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Dissipative entanglement-generation protocols embrace environmental interactions to generate long-lived
entangled states. In this paper, we report on the antibunching dynamics for a pair of actively driven quantum
emitters coupled to a shared dissipative plasmonic reservoir. We find that antibunching is a universal signature
for entangled states generated by dissipative means and examine its use as an entanglement diagnostic. We
discuss the experimental validation of plasmonically mediated entanglement generation by Hanbury Brown-Twiss
interferometry with picosecond timing resolution determined by an effective two-qubit Rabi frequency, and we
analyze the robustness of entanglement generation with respect to perturbations in local detunings, couplings,
and driving fields.
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I. INTRODUCTION

Quantum decoherence results from interactions with un-
known or uncontrollable environmental degrees of freedom.
This process, by which quantum information deteriorates
due to environmental interactions, was coined information
leakage [1]. It follows that quantum information processing
systems should be completely isolated from leaky envi-
ronments. However, such a task has proven to be quite
difficult, and as a consequence, a variety of techniques
were developed to combat the effects of decoherence [2].
With the fault tolerant threshold theorem [3] providing a
route to overcome decoherence, quantum error correction
protocols [2,4–9], dynamical decoupling protocols [10], and
decoherence suppressing quantum control techniques [11,12]
have all seen substantial progress.

Dissipative driven entanglement (DDE) techniques provide
a different and complimentary route to quantum state engineer-
ing [13]. In this paradigm, entanglement is stabilized [14] and
computations are performed [15] by leveraging select dissipa-
tive pathways that are naively assumed to impede long-term
quantum coherence. Early experimental DDE progress has
been achieved in trapped ion [16], atomic ensemble [17,18],
and superconducting [19] qubit platforms.

Concurrently, a quantum information processing platform
based on the quantum theory of plasmons has rapidly matured
in recent years [20,21]. The first demonstration of plasmoni-
cally mediated entanglement [22] stimulated developments in
both discrete [20] and continuous [23,24] plasmonic quantum
variables. More recently, squeezed states of light have enabled
ultratrace plasmonic sensing [25,26], while plasmonic mode
volumes orders of magnitude below the diffraction limit have
enabled Purcell factors exceeding 103 in the weak coupling
limit [27] and vacuum Rabi splitting in the strong coupling
limit [28,29]. These plasmonic analogs to photonic cavity
QED provide a framework for the development of nanoscale
architectures with ultrafast coupling dynamics capable of
operation at ambient temperatures.

Despite substantial theoretical progress [30–42], dissipative
entanglement generation has yet to be observed in plasmonic
platforms. This is partially due to the technical difficulty of

integrating plasmonic components with standard readout and
control technologies. It is therefore tremendously important to
develop alternative yet simple entanglement metrics to develop
the nascent field of plasmonic quantum information process-
ing. In this article we address this need by demonstrating how
the second-order temporal correlation function can be used as
a signature of entanglement between a pair of qubits coupled
to a common plasmonic environment.

We analytically and numerically treat the dynamics of
the dual quantum dot-plasmon hybrid system, illustrated in
Fig. 1, and analyze the photon antibunching as a function
of steady-state two qubit entanglement. We also argue that
an experimental demonstration is possible, despite the fast
qubit time scales inherited from the plasmonic reservoir.
Importantly, we show that the two-qubit antibunching width
can be classically tuned by controlling the external driving
fields. Specifically, reducing local driving amplitudes slows
the effective two-qubit Rabi frequency and extending the anti-
bunching width to time scales as long as tens of picoseconds.
Picosecond time scales are currently experimentally accessible
and further, they are orders of magnitude shorter than typical
coherence times observed in antibunching measurements of
single quantum emitters (point defects, quantum dots, etc.).
Antibunching lifetime measurements may therefore be used to
distinguish between dissipative-driven entangled systems and
weakly interacting single emitters.

