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We present a theoretical study of lasing action when plasmonic metallic structures that show lattice plasmon
resonances are embedded in a gain medium. Our model combines classical electrodynamics for arrays of gold
nanoparticles with a four-level quantum Liouville model of the laser dye photophysics. A numerical solution
was implemented using finite-difference time-domain calculations coupled with a finite-difference solution to
the Liouville equation. A particular focus of this work is the influence of dephasing in the quantum dynamics on
the emission intensity at the threshold for lasing. We find that dephasing in the quantum system leads to reduced
lasing emission, but with little effect on the long-term population inversion. Both electronic and vibrational
dephasing is considered, but only electronic dephasing is significant, with the fully dephased result appearing
for dephasing times comparable to plasmon dephasing (∼10 fs) while fully coherent results involve >100 ps
dephasing times as determined by the rate of stimulated emission. There are factor-of-2 differences between
the Maxwell-Liouville results (greater emission intensities and narrower widths) compared to the corresponding
results of rate-equation models of the dye states, which indicates the importance of using the Maxwell-Liouville
approach in modeling these systems. We also examine rate-equation models with and without constraints arising
from the Pauli exclusion principle, and we find relatively small effects.
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I. INTRODUCTION

Studies of the optical properties of plasmonic nanostruc-
tures have gained a lot of attention due to their wide range
of applications, including biochemical sensing [1,2], energy
harvesting [3,4], light generation [5], near-field imaging [6,7],
and nanoscale photochemistry [8,9]. The combination of
surface-plasmon (SP) excitation of the plasmonic nanopar-
ticles (NPs) with excitation of a molecular gain medium
leads to additional optical functions, in particular, lasing
action can occur in some situations [10–15]. While there are
several possible platforms for plasmon laser research, one
that has proven especially effective involves using narrow
and sharp resonances known as lattice plasmons [16,17],
in which the plasmonic particles are arranged in an array
such that both diffraction and plasmon resonances can be
excited simultaneously. Recent experimental studies have
shown that stimulated emission by gain molecules in the
presence of lattice plasmons is sufficiently enhanced that it
overcomes losses from light absorption and other processes,
yielding lasing action at relatively low intensities [10]. In
addition to that, experimental research has shown lasing from
a single plasmonic nanoparticle with a dye-doped core-shell
structure [18] and a random [19], quasiperiodic, and aperiodic
plasmonic lattice structure [20] in a dye-doped waveguide.
However, lattice plasmon resonances have a higher-quality
factor Q [21,22], and this makes it possible for periodic
arrays coupled with a gain medium to show low-threshold
room-temperature lasing, together with spatial coherence,
directional emission normal to the surface, and tunability over
near-infrared wavelengths [23,24].
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A schematic diagram of a typical plasmonic nanocavity
array laser is shown in Fig. 1. It is composed of a two-
dimensional array of Au NPs patterned on a glass substrate
and then covered by a polymer gain layer. This plasmon
laser setup is similar to a cavity laser where the resonant
cavity gets replaced by NPs. For both cavity and lattice
plasmon lasers, it is desirable to have a theoretical model
to describe the excited-state population dynamics and cavity
electrodynamics so as to determine the optimum laser structure
and choice of laser dye and excitation source for lasing. Many
methods have now been proposed for this purpose [25–31],
however, modeling the lattice plasmon lasers has continued
to present important challenges and opportunities. The most
common and successful approach has involved describing
the electromagnetic fields using Maxwell’s equations while
treating the gain molecules with rate equations that govern
the population dynamics. The populations are then assumed
to drive the fields by assuming a phenomenological driven
harmonic oscillator response for the polarization induced
in the gain medium to the population inversion. To solve
Maxwell’s equations for the dynamics of the electromagnetic
(EM) fields, the finite-difference time-domain (FDTD) method
is the most used computational approach [32,33], and this can
be connected nicely to a finite-difference solution to the rate
equations and driven oscillator dynamics.

In addition to using rate equations for the atomic popu-
lations [25,33], Bloch equations have also been considered
[31]. Although the Bloch equations lead to comprehensive
studies of light-matter interactions, the number of levels
involved constrains the computation [26,30,34]. So far the
most complete theory for describing plasmonic lasing in
nanocavity arrays was developed by Dridi et al. [28] by
implementing the FDTD method in conjunction with a four-
level description of the dye molecules, and the oscillator model
coupling polarization to the local field. Despite its versatile and
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FIG. 1. Schematic representation of the nanoparticle array laser.

simple formulation, it cannot appropriately model dephasing
in the quantum system, which is worrisome given that the time
scale of dephasing is expected to be similar to that for plasmon
dephasing in the classical electromagnetic field.

