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Slowing down the speed of light using an electromagnetically-induced-transparency
mechanism in a modified reservoir
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We propose an effective method to achieve extremely slow light by using both the mechanism of
electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW).
Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula
that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several
meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a
background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And
it exhibits potential values in the field of light storage.
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I. INTRODUCTION

Slow group velocity of light [1–7] has attracted much
attention due to its potential applications in optical buffers
[8], low-power optical switches [9], and quantum memories
[10]. Generally speaking, there are two important ways to
achieve slow light. The first one is to use the narrow spectrum
resonance effects of materials to change the light velocity,
such as the electromagnetically induced transparency (EIT)
mechanism [11], coherent population oscillations (CPO) [12],
stimulated Brillouin scattering (SBS) [13], stimulated Raman
scattering (SRS) [14], etc. The second way is by means of
structural effects of materials; for example, the localization
properties of photonic crystals [15,16]. Now, an interesting
question is whether the two different mechanisms could
cooperate together to get slower light. Here we investigate
the slow-light performance from both the EIT and the coupled
cavity waveguide (CCW) mechanisms [5]. On one hand, when
a �-type atomic system is driven by two fields (one is the
probe light, and the other is the control light), the probe
light propagates with a time delay by tuning the intensity
of the control light according to the EIT mechanism. This
phenomenon has already been demonstrated experimentally
[3,4]. In this case, light can even be trapped in the EIT
medium, which is very useful for light storage [17,18]. On
the other hand, the density of states (DOS) is very high
[19] at the resonance frequencies of a cavity. The DOS
is inversely proportional to the group velocity vg . Hence
slow-light velocities can be obtained accordingly [20–23]. One
of the most important resonance system for slow light is the
CCW fabricated in a photonic crystal [24], in which the rich

localization properties have been investigated in our previous
work [25]. When light propagates in a multiple CCW, strong
localization happens in each cavity, which leads to a rather
larger time delay. Our analyses and results show that extremely
slow light (several meters per second or even near zero) can
be effectively obtained by using this combined mechanism.
Since it can be fabricated easily under current technical
conditions, a coupling system consisting of a CCW with inner
placed atoms becomes a practical optical device, and poten-
tially benefits fields like quantum computation and quantum
information [26,27].

II. MODEL AND EQUATIONS

A schematic diagram of the composite EIT and CCW
mechanism is shown in Fig. 1. Here CCW is formed by
removing an array of rods from a two-dimensional photonic
crystal (green circles), as shown in Fig. 1(a). A �-type atomic
system (blue circle) is embedded in each cavity of the photonic
crystal CCW, as shown in Fig. 1(c). Tight-binding cavity mode
interacts weakly with the neighboring cavity modes, thus the
light can propagate through coupled cavities effectively. The
coordinate of the center of the nth cavity is x = nR. The levels
|2〉 and |1〉 are coupled by a probe laser of frequency (Rabi
frequency) ωp (�p). The level |2〉 is coupled to level |3〉 by a
modified reservoir and a classical standing-wave field aligns
along the x direction with frequency ωc. The Rabi frequency
of the coupling field is �c sin (kx). Since the transition |2〉 to
|3〉 is coupled to the structured CCW mode continuum {λ}, we
have

∑
λ → ∫

dωλρ(ωλ), where ρ(ωλ) is the density of states
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FIG. 1. Schematic sketch of the extremely-slow-light system.
(a) The coupled cavity waveguide along the horizontal direction.
(b) The irreducible Brillouin zone, and the special points � and X.
(c) The three-level atomic system in the cavities. (d) A probe light of
ωp in the transmission mode and a localized control light of ωc. (e)
The same as panel (d) except for the probe light is in the localized
cavity mode.

[5,23,24] of a CCW. Then the interaction Hamiltonian of the
system can be written as

H =
∑

i

h̄ωi |i〉〈i| − h̄

2

[
�pei(kx−ωpt)|2〉〈1|

+
∫

dωλA(ωλ)ρ(ωλ) sin (kx)e−iωλt |2〉〈3| + H.c.

]
, (1)

where

A(ωλ) = L(ωλ)
√

�2
c + (ωλ − ω23)2, (2)

and L(ωλ) is the localization factor of the CCW in the system.
The density of states of the CCW is given by

ρ(ωλ) = 1

πR
√

Q2 − (ωλ − ω0)2
, (3)

where R is the intercavity distance, ω0 = (1 − 	α/2)�, Q =
κ�, and � is the eigenfrequency of a single cavity without
coupling. κ is the coupling factor, and 	α is a parameter
related to the coupled cavity, which is usually much smaller
than 1. More details can be found in Ref. [5].