II. THEORY

We consider a physical setup, illustrated in Fig. 1,
consisting of a pair of qubits placed in close proximity
to the near-field of a surface plasmon mode supported
on a metallic nanowire. Qubit-qubit interactions are thus
mediated by a plasmonic boson reservoir. The bare plas-
mon Hamiltonian is Hpls = ∫

d r
∫ ∞

0 dωh̄ωâ†(r,ω)â(r,ω),
where â(r,ω) and â(†)(r,ω) are the destruction and cre-
ation operators for elementary plasmonic excitations which
satisfy bosonic commutation relations. A resonant or near-
resonant mode may be treated as an oscillator Hpls =
h̄ωaâ

†â with a principal frequency ωa . The qubit Hamil-
tonian reads Hi = h̄ωi σ̂

+
i σ̂−

i , where i = 0,1 indexes the
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ẑ

FIG. 1. (a) Schematic diagram of the setup described by Eq. (1).
(b) Solid (dashed) lines show the numerical (effective analytic)
populations of the ground (G), symmetric (S), and antisymmetric (A)
states for a system with Hamiltonian parameters (and their effective
counterparts without dissipation): �0 = −�1 = 0.02, g0 = g1 =
0.02, η0 = η1 = 0.02, and γd = 2γr = 10−8. Hamiltonian parameters
in all figures are expressed as ratios with respect to the dominant
energy scale set by γa = 50 THz.

emitters which are modeled as two level systems (TLS)
with σ̂±

i being the Pauli ladder operators, σ̂± = σ̂ x ± iσ̂ y =
|e〉〈g|(|g〉〈e|). The qubits could be implemented by a variety of
solid-state platforms, for example, as semiconductor quantum
dots [43,44]. We do not restrict ourselves to a specific qubit
platform, but note that our results are generally applicable
given appropriate plasmonic mode matching, which may be
tuned by adjusting the nanowire geometry [45–47]. Defining
the plasmonic and TLS dipole operators as d̂a = â† + â

and d̂i = σ̂+
i + σ̂−

i , the emitter-reservoir coupling is modeled
by the interaction Hint = ∑

i gi d̂ad̂i , where gi ≡ (μiEi)/h̄
is the dipole interaction strength in which we absorbed all
physical constants, i.e., the emitter transition dipole moment

μi and local plasmon electric field magnitude Ei =
√

h̄ωa

2ε0V
,

where V is the plasmon mode volume. Plasmonic elements
behave as lossy electromagnetic cavities in the both the
weak and strong QED regimes [21,27–30,47]. Finally, HD =
−∑

i(ηie
i�i t σ̂+

i + H.c.) − (ηae
i�at â† + H.c.) models transi-

tions being driven by external fields with amplitudes ηi(a) and
frequencies �i(a). Transforming to the corotating reference
frame, with detunings �i(a) = h̄(ωi(a) − �i(a)), and applying
the rotating wave approximation, the total Hamiltonian be-
comes

Htot =
∑
i=0,1

[�iσ̂
+
i σ̂−

i − ηid̂i − gi(σ̂
+
i â + σ̂−

i â†)]

+�aâ
†â − ηad̂a. (1)

Dissipation is modeled by treating the dynamics within the
Lindblad master equation formalism

ρ̇ = −i[Htot,ρ] +
∑

k

γk

(
LkρL

†
k − 1

2
{L†

kLk,ρ}
)

, (2)

where we take h̄ = 1 and the Lk operators model various
dissipative channels. Specifically, we consider the following

channels: (i) plasmonic relaxation La ≡ â at a rate γa �
50 THz [48], (ii) emitter relaxation Lr,i ≡ σ̂+

i at a rate
γr = 2.5 MHz, and (iii) emitter dephasing Ld,i ≡ σ̂ z

i at a
rate γd = 5 MHz. Later we numerically solve Eq. (2) in full
to validate antibunching and concurrence phenomenon in a
wide range of parameter regimes. However, we first derive an
effective model to develop our intuition of the dynamics.