The interaction of light with a thermally fluctuating envi-
ronment perturbs phase relationships in the quantum system,
leading to dephasing of the quantum states, and ultimately
decoherence of any coherent superpositions of quantum states
[35,36] that is produced in the initial excitation of the system
with an ultrafast laser. Dephasing is the central feature in
the transition between quantum and classical behavior in
any system [37,38]. Coherence loss is facilitated by a lack
of phase-space structure [39], and becomes an irreversible
phenomenon in systems with many degrees of freedom.
Plasmon excitation is typically associated with rapid dephasing
(<10 fs), and this dephasing effect is treated classically in the
classical electrodynamics. However, the gain medium in the
lattice plasmon laser can also dephase due to environmental
interactions. Dephasing can affect lasing in two ways: It
can destroy the lasing effect by decreasing the efficiency of
energy exchange between plasmons and the gain medium,
lowering population inversion. Also, it effectively broadens the
molecular states that interact with the plasmons. If destructive
effects dominate, lasing can either be quenched, or increased
pumping is needed to achieve lasing. The effect of dephasing
within such a system can be captured properly by considering
the quantum dynamics of open systems, which extends the
unitary evolution of the Schrödinger equation for the wave
function into a nonunitary stochastic Schrödinger equation
[40,41]. Alternatively, we can generalize to the quantum
Liouville–von Neumann equation for the density matrix [42]
in combination with solving Maxwell’s equations for the field,
the so-called Maxwell-Liouville method.

In this paper, we investigate the effect of gain molecule
dephasing on the properties of lattice plasmon lasers. This
is done using the Maxwell-Liouville approach, including the
classical model of the polarization response to the applied
field (which is based on the rotating-wave approximation). A
detailed analysis of the effect of dephasing on populations and
laser emission is presented, and we also make comparisons
with the results of the established rate-equation methods.
The paper is organized as follows: In Sec. II, we present
the theoretical model describing lasing action based on the
coupled Maxwell-Liouville equations. In Sec. III, we provide
details of the numerical implementation. Section IV presents
the study of an array of gold NPs embedded in a gain medium,

including an analysis of the impact of various dephasing
times on lasing. We also briefly compare our method with
previously proposed methods for studying stimulated emission
using classical rate equations, including methods that do or
do not impose constraints associated with the Pauli exclusion
principle. Finally, in Sec. V, we summarize our results with a
future research outlook.

II. MODEL

We seek to understand the mechanism underlying the
coupling and dynamics of EM fields of the nanoparticles and
the quantized response of gain molecules in a lattice plasmon
laser. The interaction of the EM field, induced due to the
plasmonic system, with the gain medium can be split into two
parts: the action of the EM wave on the molecule and the action
of the molecule on the EM field. The gain medium consists of
molecules that are initially in the ground state. The EM field
of the incident ultrafast excitation pulse induces electronic
transitions, and the excited-state photodynamics leads to
transitions between energy levels that result in population
inversion. In order to model all these effects in a self-consistent
manner requires the simulation of coupled Maxwell-Liouville
equations, providing a scheme for understanding the effects of
dephasing on the evolution. The dynamics of the EM fields �E
and �H is governed by Maxwell’s equations,

∇ × �E(t) = −μ0
∂ �H (t)

∂t
, (1)

∇ × �H (t) = ε
∂ �E(t)

∂t
+ ∂ �P (t)

∂t
, (2)

where μ0 is the magnetic permeability of free space and ε is the
dielectric permittivity. �P is the net macroscopic polarization
of the molecular system resulting from the EM field induced
by optical transitions.

For a self-consistent interaction between the gain medium
and the EM field, we need to determine the time evolution
of the local molecular polarizability, which depends on the
evolution of the molecular density matrix in the presence of
the EM field. The net macroscopic polarization, induced due
to population differences between pairs of optically coupled
states, is locally driven by the electric field. In the rotating-
wave approximation, the Heisenberg equation for the time
evolution of the molecular polarization can be cast in the form
of a classical electron oscillator model (see the Appendix),
within the linear-response domain, leading to an equation for
the time dependence of �P given by [27,43]

d2 �P
dt2

+ �ω
d �P
dt

+ ω2 �P = κN�ρ(t) �E(t). (3)

Here, �ω is the bandwidth of the transition of interest, N is
the number density of molecules in the gain medium, �ρ(t)
is the fractional difference in the populations between the two
energy levels that drive the polarization, κ = 6πε0c

3/ω3τ ,
and τ is the lifetime of the spontaneous emission associated
with the transition. Note that the right-hand side of Eq. (3)
depends on population differences, i.e., diagonal elements
of the density matrix, but not the off-diagonal density-
matrix elements. This result, which comes by invoking the
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rotating-wave approximation, plays a crucial role in deter-
mining the effect of dephasing in the quantum system on
the evolution of the classical fields. While the rotating-wave
approximation is not always satisfied, the primary deviations
arise when the field-matter interactions are strong, which
would not seem to be relevant to the threshold behavior of
the laser systems we are considering.

