
where γp is the pure dephasing rate for the cavity mode.
Figures 6(a)– 6(d) show the second-order correlation function
g(2)(0) for different pure-dephasing rates with different sets
of optimized values: G/κ = 8.94 × 10−5, θ/π = −0.352
in (a), G/κ = 4.85 × 10−5, θ/π = −0.422 in (b), G/κ =
8.94 × 10−5, θ/π = 0.352 in (c), and G/κ = 4.85 × 10−5,
θ/π = 0.422 in (d). It can be seen that the g(2)(0) still maintains
the red-blue detuning asymmetry. In Fig. 6(a), for a typical
pure dephasing rate of 0.01κ , the value of log10 g(2)(0) at the
red detuning with �a ≈ κ is −1.5. With an increase in the
pure-dephasing rate, g(2)(0) increases near the red detuning

FIG. 5. Numerical results for g(2)(0) as a function of normalized
detuning �a/κ and θ/π . Other parameters are �/κ = 0.01 and
G/κ = 8.94 × 10−5.
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FIG. 6. g(2)(0) for different pure-dephasing rates. The black solid
line is for the γp = 0 case, i.e., without any pure dephasing. The red
and blue dashed lines are for γp = 0.01κ and 0.1κ , respectively.
The OPA parameters are G/κ = 8.94 × 10−5, θ/π = −0.352 in
(a), G/κ = 4.85 × 10−5, θ/π = −0.422 in (b), G/κ = 8.94 × 10−5,
θ/π = 0.352 in (c), and G/κ = 4.85 × 10−5, θ/π = 0.422 in (d).

at �a ≈ κ . A similar feature is shown in Figs. 6(b)– 6(d) for
�a ≈ 2κ , −κ , and −2κ , respectively. For higher values of
pure-dephasing rates, g(2)(0) approaches classical Poissonian
statistics similar to a thermal source.

IV. CONCLUSION

In conclusion, we have proposed a model to realize a strong
UPB by placing an OPA medium inside a Fabry-Perot cavity
under weak pump driving with G � ωa . We studied the photon
correlations in terms of the second-order correlation function.
Using analytical calculations, we derive the conditions for
optimized photon antibunching in terms of the OPA pump
phase θ and the OPA gain G. We find that the optimal
parameters depend on the cavity-light detuning. Under the
optimal parameters, the system can be used to generate
sub-Poissonian light. A red-blue detuning asymmetry for
pump phase θ has been observed. We find that the analytical

expressions are consistent with the numerical simulations.
Also after including the pure-dephasing induced losses in the
system, PB is still observed to be robust. We hope that the
proposed scheme will provide us with a way to control the PB
exactly and can be used as a single-photon source on-demand.
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APPENDIX: INTRACAVITY STATE

The master equation for the density operator for the system
considered in this work is given by

ρ̇ = i[ρ,H ] + La(ρ), (A1)

where

H = �aa
†a + iG(eiθa†2 − e−iθ a2) + �(a† + a), (A2)

and La(ρ) = κ
2 (2aρa† − a†aρ − ρa†a) is the Liouvillian op-

erator for the optical mode. Eq. (A1) with G = 0 can be solved
exactly with a dynamic symmetry method as described in [44].
Following Ref. [44], one can show that if the initial intracavity
state is a coherent one (i.e., |α〉), then it remains a coher-
ent state: ρ(t) = |(α + β)e(�′

a−iωl )t 〉〈(α + β)e(�′
a−iωl )t |, where

�′
a = −i�a − κ/2 and β = i�

�′
a
(1 − e−�′

a t ). In the steady
state the density operator evolves into a pure coherent state:
ρs = | i�

�′
a
e−iωl t 〉〈 i�

�′
a
e−iωl t |. However, when G �= 0, the group

theoretical approach to solve the master equation becomes
extremely tedious and may not be the right solution approach.
As prescribed in [45], it can be shown in a straightforward
way that due to the presence of the OPA, an initial coherent
state evolves toward an amplitude squeezed state or a squeezed
number state. This could also be seen by applying the following
transformation to Eq. (A2) with � = 0 [46]:

a = b cosh r + b†e−iφ sinh r. (A3)

By direct substitution and after some algebra one can obtain

H = �b†b + σ, (A4)

where � = √
�2

a − 4|G|2, r = 1
4 ln

�a−2
√

|G|2
�a+2

√
|G|2 , φ = i ln

√−e2iθ , and σ = (� − �a)/2. This can also be ob-
tained by enforcing the eigenvalue equation H [S(ξ )|na〉] =
Ena

[S(ξ )|na〉], where S(ξ ) = eξ (eiθ a†2−e−iθ a2) is the squeezing
operator [47]. This shows that the eigenvalue equation is
satisfied if ξ = 1

2 tanh−1( 2G
�a

) and the eigenvalues are given

by Ena
= �a(na cosh 2ξ + sinh2 ξ ) − G(2na + 1) sinh 2ξ .
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