III. TWO-QUBIT EFFECTIVE DYNAMICS

Let us now illustrate the dissipative flow dynamics for two
qubits coupled through a common bosonic reservoir. Both
the effective model and our exact numerical calculations will
identify the antisymmetric singlet state |A〉 = |eg〉 − |ge〉 as
a fixed point for the dynamical evolution in the parameter
regimes highlighted below. For our effective model, we work
in the weak coupling regime defined by g0,g1,η0,η1 � γa ,
where γa is the rate for the relaxation channel taken with the
relaxation time scale τa = 1/(π ∗ γa) ∼ 6 fs. In this work we
stay within this approximation so all energy and time scales
are given as dimensionless ratios of γa . Still, the reservoir
dynamics enables coherent communication channel between
the distant qubits. As we now show, the system may be guided
into the decoherence free subspace |A〉 by varying the qubits
detunings and drivings in Eq. (1), or equivalently, by driving
the bosonic reservoir [42].

The effective qubit dynamics is found by the following
adiabatic elimination procedure [42]. From Eqs. (1) and (2)
the Heisenberg equations of motion for the field operators are

σ̇ z
i = i[2gi(σ

+
i a − σ−

i a†) + 2ηi(σ
+
i − σ−

i )]

− γi(I − σz) + f z
i ,

(3)
σ̇−

i = −i
[
�iσ

−
i + (gia + ηi)σ

z
i

] − γiσ
−
i /2 + f −

i ,

ȧ = i[ηa − �aa + g0σ
−
0 + g1σ

−
1 ] − γaa/2 + fa,

with fluctuation operators f z
i ,f −

i ,fa representing higher-order
processes [42]. Making the semiclassical approximation that
expectation values for the fluctuation operators vanish, we
decouple the expectation values of the qubits and the bosonic
mode. For slowly varying 〈a〉, valid in the case of weak
coupling and drivings, we may set ȧ = 0 and substitute the
resulting expression into the the first two lines of Eq. (3).
This gives us the adiabatic Heisenberg equations of motion,
which can, in turn, be viewed as arising from an effec-
tive two-qubit Hamiltonian with nonlocal dissipation terms.
The effective Hamiltonian, Hqb = ∑

i [�̃i σ̂
+
i σ̂−

i − η̃i d̂i] −
g̃(σ̂+

0 σ̂−
1 + σ̂+

1 σ̂−
0 ) is defined in terms of the following

couplings: (i) effective local detunings �̃i = �i − g2
i �a/Z,

(ii) effective driving fields η̃i = ηi + gi�aηa/Z, and (iii)
effective interqubit coupling g̃ = g0g1�a/Z, where Z =
(γa/2)2 + �2

a . The effective dissipations are described by∑
ij=0,1 γ̃ij /2[2σ−

i ρσ+
j − {σ+

j σ−
i ,ρ}], with single-qubit re-

laxations occurring at a renormalized rate γ̃ii = γi + g2
i γa/Z

and collective reservoir mediated relaxations occurring at the
rate γ̃ij = g0g1γa/Z. Transforming to the Dicke basis, |E〉 =
|ee〉 ≡ |s = 1,m = 1〉, |S〉 = |eg〉 + |ge〉, |A〉 = |eg〉 − |ge〉,
|G〉 = |gg〉, and defining the effective (anti)symmetric driv-
ings η± = (η̃0 ± η̃1)/

√
2 and energies �± = (�̃0 ± �̃1)/2.

Note that |A〉 is the part of the two-qubit space while
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|G〉,|S〉,|E〉 define the triplet basis vectors defined by angular
momentum eigenvalues m = −1,0,1, respectively.

The Hamiltonian now reads

HD = �E|E〉〈E| + �S |S〉〈S| + �A|A〉〈A|
+�−(|A〉〈S| + |S〉〈A|)
− η−(|S〉〈G| + |S〉〈E| + H.c.)

− η+(|A〉〈G| − |A〉〈E| + H.c.), (4)

where �E = 2�+, �S = �+ + g̃, and �A = �+ − g̃.
As a special case, we take antisymmetric detunings and

identical drivings, thus reducing the effective parameters
to �̃i = �i, η̃i = ηi, g̃ = 0, γ̃ii = γi + 4g2

i /γa, and γ̃ij =
4g0g1/γa . The resulting pure-state populations, e.g., with
ρ(0) = |G〉〈G|, oscillate with an effective two-qubit Rabi fre-
quency � =

√
(�/2)2 + η2 as ρE(t) = [�2 + η2 cos(2t�) −

�2]2/4�4,ρS(t) = η2 sin2(2t�)/2�2, ρA(t) = 2�2η2

sin4(t�)/�4, ρG(t) = (�2 + η2 cos(2t�) + �2)2/4�4, and
are illustrated by the dashed lines in Fig. 1.