As a next step, we need to determine the time evolution
of the full density matrix. Assuming that the concentration
of the quantum medium is low enough to neglect Coulomb
interactions (leading to exciton transfer) between individual
quantum systems, one can describe the quantum dynamics
using the Liouville–von Neumann equation for a single
molecule,

ih̄
dρ̂

dt
= [Ĥ ,ρ̂] − ih̄�̂ρ̂, (4)

where ρ̂ is the density matrix of the molecule and Ĥ is
the total Hamiltonian, including the gain medium–EM field
interaction term. The relaxation processes, described by the
phenomenological operator �̂, are considered to be Markovian
[44]. The diagonal elements of it describe excited-state
lifetimes, while nondiagonal elements account for dephasing
effects. The Hamiltonian includes a time-independent free
component Ĥ0 and a term describing the interaction with the
electromagnetic field �E(t),

Ĥ (t) = Ĥ0 − �d· �E(t), (5)

where �d is the dipole moment operator of the quantum
system. This equation shows that the field-molecule interaction
Hamiltonian depends on the angle between the electric field
and transition dipole moment of the molecule. This angular
dependence greatly impacts the threshold and intensity of the
stimulated emission, but the trends are easy to understand so
we assume that the two vectors are aligned in this work.

In order to fully describe the lasing dynamics we model
each molecule as a four-level system with an optical transition
for absorption (and emission) (0 ↔ 3) and for the emission
(and absorption) (2 ↔ 1), based on the schematic energy
diagram shown in Fig. 2. When the dye is optically pumped
on the transition (0 ↔ 3), the four-level model will provide
gain via stimulated emission for the transition (2 ↔ 1). The
spontaneous decay rates of transitions between (3 → 2) and
(1 → 0) are assumed to be fast enough that not enough
population accumulates in states 3 and 1. On the other hand,
the spontaneous decay rates for the transitions (2 → 1) and
(3 → 0) are assumed to be small. Following a fast nonradiative
transition (3 → 2), population inversion is achieved. For suffi-
ciently high incident field intensities [10,28], plasmon-driven
stimulated emission associated with the 2 ↔ 1 transition leads
to lasing.

In order to understand this model it is convenient to think
of the states 3 and 2 as vibrational states of the same excited
electronic state, while states 1 and 0 are vibrational states of
the ground electronic state. We will use the terms “electronic”
and “vibrational” later in this paper in describing the results.

FIG. 2. Scheme showing the energy-transfer process for the op-
tically excited four-level gain medium coupled to lattice plasmons in
nanoparticle arrays: The dashed lines are for spontaneous transitions
and continuous lines for stimulated transitions.

The Hamiltonian for the system can be written as

Ĥ =

⎛
⎜⎜⎜⎝

ε0 0 0 �03

0 ε1 �12 0

0 �21 ε2 0

�30 0 0 ε3

⎞
⎟⎟⎟⎠, (6)

where εi is the energy of ith energy level, and � = − �dij · �E(t)
is the coupling energy between two energy levels, with dij

being the transition dipole moment between states i and j .
Equations (1)–(6) describe the self-consistent time evolu-

tion of interactions between the dye molecules and EM fields
associated with the NP arrays. Equations (4) and (6) lead
to coupled Maxwell-Liouville equations for the molecular
density-matrix elements,

dρ00

dt
= 1

ih̄
(�03ρ30 − �30ρ03) + �30ρ33 + �10ρ11, (7a)

dρ01

dt
= 1

ih̄
[�03ρ31 − �21ρ02 − ρ01(ε1 − ε0)] − γ01ρ01,

(7b)

dρ02

dt
= 1

ih̄
[�03ρ32 − �12ρ01 − ρ02(ε2 − ε0)] − γ02ρ02,

(7c)

dρ03

dt
= 1

ih̄
[�03(ρ33 − ρ00) − ρ03(ε3 − ε0)] − γ03ρ03,

(7d)

dρ10

dt
= 1

ih̄
[�12ρ20 − �30ρ13 + ρ10(ε1 − ε0)] − γ10ρ10,

(7e)

dρ11

dt
= 1

ih̄
(�12ρ21 − �21ρ12) − �10ρ11 + �21ρ22, (7f)

dρ12

dt
= 1

ih̄
[�12(ρ22 − ρ11) − ρ12(ε2 − ε1)] − γ12ρ12,

(7g)
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dρ13

dt
= 1

ih̄
[�12ρ23 − �03ρ10 − ρ13(ε3 − ε1)] − γ13ρ13,

(7h)

dρ20

dt
= 1

ih̄
[�21ρ10 − �30ρ23 + ρ20(ε2 − ε0)] − γ20ρ20,

(7i)

dρ21

dt
= 1

ih̄
[ρ21(ε2 − ε1) − �21(ρ22 − ρ11)] − γ21ρ21, (7j)

dρ22

dt
= 1

ih̄
(�21ρ12 − �12ρ21) − �21ρ22 + �32ρ33, (7k)

dρ23

dt
= 1

ih̄
[�21ρ13 − �03ρ20 − ρ23(ε3 − ε2)] − γ23ρ23,

(7l)

