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Continuous-variable entanglement of two bright coherent states that never interacted
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We study continuous-variable entanglement of bright quantum states in a pair of evanescently coupled nonlinear
χ (2) waveguides operating in the regime of degenerate down conversion. We consider the case where only the
energy of the nonlinearly generated fields is exchanged between the waveguides while the pump fields stay
independently guided in each original waveguide. We show that this device, when operated in the depletion
regime, entangles the two noninteracting bright pump modes due to a nonlinear cascade effect. It is also shown
that two-color quadripartite entanglement can be produced when certain system parameters are appropriately
set. This device works in the traveling-wave configuration, such that the generated quantum light shows a
broad spectrum. The proposed device can be easily realized with current technology and therefore stands as
a good candidate for a source of bipartite or multipartite entangled states for the emerging field of optical
continuous-variable quantum information processing.

DOI: 10.1103/PhysRevA.96.053822

I. INTRODUCTION

In recent years there has been an increasing interest
in quantum information processing (QIP) with continuous
variables (CV) [1,2]. In contrast to optical QIP with discrete
variables, where qubits are coded by using discrete photon
observables, CV-based quantum information is encoded in the
fluctuations of the field quadratures that can take a continuous
spectrum of eigenvalues. Entanglement of such quadratures
for Gaussian states constitutes the primary resource of CV-
QIP protocols. Interestingly, the latter take advantage from
deterministic resources and unconditional operations as well
as highly efficient homodyne detection. These features have
made optical CV a thriving area of research: teleportation [3],
three-color entanglement [4], one-way quantum computation
[5], long-distance quantum key distribution [6], and entan-
glement distillation and swapping [7] are some examples of
breakthrough demonstrations reached in this framework.

These achievements have been mostly accomplished with
bulk optics in table-top experiments. However, integrated
optics (IO) is one of the strongest candidates for transferring
these systems to real-world light-based QIP technologies
[8]. Both discrete and continuous-variable quantum states of
light can be generated, processed, and measured in practical,
low-cost, interlinked, and reconfigurable optical chips. IO
displays features out of reach from bulk-optics analogs such
as miniaturization, subwavelength stability, generation, and
manipulation of quantum light by means of enhanced nonlinear
effects and the thermo-, electro- or strain-optic properties of
the substrates, and the ability to integrate detectors on chip
[9–11]. Nevertheless, IO-based CV is a relatively young area
of research. The progressive advance of materials technology
pushes this field through the development of highly nonlinear
and low-loss materials such as, among others, lithium niobate,
potassium titanyl phosphate, and silicon. Over the last few
years important on-chip demonstrations have been reported,
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such as continuous-wave single-mode squeezing up to 1.8 dB
in a traveling-wave configuration [12] and up to 2.9 dB in a
cavity resonator architecture [13,14], or the entanglement of
a pair of squeezed states remotely produced in cavities via
integrated configurable directional couplers [15].

Beyond integrated χ (2) single-waveguide performances, the
on-chip integration of different functionalities is of primary
importance. In this regard, the directional coupler with a
built-in nonlinearity is an emblematic device that deserves
special attention [16]. Actually, the first demonstrations of
two-photon NOON-state generation in nonlinear directional
couplers have been recently shown [17,18]. The purpose of this
work is to study the CV quantum properties of light propagated
in this device in both spontaneous parametric down-conversion
(SPDC) and optical amplification regimes. Our first prediction
is the entanglement of the pump fields. This is particularly
interesting since we consider independent pumps for each
waveguide and no direct energy transfer between them, i.e.,
no evanescent coupling nor cavity feedback. We unveil the
physical origin of such entanglement as a cascading nonlinear
phase mediated, through pump depletion, by the interacting
signal waves. We further demonstrate that entanglement be-
tween pumps can coexist with signals’ entanglement leading to
two-color quadripartite entanglement of the four propagating
modes for a specific set of parameters. Strikingly, there is
no bulk-optics analog to this IO device or, in other words,
a nonlinear beam splitter does not exist. Other theoretical
proposals dealing with the entanglement of bright waves in
couplers have been reported over the last years [19–24]. Let
us stress, however, that from a fundamental point of view,
in these studies a linear coupling between the pump fields
is considered, whereas in our proposal these modes never
interact directly. Moreover, from a practical point of view,
these devices are based on doubly resonant optical cavities,
which are narrowband stationary-wave-based devices with a
limited bandwidth of entanglement. This is in contrast with
our proposal which is based on traveling waves and shows
much broader bandwidths in the continuous-wave regime, only
limited by the phase-matching acceptance (up to 10 THz in
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FIG. 1. Sketch of proposed nonlinear directional coupler made of
two identical waveguides a and b with second-order susceptibilities
χ (2). Phase matching is fulfilled only in the coupling region. In red are
the signal waves, evanescently coupled. In blue are the noninteracting
pump waves.