The solid populations in Fig. 1 are calculated by nu-
merically solving Eq. (2) for the full system and can be
understood as follows. As discussed above, the excited state
|E〉 relaxes to the singly excited state |eg(ge)〉 at a rate γ̃00(11).
However, in the Dicke basis, relaxation from the bi-excited
state to the symmetric (antisymmetric) state occurs at the rate
γS(A) = ∑

i γ̃ii/2 ± γij . Ignoring Hamiltonian dynamics for
the moment, the populations are coupled as ρ̇SS = (ρEE −
ρSS)γS and ρ̇AA = (ρEE − ρAA)γA. Thus, the solid lines in
Fig. 1 and the eventual steady states are driven by symmetric
pumping described by Eq. (4) augmented by super and
subradiant dissipation from the states |S〉 and |A〉, respectively.
As discussed below, the entangled state |A〉 is a fixed-point
solution to these dynamics.

We now explore steady-state characteristics as a function
of the parameter space defined in Eq. (1). Fixed-point en-
tanglement is characterized by Wooter’s concurrence C [49].
The concurrence of a two-qubit state ρ is C(ρ) = max{0,λ1 −
λ2 − λ3 − λ4} where λj are the sorted eigenvalues of ρρ̃, with
the spin-flipped conjugate state ρ̃ = σ

y

1 σ
y

2 ρ∗σy

2 σ
y

1 . C ranges
between 0, for product states, and 1, for maximally entangled
states. As indicated by our earlier discussion and illustrated
in Fig. 2, unit concurrence is readily achievable for systems
with approximately equal couplings and driving fields as well
as approximately antisymmetric qubit detuning. In all cases,
the pair of qubits evolves to the antisymmetric entangled state
|A〉 [40,42].

IV. g(2)(τ ) AS AN ENTANGLEMENT WITNESS

We now investigate the use of the second-order temporal
correlation function to quantify entanglement generation in our
system. Entanglement is typically validated by an ensemble of
computational basis state measurements that are classically
postprocessed to either perform state tomography [51,52] or
demonstrate a quantum inequality violation [53,54]. Tomo-
graphic state readout has been successfully performed for dis-
sipatively entangled trapped ions [16] using specialized read-
out mechanisms. However, for nascent plasmonic technolo-

Css

Δ0

Δ1 η1

η0

Css

FIG. 2. Heat map of steady-state concurrence Css as a function of
(left) qubit detunings �0,1 with equal qubit drivings η0 = η1 = 0.05
and (right) qubit driving amplitudes η0,1 with asymmetric qubit
detunings �0 = −�1 = 0.01. Symmetric drivings and couplings
with antisymmetric detunings yields near unity concurrence steady
states ρss ≈ |A〉〈A|. Parameters common to both panels are coupling
strengths g0 = g1 = 0.05 and plasmon detuning and driving �a =
ηa = 0.

gies, it is worthwhile to develop simple experimental signa-
tures consistent with entangled states, without the complicated
readout electronics needed to perform full-state tomography.

In this context, antibunching in g(2)(τ ) of emitted light was
suggested as an alternative entanglement signature [40,55,56].
Below we confirm that the second-order correlation function
successfully discriminates between entangled, arising in the
form |A〉, and unentangled steady states generated by our
protocol. Importantly, antibunching by itself is not conclusive
evidence of entanglement between qubits with a shared
dissipative pathway. For instance, if both qubits were not well
coupled to the same plasmonic mode, steady-state entangle-
ment would not be generated, but each qubit would exhibit
antibunching on a time scale determined by the lifetime of the
qubit. By considering the antibunching dynamics, it is possible
to distinguish antibunching due to individual uncoupled emit-
ters and antibunching due to dissipative, driven, entanglement
between qubits coupled to a shared plasmonic reservoir.