dρ30

dt
= 1

ih̄
[ρ30(ε3 − ε0) − �30(ρ33 − ρ00)] − γ30ρ30,

(7m)

dρ31

dt
= 1

ih̄
[�30ρ01 − �21ρ32 + ρ31(ε3 − ε1)] − γ31ρ31,

(7n)

dρ32

dt
= 1

ih̄
[�30ρ02 − �12ρ31 + ρ32(ε3 − ε2)] − γ32ρ32,

(7o)

dρ33

dt
= 1

ih̄
(�30ρ03 − �03ρ30) − (�30 + �32)ρ33, (7p)

where �ij ’s are excited-state decay rates and γij ’s are
dephasing rates between two energy levels, i and j .

Equations (7) show how the off-diagonal density-matrix
elements get coupled to the populations through the Liouville
equation. The electric field is coupled to these off-diagonal
elements through the coupling in Eq. (5), so this provides the
possibility for phases of the field to couple to coherences in
the density matrix.

III. NUMERICAL DETAILS

To solve the above coupled Maxwell-Liouville equations,
we employ an algorithm based on a finite-difference approach
that generalizes the usual FDTD technique to include the time
evolution of the density-matrix elements of the molecule.
Initially proposed in Ref. [27], this approach has several
attractive merits including simplicity, numerical stability, and
applicability to objects with arbitrary geometry and optical
properties.

The numerical implementation scheme to solve the
coupled Maxwell-Liouville equations is as follows: (1) The
magnetic field is determined via Faraday’s law. Next, using
the macroscopic polarization current density of the previous
time step, the electric field is updated. (2) With knowledge
of the local electric field components, we update the density
matrix at each spatial point. (3) Finally, with knowledge of
the electric field components and the updated density matrix,
we calculate the macroscopic polarization current d �P

dt
at a

corresponding grid point.
In the FDTD framework both electric and magnetic

fields are propagated in time and space using the coupled

Maxwell’s curl equations based on the Yee algorithm [32,45].
Based on second-order central differences, the FDTD method
implements the space derivatives of the curl operators via
finite differences in regular interleaved three-dimensional
Cartesian space meshes for the electromagnetic fields. �E
and �H components are arranged in a leapfrog arrangement
as a function of time in the three-dimensional (3D) grid.
Hence, each �E component is surrounded by four circulating
�H components and every �H component is surrounded by

four circulating �E components. The molecular density-matrix
and net macroscopic polarizations are calculated using the
spatial average of the �E components on adjacent half cells. In
order to take into account the anisotropic simulation cells, the
electric flux is computed to accurately determine the electric
field [28,46].

The simulation cell has periodic boundary conditions in
the x and y directions while a uniaxial perfect matched layer
(UPML) [32] is used at the top and bottom to absorb waves at
the cell boundaries.

To investigate the role of dephasing in our model, we
consider the setup schematically shown in Fig. 1. This setup
is identical to the one previously implemented in Ref. [28]
using a rate-equation approach. The gold particles in this setup
are cylinders with an elliptical cross section. The major axis,
minor axis, and height of Au NPs are 100, 50, and 60 nm,
respectively. The periodicity of the plasmonic structure along
the x and y axis is 300 nm (square lattice), the refractive index
of the surrounding medium is n = 1.5, and the thickness of
the dye is 200 nm. A Drude-Lorentz fit function [47] is used
to describe the complex dielectric function of gold.

The absorption (λ30) and emission (λ21) wavelengths of
the dye are 600 and 720 nm, respectively. The spectral
bandwidths of the emission and absorption transitions are both
assumed to be 100 nm. The incident pulse is a Gaussian pulse
centered at λ30 with a temporal bandwidth of 150 fs and is
polarized along the major axis of the particles. The incident
light is assumed to propagate along the z direction, which
is normal to the NP array. The concentration of the dye is
2.5 × 1025 molecules m−3, corresponding to 25 molecules in
a 10-nm3 cell. This is small enough that the energy transfer
between molecules is too slow to play a role on the time
scales of importance to this work. The emission spectrum
is collected along the z direction (as dictated by the lattice
plasmon diffraction condition) using a spatial average of the
NP array in the time domain.

The spontaneous decay and dephasing rates depend on the
energy difference between the levels under consideration. We
empirically assign the time scales of spontaneous relaxation
and dephasing in the present study. The spontaneous relaxation
time scale between electronic states is assumed to be in the ns
range (here we note that Purcell effects would shorten it, as
considered previously [28], but the revised time scale would
still be much longer than is important in this work), while
it is taken to be in the fs range between vibrational states.
The dephasing rates between two levels are expected to vary
inversely with the energy spacing between them [48–50], so
we have assumed the dephasing of vibrational states is in the
ps range, while dephasing of the electronic states is in the fs
range. The parameters we have chosen are listed in Table I. The
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TABLE I. The spontaneous and dephasing relaxation time scales
of various transitions.