periodically poled lithium niobate (PPLN) waveguides [9]).
Therefore, our approach stands as a good option for practical
CV-based optical QIP. Likewise, another strength of our
proposal is its simplicity. As will be shown, CV entanglement
is generated over a large range of propagation lengths by only
controlling the input powers and phases. Finally, we stress that
this device can be realized with current technology, notably on
lithium niobate [9].

The article is organized as follows: In Sec. II, we introduce
the device under investigation and the propagation equations
describing its operation. In Sec. III we present the underlying
cascade effect due to linear coupling of the signal modes
that appears in the undepleted-pump approximation and yields
entanglement oscillations. In Sec. IV we study the evolution
of the covariance matrix, which describes the full system
in the depleted-pump regime, and show how bipartite and
quadripartite entanglement arise. In Sec. V we present the
numerical results obtained for a specific example and discuss
their importance. Finally, the main results of this work are
summarized in Sec. VI.

II. THE NONLINEAR DIRECTIONAL COUPLER

The nonlinear directional coupler, sketched in Fig. 1, is
made of two identical χ (2) waveguides in which degenerate
SPDC, or optical amplification when seeded, can take place.
In each waveguide, a pump photon (p) at frequency ωp is
down-converted into indistinguishable idler (i) and signal
(s) photons with equal frequencies ωs = ωi = ωp/2 and the
same polarization modes (fully degenerate process). The
efficiency of this process is maximum when the mismatch
of the propagation constants between the pump and signal
photons caused by dispersion is negligible, so that �k ≡
k(ωp) − 2k(ωs) = 0. In the following we consider that this
phase-matching condition is fulfilled only in the coupling
zone. The energy of the signal modes generated in each
waveguide is exchanged between the waveguides through
the evanescent waves, resulting into a linear coupling of the
signal waves, whereas the interplay of the higher-frequency
pumps is negligible for the propagation lengths considered.
This approximation is made since the guided-mode fields are
more confined into the guiding region as the mode wavelength
decreases. As a result, the coupling constants for the pump
modes are smaller than those corresponding to the signal
modes [25]. The relevant operator which describes this system
is the interaction momentum [26,27]

M̂ = h̄
{
gÂpÂ†2

s + gB̂pB̂†2
s + CÂsB̂

†
s + H.c.

}
, (1)

where Â and B̂ are slowly varying amplitude annihilation
operators of signal (s) and pump (p) photons corresponding
to the upper (a) and lower (b) waveguides, respectively, g is
the nonlinear constant proportional to χ (2), C is the linear
coupling constant, h̄ is Planck’s constant, and H.c. stands
for Hermitian conjugate. From this momentum operator, the
following Heisenberg equations are obtained:

dÂs

dz
= iCB̂s + 2igÂpÂ†

s , (2)

dÂp

dz
= igÂ2

s , (3)

dB̂s

dz
= iCÂs + 2igB̂pB̂†

s , (4)

dB̂p

dz
= igB̂2

s , (5)

where z is the coordinate corresponding to the direction of
propagation, and C has been taken as real without loss of gen-
erality. Notably, the factor 2 arising in both equations (2) and
(4) does not appear in the classically derived equations [26].