The second-order correlation function measures the degree
to which a system is temporally correlated. For stationary
processes invariant under time translation, as is the case for
steady states, the correlation function is defined as

g(2)(τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
〈a†(t)a(t)〉2

. (5)

In the context of quantum optics, g(2)(τ ) has the simple
and intuitive interpretation of the normalized probability
that two photons, whose emission times differ by τ , are
detected at a point in space. A Hanbury-Brown-Twiss (HBT)
interferometer [57] can be used to measure this quantity. In
a modern HBT interferometer, a 50/50 beamsplitter is used
to send a light source to a pair of single-photon counting
detectors, and high-speed electronics tag the arrival times of
photons at each detector, with temporal resolution as fast as
1 picosecond.

To calculate g(2)(τ ), let us now combine continuous time
evolution with a discrete quantum jump model. Consider a
steady state ρss of Eq. (2), whose concurrence is plotted
in Fig. 2, which spontaneously emits a single photon from
either qubit. An emission event originating from the ith qubit
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FIG. 3. The steady-state g(2)(τ ) correlation function as driving
amplitudes η1 = 0.05 and η0 varies across [0.04,0.06]. The blue
traces in panel (a) correspond to statistical mixtures of |gg〉 and
|eg(ge)〉 depending on the circle endpoints. These states showing
a g(2)(0) = 0.5 and correspond to general mixed states. Over this
range the concurrence evolves (see color bar labeled by C) from
0, where g(2)(0) = 1/2, to 1, where g(2)(0) = 0. Other Hamiltonian
parameters, as ratios of γa , are �0 = −�1 = 0.02, g0 = g1 = 0.05,
and η1 = 0.05. τ is presented in units of 1/(π ∗ γa) ≈ 6 fs.

corresponds mathematically to the application of a destruction
operator σ−

i which projectively maps the postemission state
to ρi(0) = σ̂

(−)
i ρss σ̂

(+)
i /Tr[σ̂ (−)

i ρss σ̂
(+)
i ]. Defining ρi(τ ) as

ρi(0) evolved from t = 0 to t = τ according to Eq. (2), the
probability for a second emission from the j th qubit at time τ

is then Tr[n̂j ρi(τ )], where n̂j = σ̂
(+)
j σ̂

(−)
j is the qubit number

operator. Tracing over all emission configurations gives us the
correlation function

g(2)(τ ) =
∑
ij

Tr[n̂j ρi(τ )]. (6)

Figure 3(a) illustrates the behavior of g(2)(τ ) when the driv-
ing amplitude η0 varies across [0.04,0.06]. Across this range,
the concurrence varies from 0 to 1, and back to 0, as denoted by
the color of the curves (also see Fig. 2). At unity concurrence
we observe that g(2)(0) = 0, while for unentangled states,
marked by vanishing concurrence, the zero-delay correlations
saturate to g(2)(0) ∼ 0.5. Generally, this correlated antibunch-
ing signature appears for all dissipatively generated entangled
steady states, as can be seen by comparing Figs. 2 and 4.

It is interesting and necessary to study the effects of
generic decoherence with respect to entanglement generation
and antibunching. For example, we consider dephasing noise
which is modeled by the presence of dephasing channels acting
locally on each qubit. In Fig. 3(b) we vary the strength of the
dephasing noise with respect to the relaxation rate and plot the
steady-state concurrence, zero-delay signal, and population of
the dually excited state |E〉 = |ee〉.

We emphasize that the observation of an antibunching dip
is not a general entanglement metric for arbitrary quantum
states. However, it is a universal feature shared by subradiance-
generated entangled steady states in our setup. It is worth
noting that antibunching is routinely observed in experiments
involving single quantum emitters. The antibunching from

Δ0

Δ1 η1

η0

g(2)(0) g(2)(0)

FIG. 4. Zero-delay correlations g(2)(0) as a function of (left)
qubit detunings �0,1 and (right) qubit drive amplitudes η0,1 using
parameters reported in Fig. 2. Dark bands, which overlap strongly
with the high concurrence regions, denote parameter regimes for
which antibunching is present.

single quantum emitters is rooted in the fact that after emitting a
photon the emitter relaxes to its ground state and cannot source
another photon without some time passing for the emitter to
become excited again. For single quantum emitters, the anti-
bunching dip width is proportional to the bare emitter decay
rate (γr ). Below we discuss how the width of the antibunching
emanating from a pair of emitters, which are coupled by a com-
mon plasmonic reservoir, is many orders of magnitude smaller
than a signal being sourced by a single quantum emitter.