Transitions Spontaneous Transitions Dephasing
relaxation (�) time scale (γ )

3 → 0 1 ns 3 ↔ 0 2 fs
3 → 2 10 fs 3 ↔ 2 0.2 ps
2 → 1 1 ns 2 ↔ 1 2 fs
1 → 0 10 fs 1 ↔ 0 0.2 ps

parameters for spontaneous decay are the same as implemented
in Ref. [28]. Later in the paper we examine the sensitivity of
the results to the choices of dephasing times.

IV. EFFECT OF DEPHASING ON LASING

In Fig. 3(a), we have plotted the extinction spectrum of
the passive structure of Fig. 1. The broad peak near 730 nm
is a typical lattice plasmon dipolar mode. The emission
spectrum of the active medium, for the pump intensity above
the threshold, is shown in Fig. 3(b). There are two distinct
emission peaks in the spectrum: The first one is at λ = 600 nm,
the absorption wavelength of the dye. It appears due to
stimulated emission at the exciting wavelength as results from
an incomplete loss of population in state 3 from the 3 → 2
transition. The second peak is at λ = 732 nm, corresponding
to stimulated emission between states 2 and 1. The narrow
emission profile along with the threshold behavior of the peak
are typical of stimulated emission for the four-level model.
In Fig. 3(c), we show the normalized state populations as
a function of time after the initial pulse. Plasmon coupling
with the gain medium leads to a steady population inversion
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FIG. 3. (a) Extinction spectra of a passive structure. (b) Emission
spectra of an active structure. (c) Time dependence of the occupation
densities of the gain medium. (d) Time dependence of the normalized
population inversion. The input pulse energy for these calculations is
equal to 60 mJ cm−2, corresponding to the threshold for lasing in this
model.
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FIG. 4. Comparison between the impact of various types of
dephasing on emission. Plots of (a) full emission profile and
(b) zoomed version of stimulated emission peak. Red solid line,
without any kind of dephasing; blue solid line, complete dephasing;
green dotted line, only vibrational dephasing; orange dotted line,
only electronic dephasing. Threshold for an input energy is equal to
60 mJ cm−2.

that is essential for lasing. To be more precise, the term
1
ih̄

(�21ρ12 − �12ρ21) in Eq. 7(k) drives the inversion condition,
essential for stimulated emission. This term modifies the
population of the metastable state explicitly, which in turn
modifies the local net polarization. In Fig. 3(d), we plot the
population inversion between states 2 and 1, confirming the
buildup of this inversion during the 150 fs of the initial pulse,
and then its slow decay thereafter.

A. Electronic dephasing versus vibrational dephasing

Previous studies have demonstrated that dephasing affects
the state populations [36,51] in the molecules and their
coupling with the plasmonic field [52–54]. Since population
inversion is a prerequisite for lasing, it is critical to understand
the influence of dephasing on it. In addition, our model
contains both electronic and vibrational dephasing, so it
is important to study how each factor impacts the lasing
dynamics.

Here, we study four cases in detail to investigate the
influence of dephasing on steady-state population inversion
and in turn on stimulated emission. In the first case, the system
evolves coherently (no dephasing), and the results are labeled
as None in Fig. 4. As a second case, we examine the dephasing
only between vibrational levels, i.e., nonzero γij ’s in Eq. 7
using the value in Table I for levels 3 and 2 and 1 and 0,
while the electronic levels stay in perfect coherence. As a
third case, the vibrational levels stay in perfect coherence
while decoherence between electronic states is taken into
account, i.e., nonzero γij ’s for levels 2 and 1 and 3 and 0. In
the fourth scenario, all levels lose coherence simultaneously
with the values in Table I. In Fig. 4(a), we plot the emission
spectra in all four cases. It is evident from the figure that
electronic dephasing influences the intensity of stimulated
emission [Fig. 4(b)], but dephasing between vibrational states
has no affect. This outcome is understandable, as the assumed
time scale for vibrational dephasing is much longer than the
time scale for spontaneous relaxation for the 3 and 2 and 1 and
0 transitions, so vibrational dephasing should have no effect.
Meanwhile the time scale for electronic dephasing is much
shorter than the relaxation time, so this has a bigger effect
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FIG. 5. Comparison between the impact of various types of
dephasing on steady-state population inversion as a function of time.
(b) Plot of the first 30 fs of the dynamics. Red solid line, without any
kind of dephasing; blue solid line, complete dephasing; green dotted
line, only vibrational dephasing; orange dotted line, only electronic
dephasing. The input pulse energy is 60 mJ cm−2, which is just above
the laser threshold.

(though only reducing the intensity by only about 10%). Also
note that the peak near 600 nm is robust under dephasing, as
this peak is a result of pump-driven transitions and is very
short lived.