III. UNDEPLETED-PUMP APPROXIMATION

The production of CV entangled states in a nonlinear χ (2)

directional coupler working in a traveling- and continuous-
wave configuration through SPDC has been thoroughly studied
in Ref. [28]. In this case, the undepleted-pump approximation
can in principle be safely assumed if strong coherent pumps
are used, i.e., |αp|2,|βp|2 � 1, where Âp|αp〉 = αp|αp〉 and
B̂p|βp〉 = βp|βp〉. This previous work was focused on the anal-
ysis of the nonclassicality and entanglement of the quantum
states related to the signal modes for different input parameters
such as pump powers and phases or coupling constants. It was
then demonstrated that, if the linear coupling dominates over
the nonlinear one (C > 2g) for αp = βp (equal amplitudes
and phases), a measure of entanglement, the logarithmic
negativity EN (see Sec. IV for a detailed discussion of this
concept), shows an oscillatory evolution, periodically shifting
between a maximum and zero values. This intriguing behavior
caught our attention. We solved analytically the system of
equations (2)– (5) in the undepleted-pump approximation,
obtaining [16]

Âs(z) = cos

(
πz

2Lab

)
Âs(0)

+ i
2Lab

π
sin

(
πz

2Lab

)
[2ηÂ†

s(0) + CB̂s(0)], (6)

B̂s(z) = cos

(
πz

2Lab

)
B̂s(0)

+ i
2Lab

π
sin

(
πz

2Lab

)
[2ηB̂†

s (0) + CÂs(0)], (7)

where Lab = π/[2(C2 − 4η2)1/2] is the beat length, i.e., the
transfer distance of signal energy from waveguides a to b
and from b to a, and η ≡ g|αp| = g|βp| acts as a nonlinear
correction to the linear coupling constant. To know if the
absence of entanglement was related to energy conservation,
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we calculated the mean number of photons of the signal modes
from the solutions given by Eqs. (6) and (7), obtaining the
following in each waveguide:

Ns(z) =
(

4ηLab

π

)2

sin2

(
πz

2Lab

)
. (8)

Note that, in the case of no coupling, the usual Ns(z) =
sinh2(2ηz) is found. Likewise, following Ref. [28] and using
Eqs. (6) and (7), we calculated the evolution of the logarithmic
negativity corresponding to the case under study, which is
given by

EN (z) = −2 log2(
√

σ (z) − 1/2 −
√

σ (z) + 1/2), (9)

with σ (z) = {1 + [(C/η)Ns(z)]2}1/2/2. Both maximum entan-
glement and number of signal photons are obtained at z =
(2n + 1)Lab, with n = 0,1, . . . , whereas both signal photons
and entanglement fully disappear at z = 2nLab [29]. Since
the intrinsic nature of the undepleted-pump approximation
violates conservation of energy, this result indicates that the
signal photons generated between z = 0 and z = Lab are
periodically transferred back to the pump in the interval
z = {Lab, 2Lab}, but this behavior is not accounted for in the
undepleted-pump model [28].

After this connection between the entanglement evolution
and the conservation of energy, the next step is to identify the
origin of this effect. Since perfect phase matching is considered
in the system, we wonder if a dynamical phase is showing up
during the propagation. To tackle this question, we calculate
the classical phase accumulated by the signal modes. Optical
parametric amplification, i.e., seeding the signal modes, is
considered since SPDC is not suitable to this calculation.
Taking identical input seeds and calculating their propagation
through Eqs. (6) and (7), the following phase mismatch is
obtained:

�
(C,η,z) = −2 arctan

{√
C + 2η

C − 2η
tan

(
πz

2Lab

)}
, (10)

where �
 ≡ 
p − 2
s = −2
s with 
s being the clas-
sical phase related to each signal mode and 
p being
a constant phase corresponding to the pump taken as a
reference (
p = 0). This nonlinear phase mismatch drives
two cascaded nonlinear optical processes, down conversion
followed by up conversion, mediated by the linear coupling of
the signal modes. This evolving phase mismatch periodically
switches the system from an efficient pump-to-signal conver-
sion to an efficient signal-to-pump conversion. At the beat
lengths, the cascaded phases are �
(C,η,(2n + 1)Lab) = π

or �
(C,η,2nLab) = 2π . Applying these phases in Eq. (1) is
equivalent to switching the nonlinear coupling constant from g

to −g at the odd multiples of Lab and keeping its sign positive
at the even multiples. Therefore, this phase mismatch �
 is
at the origin of the transfer of photons from pumps to signals
and from signals to pumps. Note that, in the case of uncoupled
waveguides (C = 0), only down conversion is produced in
each waveguide and the above phase disappears due to the
phase matching.