Note that the robustness of the antibunching signal is rooted
in the fact that, similar to the single emitter case, a single
quantum is shared between two qubits in the form of the
state |A〉. Antibunching could also be caused by product states
sharing a single quantum, e.g., |eg〉 or |ge〉, but these are
unstable under the dynamics considered and the time scales
would be quite different as already mentioned. Further, g(2)(τ )
is unaffected by states including statistical mixtures of |G〉
(which do not contribute any emissions), while the bi-excited
state |E〉 may generate two emission events with a small
delay with high probability. These dual emissions destroy the
antibunching signal. Antibunching is therefore maximal in our
setup for the only stable single excitation subspace: |A〉.

While antibunching is an attractive entanglement signature
due to its simplicity, its observation is nontrivial due to the
fast time scales inherited from the plasmonic reservoir. After
each radiative decay event, the two-qubit system flows back to
its steady-state solution as described earlier. Hence the width
of the g(2)(0) antibunching dip is inversely proportional to
the population oscillation Rabi frequency �. Tunable driving
frequencies are therefore critical to observing antibunching
on experimentally accessible time scales. While nonlinear
mixing with femtosecond laser sources could enable the
detection of subpicosecond dynamics in g(2)(τ ), conventional
HBT interferometry is limited by the 1-ps temporal resolution
of state-of-the-art time tagging electronics. To that end, we
numerically calculate the oscillation time scales by Fourier
transforming the g(2)(τ ) signal into the frequency domain and
identifying the characteristic driving frequency, which fixes
the antibunching time scale. The time scales are provided
in the Fig. 5 color maps, as a function of detuning and
driving amplitudes, with normalized time in units of T =
1/(π ∗ γa) ≈ 6 fs reported in the color legend. Antibunching
time scales in the ∼10 ps range for entangled states are
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Δ0

Δ1 η1

η0

τ τ

FIG. 5. Oscillation time scales for antibunching signal as a func-
tion of (left) qubit detunings �0,1 and (right) qubit drive amplitudes
η0,1. Time scales reported are in units of T = 1/(π ∗ γa) ≈ 6 fs with
remaining parameters as in Fig. 2. Entangled region around η0 =
η1 = 0.03 displays a characteristic bunching time scale TAB ∼ 10 ps.

easily experimentally realizable, e.g., for small driving fields
around η0 = η1 ≈ 0.03. Notably, these timescales are much
shorter than the lifetimes of typical qubits. For instance,
nitrogen-vacancy (NV) centers in diamond have lifetimes of
order 10–30 ns [50].

V. CONCLUSION AND DISCUSSION

In this paper we examine the entanglement characteristics
of steady states generated by a pair of qubits subject to a
dissipative plasmonic reservoir. We find that maximally en-
tangled steady states are routinely achievable by appropriately
tuning qubit detunings, couplings, and driving frequencies.
Further, the entanglement is found to be robust against

small perturbations in the tuning parameters, which need
only be approximately symmetric (couplings, drivings) or
antisymmetric (detunings) to generate high concurrence states.

We also examine entanglement detection by an antibunch-
ing signature in the second-order correlation function that
is routinely measured by means of a Hanbury-Brown-Twiss
interferometer. By correlating this effect with the steady-state
concurrence, we analyze how the correlation function at
zero-delay may serve as a robust entanglement signature
for dissipating coupled qubit systems. Importantly, we also
demonstrate that dynamics driven by weak fields allows the
antibunching signature to persist onO(ps) time scales that pave
the way to experimental detection using currently available
experimental techniques. This robustness against microscopic
perturbations and unentangled fixed point states cements the
g(2)(τ ) correlation function as a simple and practical measure
of steady-state entanglement generation.
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