In Fig. 5(a), we have plotted the normalized steady-state
population inversion for the four choices of dephasing times.
This shows that the population oscillates rapidly, between
levels 2 and 1, for the first ∼150 fs, corresponding to the time
when the pump is on. From Fig. 5(b) it is evident that electronic
dephasing dampens the oscillations in the population inversion
during the first 30 fs, while vibrational dephasing has no effect
(matching the fully coherent results during this time interval).
At times longer than about 200 fs, the populations are all very
similar, which suggests that the initial differences at short times
do not significantly affect the longer time-scale population
inversion.

We further systematically study the impact of vibrational
and electronic dephasing to investigate convergence behavior.
In the first scenario, we decrease the coherence time between
vibrational levels to explore the impact of vibrational dephas-
ing, fixing the electronic dephasing time at 2 fs. The results
are plotted in Fig. 6(a). It is evident from the spectra that
vibrational dephasing even at the time scale of 2 as does not
influence stimulated emission.
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FIG. 6. Plot of stimulated emission peak (a) for different vibra-
tional dephasing time scales, with constant 2 fs electronic dephasing,
and (b) for different electronic dephasing time scales, with constant
200-fs vibrational dephasing. In the inset, the curves are ordered from
top to bottom, going from 200 ps (top) to 2 fs (bottom).

To explore the convergence behavior for electronic dephas-
ing, we keep the vibrational dephasing time at 200 fs and
gradually increase the electronic dephasing time. The emission
spectra in this case are plotted in Fig. 6(b). It is evident from
the results (see the inset to the figure) that, unlike vibrational
dephasing, the time scale of electronic dephasing strongly
influences the peak stimulated emission intensity, with fully
dephased results being obtained for dephasing times on the
order of 10 fs, and fully coherent results obtained for dephasing
times greater than 100 ps. In between these two limits there is a
smooth transition in peak emission from dephased to coherent
limits. Note that the 100-ps coherent time scale is faster than
the 2 → 1 radiative lifetime, reflecting the fact that at the
lasing threshold stimulated emission is faster than spontaneous
emission. At the same time, the 10-fs limit for fully dephased
results is comparable to the plasmon dephasing time.

B. Classical rate equation and density-matrix rate equation

In this section, we compare our method with previously
established rate-equation approaches developed by Chang
et al. [25] and Dridi et al. [28]. Chang’s model is based on a
four-level system in which there are two interacting electrons
of the same spin. As a result, transitions between energy levels
are governed by coupled rate equations that include a factor of
(1 − N ) in the spontaneous emission rates to describe the effect
of the Pauli exclusion principle (PEP) on allowed transitions.
The time dependence of the populations is given by

dN3

dt
= −N3(1 − N2)

τ32
− N3(1 − N0)

τ30
+ 1

h̄ω30

�E · d �P30

dt
,

(8a)

dN2

dt
= N3(1 − N2)

τ32
− N2(1 − N1)

τ21
+ 1

h̄ω21

�E · d �P21

dt
,

(8b)

dN1

dt
= N2(1 − N1)

τ21
− N1(1 − N0)

τ10
− 1

h̄ω21

�E · d �P21

dt
,

(8c)

dN0

dt
= N3(1 − N0)

τ30
+ N1(1 − N0)

τ10
− 1

h̄ω30

�E · d �P30

dt
.

(8d)

The PEP model has been widely used in describing
semiconductor lasers, but its applicability to dye molecules
is unknown.

The method developed by Dridi and Schatz is based on
combining EM fields with a four-level description governed
by a one-electron system in which the Pauli principle plays no
role. The time evolution of electron population is determined
using the rate equations

dN3

dt
= −N3(t)

τ32
− N3(t)

τ30
+ 1

h̄ω30

�E · d �P30

dt
, (9a)

dN2

dt
= N3(t)

τ32
− N2(t)

τ21
+ 1

h̄ω21

�E · d �P21

dt
, (9b)
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FIG. 7. (a) Stimulated emission peak and (b) steady-state condi-
tion of population inversion. The emission profile is normalized to
the same input energy.

dN1

dt
= N2(t)

τ21
− N1(t)

τ10
− 1

h̄ω21

�E · d �P21

dt
, (9c)

dN0

dt
= N3(t)

τ30
+ N1(t)

τ10
− 1

h̄ω30

�E · d �P30

dt
. (9d)

Note that the spontaneous rates in these equations are
equivalent to our density-matrix model in the limit of a fully
decohered system at all times. However, we note that even
in this limit, the Liouville and rate-equation models are not
precisely the same, as there is a Markovian approximation in
addition to fast dephasing in converting the Liouville equation
formalism to rate equations.