Without loss of generality, we can suppose that the photonic
crystal is formed by dielectric cylinders placed in vacuum
according to a square lattice. The dielectric constant and the
radii of the cylinders are ε = 8.9 and r = 0.2a, respectively.
The lattice constant a is set to be 300 nm, and the intercavity
distance R = 5a. By using the plane-wave expansion method,
we obtain the photonic band structure for the CCW, as shown
in Fig. 2. Along the horizontal axis, the in-plane wave vector
�k goes along the edge of the irreducible Brillouin zone, from
point � to X, where the special points � and X correspond to
�k = 0 and �k = π/a�x respectively [see Fig. 1(b)]. Here the
results are computed from a coupling factor κ = 0.00242.
Hence there is a very narrow cavity mode with Q = κ� for
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FIG. 2. The photonic band structure for a CCW composed of
dielectric columns with the radius r = 0.2a, the dielectric constant
ε = 8.9, and the size of a unit cell is R = 5a, as shown in Fig. 1(a).

the structured CCW. One can find that the cavity mode locates
within the photonic band gap (see Fig. 2), where the control
light works at the corresponding frequency. To investigate
light transmission and localization in CCW systems, numerical
simulations can be conducted with the finite-difference time-
domain (FDTD) method effectively [25,28,29]. Here we
define the transmission as |Et (f )/Ei(f )|2, where Et (f ) is
Fourier-transform of transmitted electric fields Et (t), and
Ei(f ) is Fourier-transform of incident electric fields Ei(t).
Figure 3 gives the transmission curve of the three-cavity
system computed by the FDTD method. It is shown that
light propagation is prohibited in the x direction between
0.32(2πc/a) and 0.39(2πc/a), which can also be observed
in Fig. 2. For this case, the result presents clearly a resonance-
splitting effect near ω = 0.39615(2πc/a), and the number of
peaks just equals the number of cavities, as shown in the inset
to Fig. 3. This splitting property excellently mimics a multiple
photonic quantum well system [25]. Furthermore, one can see
some effective traveling transmission modes occur between
0.3(2πc/a) and 0.32(2πc/a), as shown in Fig. 3. When
the frequency ω is confined to 0.39615(2πc/a), it is found
that strong localized states occur in odd-indexed cavities, as
depicted in Fig. 4. All these phenomena are very similar to the
phenomenon that occurs in the one-dimensional case [25]. It
will be demonstrated below that the strong localization of the
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FIG. 3. Transmission spectrum of a three-cavity CCW.
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FIG. 4. Field distribution (normalized with the maximum of the
electric-field density) of incident light with ω = 0.39615(2πc/a) in
a three-cavity CCW, where both x and y coordinates are scaled by
the the lattice constant a.

cavity modes can contribute to the achievement of extremely
slow light.

To achieve the precise localization of atoms [30–34] into
the cavity, here we use a subwavelength atomic localization
technology. We presented a scheme for subwavelength atom
localization via manipulation of Raman gain process [30].
Our strategy here is to localize atomic position from the
susceptibility of the system at the probe field frequency and
simultaneously obtaining an ultralow light velocity. It is very
interesting that the information about the atomic position is
just described with the imaginary part of the susceptibility,
and low light velocity can be related to the real part of
the susceptibility. Since the susceptibility is determined by
the density-matrix elements, the equations of motion for the
density-matrix elements are then given by

ρ̇21 = i

2
�pei(kx−ωpt)(ρ11 − ρ22) + i

2
B sin (kx)e−iωctρ31

− (γ + iω21)ρ21, (4)

ρ̇23 = i

2
�pei(kx−ωpt)ρ13 + i

2
B sin (kx)e−iωct (ρ33 − ρ22)

− (γ0 + iω23)ρ23, (5)

ρ̇31 = − i

2
�pei(kx−ωpt)ρ32 + i

2
B sin (kx)e−iωctρ21 − iω31ρ31.

(6)

The off-diagonal decay rates for ρ21 and ρ23 are denoted by
γ and γ0, respectively. The parameter B can be given by

B = 1

πR

∫ ω0+ ξ

2 Q

ω0− ξ

2 Q

dωL(ω)

√
�2

c + (ω − ω23)2

Q2 − (ω − ω0)2 , (7)

where ξ is the linewidth factor of the coupling laser. Because
integration interval is very narrow, the localization factor L(ω)
can be changed with the frequency weakly, and ω0 ≈ ω23, we
have B ≈ Lξ

πR
�c. The localization factor L can be adjusted by

changing the properties of cavities and the intercavity distance.
For example, when L has a 103 order, ξ has a 10−6 order. Using
the relations P (z,t) = ε0χE0, p(z,t) = 2| �μ21|ρ21e

−i(kx−ωpt),
and P (z,t) = Nap(z,t), where p(z,t) is the slowly varying
complex polarization, Na is the density of doping atoms, | �μ21|
is the magnitude of the dipole-matrix element between |2〉 and
|1〉, and E0 is the amplitude of the probe light, the nonlinear
Raman susceptibility [30] can be given by

χ = 2Na| �μ21|2
h̄ε0�p

ρ21e
−i(kx−ωpt). (8)
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FIG. 5. Im(χ ) as a function of kx for the parameters 	 = 2γ :
(a) B = 10γ , (b) B = 20γ , (c) B = 100γ , and (d) B = 1000γ .

Because the atoms are initially in the ground level |1〉,
ρ

(0)
11 = 1, ρ

(0)
22 = ρ

(0)
33 = ρ

(0)
32 = 0. Using Eq. (8), the complex

susceptibility χ reads

χ = Na| �μ21|2	[iγ	 + 	2 − B2sin2(kx)/4]

ε0h̄[(	2 − B2sin2(kx)/4)2 + 	2γ 2]
. (9)

We know that the Raman gain is directly proportional to
the imaginary part of the susceptibility. A subwavelength atom
localization through the Raman gain process will be considered
in the following section.

III. RESULTS AND DISCUSSIONS

The maxima of the imaginary part of the susceptibility are
found when the probe-light detuning satisfies the equation

	 = ±B

2
sin (kx). (10)

This means that the maxima are located at

kx = ± sin−1 (2	/B) + nπ, (11)

where n is an integer. Therefore, the degree of localization
depends on the detuning 	 and the parameter B. In Fig. 5,
we present the results for the position probability distribution
with the influence of the coupling-field strength in a CCW. The
localization becomes more pronounced with B increasing as
shown in Figs. 5(a)–5(d). The full width at half maximum
(FWHM) of the higher peak in Fig. 5(b) can easily be
obtained numerically and it comes out to be 0.105, which
means the localization is larger than λ/50. For the given
detuning 	, high-precision and high-resolution localization
patterns can be obtained by adjusting B. We know that the
strong localization occurs in the CCW cavity, in which the
parameter B of the system is significantly dependent on
geometrical characteristics of the system. The high-precision
atom localization can originate from quantum interference,
and furthermore the behavior relies remarkably on the strong
coupling effect between an atom and a CCW. A similar
phenomenon appears in Ref. [35], in which the fluorescence
line near the quenching point can be enhanced greatly.
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FIG. 6. (a), (b) Imaginary (red dashed line) and real (blue solid
line) parts of the complex polarizability χ changing with the detuning
	: (a) B = γ , (b) B = 0.2γ . (c), (d) Delay time per unit length,
Tdel, as a function of the detuning 	, where ζ = Na | �μ21|2/ε0h̄γ 2.
(c) B = γ . (d) B = 0.2γ .

In this paper, the control light is set to be in the localized
cavity modes; the probe light, however, can be in a travelling
transmission mode or a localized cavity mode, as shown in
Figs. 1(d) and 1(e). These two cases are very different and
will be investigated respectively in the following. When the
probe light is in a transmission mode with a typical normalized
frequency, for example, ωp = 0.306(2πc/a) (see Fig. 3), the
CCW can be approximately regarded as a homogeneous bulk
medium. Therefore, the group velocity of the probe light
will be reduced due to the large effective dielectric constant.
According to the definition, we derive the group velocity of
the probe light as

vtra
g = c

np + c
∂Re(χ)
∂ωp

, (12)

where np is the average refractive index, and then the delay
time per unit length is given by

Tdel = ∂Re(χ )

∂ωp

. (13)

When the EIT mechanism is absent, which means the number
of EIT atoms tends to be zero, the denominator of Eq. (12)
approaches np. Then the group velocity of the probe light
vg tends to be c/np, which is the group velocity in the
bulk photonic crystal. When ∂Re(χ)