Figure 7 presents the direct comparison of these models
with our method. Both types of dephasing, electronic and
vibrational, have been included while solving the Maxwell-
Liouville equations, using the parameters presented earlier
(Table I). Note that the threshold powers needed in the three
cases are slightly different, so results are normalized to the
same incident pump energy. What we see from the figures
are stimulated emission profiles obtained from the two rate-
equation methods that are comparable [Fig. 7(a)], however,
both sets of rate-equation results have a peak emission rate that
is about half that of the Liouville equation result. In addition,
the Liouville equation result is narrower. The steady-state
population inversion condition [Fig. 7(b)] in all three cases
is achieved around the same time scale, as makes sense given
that the 150-fs pump plays a major role in producing this result,
but it is in contrast to the results of previous attempts to include
dephasing in lasing models [26].

The good agreement of the PEP and non-PEP rate-equation
results arises because the state populations are generally low,
which means that the influence of the 1 − N term in the PEP
model is insignificant. In the Maxwell-Liouville method, the
presence of initially oscillating behavior is a signature of initial
coherent excitation [26]. At times above 200 fs, the Maxwell-
Liouville population inversion is smaller than the rate-equation
result, which means that the rate-equation results will tend to
underestimate the lasing threshold.

V. CONCLUSIONS

In this paper, we have presented an approach to model
plasmon-enhanced laser systems using a self-consistent elec-
trodynamical model based on coupled Maxwell-Liouville
equations. This model goes beyond earlier models of lattice

plasmon lasers through its incorporation of dephasing effects
in the quantum system (the gain medium), which allows us to
study the transition from coherent to decohered evolution of
the system during and after ultrafast excitation and lasing. The
proposed model is applied to investigate a four-level density-
matrix description of an active medium which allows for both
electronic and vibrational excitation of the laser dye molecules.

We have applied our model to study arrays of gold NPs
embedded in a gain medium to investigate the emission spectra
of the active structure under circumstances where lattice
plasmon resonance excitation leads to strongly enhanced
stimulated emission. We present a detailed study of the
correlation between dephasing rates and stimulated emission,
showing that rapid dephasing between various energy levels
changes the population inversion behavior at short times as
well as reducing the amplitude of the lasing peak. We find that
fast dephasing (on the order of 10 fs or less) between levels
2 and 1 (the states associated with the population inversion)
has the most impact on reducing the intensity of stimulated
emission, with emission intensities that are 10% smaller than
for the fully coherent limit that arises for electronic dephasing
times above 100 ps. The lasing behavior is even less sensitive
to vibrational dephasing effects.

One possible reason for small dephasing effects is that in
the rotating-wave approximation leading to Eq. (3), there is no
phase dependence in the coupling between the plasmonic field
and the induced polarization in the quantum system. Since
the rotating-wave approximation is likely to be valid for the
low-intensity lasers that have been studied so far, this result
supports the earlier studies based on rate-equation models.
However, the comparison of Maxwell-Liouville and rate
equation results was less quantitative (factor-of-2 differences),
which indicates that differences between the theories are
driven by effects beyond vibrational or electronic dephasing,
such as the Markovian approximation. Also, we found that
rate-equation models that include the Pauli exclusion principle
lead to results with only small differences compared to those
that do not, due to the low occupation numbers associated with
the dye laser structures we studied.

Our method provides a detailed description of lasing action
in coupled plasmonic NP arrays, and other plasmonic systems
with gain molecules. In addition, the method is versatile and
easily extended to study interactions between other gain media
(semiconductors) and plasmons. The code we have developed
can consider random, quasiperiodic, and aperiodic structures
for the plasmonic nanoparticles with little modification of the
code. The technique should therefore be of general use for in-
terpreting, predicting, and controlling the interactions in novel
nanoscale nanoplasmonic lasers and other optical devices.
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APPENDIX: DERIVATION OF NET MACROSCOPIC
MOLECULAR POLARIZATION

Here, we present a detailed derivation of the net macro-
scopic molecular polarizations associated with the emission
and absorption transitions. The optically pumped transition
leads to a microscopic polarization of the molecule that can
be described by a classical electron oscillator (CEO) model
using the equation of motion. Within the linear frequency
domain, it has been generalized to account for a population
of molecules that under an EM field oscillate at the same
resonance frequency as the individual molecules. Although
these equations has been previously derived in Refs. [25,27],
here we are attaching a detailed derivation with the purpose of
simplicity and consistency of the paper.

The atom-photon Hamiltonian for a two-level system can
be expressed as

Ĥ = ĤAtom + ĤField + ĤAF, (A1)

where ĤAtom = h̄ωaN̂u, ĤField = �kh̄ωk(â†
kâk + 1

2 ), and
ĤAF = −μ̂ · Ê. N̂u = |u〉〈u| is the number operator for the
upper level |u〉. N̂g = |g〉〈g| is the number operator for the
ground level |g〉. h̄ωa is the energy difference between |u〉 and
|g〉. â

†
k is the photon creation operator.

The electric field is given by,

Ê = −dÂ

dt
= i

∑
k

√
h̄ωk

2ε0ν
ek(âke

i�k·�x − â
†
ke

−i�k·�x), (A2)

with ωk = |k|·c
n

, and n is the refractive index of the medium.
The dipole operator is

μ̂ = −er̂ =
∑
��′

μ��′ V̂��′ , (A3)

where e is the electron charge and V̂��′ = |�〉〈�′| is the atomic
transition operator. For a two-level system the dipole operator
reduces to

μ̂ = μV̂ † + μ∗V̂ , (A4)

with μ = 〈u|er̂|g〉 = d êz and V̂ = |g〉〈u|.
From the second quantized Hamiltonian, we will derive

the Heisenberg equation for motion for the atomic transition
operator,

dV̂

dt
= i

h̄
[Ĥ ,V̂ ]. (A5)

Let us solve it for a two-level system term by term,

i

h̄
[ĤAtom,V̂ ] = i

h̄
(ĤAtomV̂ − V̂ ĤAtom)

=
(

i

h̄

)
(h̄ωa)(N̂u|g〉〈u| − |g〉〈u|N̂u)

= −iωaV̂ , (A6)

using 〈α|β〉 = δα,β .

The next term,

i

h̄
[ĤField,V̂ ] = i

h̄

[ ∑
k

h̄ωk

(
â
†
kâk + 1

2

)
|g〉〈u|

− |g〉〈u|
∑

k

h̄ωk

(
â
†
kâk + 1

2

)]

= 0, (A7)

using â|g〉 = 0 and â†|u〉 = 0.
For the atom-field interaction term,

i

h̄
[ĤAF,V̂ ] = − i

h̄
[μ̂ · Ê,V̂ ]

= − i

h̄
[(μV̂ † + μ∗V̂ ) · Ê,V̂ ]

= − i

h̄
[(μV̂ † + μ∗V̂ ),V̂ ] · Ê

= − i

h̄
[(μV̂ † + μ∗V̂ )V̂ − V̂ (μV̂ † + μ∗V̂ )] · Ê

= − i

h̄
μ(V̂ †V̂ − V̂ V̂ †) · Ê. (A8)

Next,

V̂ †V̂ = |u〉〈g||g〉〈u| = N̂u, (A9)

V̂ V̂ † = N̂g, (A10)

V̂ †V̂ † = V̂ V̂ = 0. (A11)

Using Eqs. (A9)–(A11) in Eq. (A8),

i

h̄
[ĤAF,V̂ ] = − i

h̄
[μ̂ · Ê,V̂ ] = − i

h̄
μ(N̂u − N̂g) · Ê. (A12)

Substituting Eqs. (A6), (A7), and (A12) in Eq. (A5),

dV̂

dt
= −iωaV̂ − i

h̄
h̄μ(N̂u − N̂g) · Ê − γ V̂ . (A13)

The last term is the damping term and is empirically added in
Eq. (A13). Similarly,

dV̂ †

dt
= iωaV̂ † − i

h̄
μ∗(N̂u − N̂g) · Ê − γ V̂ †. (A14)

From Eq. (A4),

dμ̂

dt
= μ

dV̂ †

dt
+ μ∗ dV̂

dt

= μ

[
iωaV̂ † − i

h̄
μ∗(N̂u − N̂g) · Ê − γ V̂ †

]

+μ∗
[

− iωaV̂ − i

h̄
μ(N̂u − N̂g) · Ê − γ V̂

]

= iωa(μV̂ † − μ∗V̂ ) − γ μ̂ − 2i

h̄
|d|2(N̂u − N̂g)(ez · Ê).

(A15)
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Next, taking the time derivative of Eq. (A15),

d2μ̂

dt2
= iωa

d(μV̂ † − μ∗V̂ )

dt
− γ

dμ̂

dt

− 2i

h̄
|d|2(N̂u − N̂g)

(
ez · dÊ

dt

)

− 2i

h̄
|d|2

(
dN̂u

dt
− dN̂g

dt

)
(ez · Ê). (A16)

Now,

d(μV̂ † − μ∗V̂ )

dt
= μ

dV̂ †

dt
− μ∗ dV̂

dt

= iωa(μV̂ † + μ∗V̂ )

= iωaμ̂. (A17)

The population transition rate equations between levels can
be achieved from the Heisenberg equation for motion,

dN̂u

dt
= −dN̂g

dt
= − i

h̄
μ̂ · Ê. (A18)

Substituting Eqs. (A17) and (A18) in Eq. (A16),

d2μ̂

dt2
= − ω2

aμ̂ − γ
dμ̂

dt
− 2i

h̄
|d|2(N̂u − N̂g)

(
ez · dÊ

dt

)

− 2i

h̄
|d|2

(
− 2i

h̄
μ̂ · Ê

)
(ez · Ê). (A19)

Hence one recovers

d2μ̂

dt2
+ 2γ

dμ̂

dt
+

[
ω2

a +
(

2|d|
h̄

)2

Ê2

]
μ̂

= 2i

h̄
|d|2(N̂g − N̂u)

(
ez · dÊ

dt

)
. (A20)

The additional γ term is added empirically in the equation.
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