∂ωp
� 1, the group velocity

vtra
g is much smaller than c/np, and slow light is obtained

by the coupling mechanism. This is also demonstrated from
the polarizability and delay time (shown in Fig. 6). At zero
detuning, for different values of the coupling constant B, the
absorption vanishes and the dispersion slope is very steep as
shown in Figs. 6(a) and 6(b). For the given coupling constant
B = γ , a large delay time occurs near 	 = 0, as illustrated in
Fig. 6(c). One has to keep in mind, however, a large delay time
occurs at 	 = 0 when the control beam is strongly coupled
to structured CCW and the probe beam resonates with the
transition frequency between level |2〉 and level |1〉. Therefore,

0.997 0.998 0.999 1.0 1.001 1.002 1.003
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FIG. 7. Changes of the group velocity vcav
g with ω/ω0, B = 20γ ,

where the probe light is in the cavity mode as shown in Fig. 1(e).

the coupling effect contributes a lot, and when B = 0.2γ a
very large delay time at 	 = 0 is shown in Fig. 6(d). That
is, in order to have a larger delay time Tdel , the coupling
constant B should adopt a smaller value. One can infer from
Eq. (7) that a narrower linewidth factor ξ means a larger delay
time. This interesting phenomenon reveals that the slow light
can be achieved by tuning the linewidth of the coupling laser
effectively. It means a laser with narrower linewidth enhances
the coupling effect between atoms and cavities of the system.
Now, we consider the case shown in Fig. 1(e), i.e., the probe
light is also in localized cavity modes. Using the group velocity
of the probe light v−1

g = πρ(ω) in CCW, by means of the same
method, we derive the formula of vcav

g in this case, which reads

vcav
g = R

√
Q2 − (ω − ω0)2

1 + �
, (14)

where

� = c

np

∂Re(χ )

∂ωp

. (15)

To understand the group velocity quantitatively, we cal-
culate the change of vcav

g with ω/ω0. The results are
plotted in Fig. 7. When � → 0, vcav

g takes the form of
R[Q2 − (ω − ω0)2]1/2, which means vtra

g can be reduced
exactly to the group velocity of the CCW when EIT is absent.
When a slow-light performance is produced from both the
EIT and the coupled cavity waveguide (CCW) mechanisms
vg , tends to zero sharply at ω/ω0 = 1. This means the working
frequency of the extremely slow light is just the eigenfrequency
of a single cavity �. The strong coupling effect occurs in
cavity-EIT with a single atom, in which the weak probe field is
coupled to the single cavity mode and then propagates without
absorption at a reduced group velocity compared to in vacuum.
The results show that the two different mechanisms could
cooperate together to trap light at the center of the guide mode.
It is also noticed that ultralow group velocity occurs at the
edges of the guide mode; for example, near ω/ω0 = 0.9977 or
ω/ω0 = 1.0027. This means storage of light at the frequencies
of the band-edge modes could be accomplished. Comparing
Eqs. (12) and (14), one can conclude that the localized cavity
mode is much more effective than the transmission mode for
achieving extremely slow light. These analyses imply that the
group-velocity delays induced by the EIT mechanism and the
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CCW can be superimposed. Furthermore, when B = 20γ is
set, the atomic localization is larger than λ/50 from Fig. 5(b).
Thus, a large group-velocity delay with the high-precision
atom localization can be achieved in the system effectively.

Considering the ability to achieve extremely slow light
is measured by the maximum achievable fractional delay
(also known as the delay-bandwidth product), to limit the
pulse distortion, a realistic system requires at least a delay-
bandwidth product of 100. Fortunately, the EIT mechanism
in the environment of coupled cavity structure can reach the
value by using a highly absorptive material in vapors [3,36], in
which strong localization effects of the coupled cavity can help
pump significant laser power to saturate the EIT transition. Fur-
thermore, as a general technique, an artificial inhomogeneous
broadening has been proposed to solve the delay-bandwidth
limitation in solid-state room-temperature slow light [36].

IV. CONCLUSION

We have investigated the group velocity of light under
the EIT mechanism in the environment of coupled cavity

structure. It is shown that, for our considered system,
atom localization in the subwavelength domain can be
improved significantly due to the quantum interference effect.
High-precision and high-resolution atom localization pave
the way to achieve a large group-velocity delay. Furthermore,
analytical formulas of the group velocities are derived,
and they reduce exactly to the values for transmission in
the background medium (the coupled cavity waveguide) when
the EIT mechanism is absent. Due to the strong localization
of the coupled cavity structure, the EIT effect is greatly
enhanced, and extremely slow light (several meters per second
or static light at moderate parameters given in this paper)
is obtained. The superposition of the EIT mechanism and
localization of cavities provides an effective and realistic way
to acquire slow light and may find potential applications in
optical storage and optical information processing.
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