In light of these results a question arises: if down conversion
within the nonlinear coupler produces entanglement of the
signal modes, does up conversion entangle the pump modes

which do not directly interact in the system? To answer this
question we need to include the quantum character of the
pump modes. This is carried out in the following section
by means of the linearization method in the depleted-pump
regime.

IV. DEPLETED-PUMP REGIME

Unfortunately, there is no known exact analytical solution
to Eqs. (2)–(5) when the quantum nature of the pump fields
is taken into account. We thus implement the linearization of
the equations by means of quantum-fluctuation operators with
zero mean value and the same variances as the input operators
Âj ,B̂j , with j = s,p, which is a standard method in quantum
optics [30]. Under this approximation, we first need to solve
the propagation of the classical fields αs(αp) and βs(βp) in
order to obtain the evolution of the quantum fluctuations. Let
us define the following dimensionless amplitudes and phases
related to the classical fields for each waveguide [31]:

us(z) = |αs(z)|√
P

, vs(z) = |βs(z)|√
P

, (11)

θs(z) = arg{αs(z)}, φs(z) = arg{βs(z)}, (12)

up(z) =
√

2

P
|αp(z)|, vp(z) =

√
2

P
|βp(z)|, (13)

θp(z) = arg{αp(z)}, φp(z) = arg{βp(z)}, (14)

and the normalized propagation coordinate ζ = √
2Pgz, with

P being a constant of propagation related to the conservation
of energy and the power of the whole system, which reads

P = |αs(z)|2 + |βs(z)|2 + 2|αp(z)|2 + 2|βp(z)|2, ∀ z � 0.

(15)

Introducing these variables into the classical version of
Eqs. (2)–(5), we obtain [31]

dus

dζ
= −κvs sin(φs − θs) − usup sin(�θ ), (16)

dθs

dζ
= κ

vs

us

cos(φs − θs) + up cos(�θ ), (17)

dup

dζ
= u2

s sin(�θ ), (18)

dθp

dζ
= u2

s

up

cos(�θ ), (19)

with �θ ≡ θp − 2θs and κ = C/(
√

2Pg). The other four
equations can be obtained by exchanging u ↔ v and θ ↔ φ. κ
is the governing parameter of the system. It acts as an effective
coupling which relates the linear and nonlinear couplings
as well as the total input power. It is important to notice
that we restrict the calculations to values of κ > 1, since
for κ � 1 the fluctuations start to grow exponentially and
the linearization approximation is no longer valid [21]. This
situation corresponds to the experimental regime available
with the current technology. Moreover, when considering
identical input energy at each waveguide, the following initial
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conditions are chosen:

us(0) = vs(0) = sech(−δ0)/
√

2, (20)

up(0) = vp(0) = − tanh(−δ0)/
√

2, (21)

such that
∑

j=s,p(u2
j + v2

j ) = 1 at any normalized plane ζ .
The initial conditions are related to the measurable signal
and pump input powers, Ps and Pp, through the parameter
δ0 = arcsinh(

√
Pp/Ps). Note that, in the case of different

input powers in each waveguide, a different set of initial
conditions should be used. Furthermore, the behavior of
the light propagating in the device depends on the input
phases (θs(0),θp(0),φs(0),φp(0)). However, we found that, if
all initial phases are set equal, the pump-field entanglement
is maximized. Therefore, θs(0) = θp(0) = φs(0) = φp(0) is
taken along the paper.

The solutions of this classical system of equations are
then fed into first-order equations in the quantum fluctuations,
keeping only the linear terms. Since we are interested in CV
entanglement, it is more convenient to deal with quadratures of
the field X̂

(A,B)
(s,p) , Ŷ (A,B)

(s,p) , where X̂O = (Ô + Ô†)/
√

2 and Ŷ O =
i(Ô† − Ô)/

√
2 are the orthogonal quadratures corresponding

to an optical mode O. In terms of dimensionless variables, the
propagation of the quantum field quadratures are given by [31]

dX̂A
s

dζ
= −up sin(θp)X̂A

s + up cos(θp)Ŷ A
s − κŶ B

s

+
√

2us sin(θs)X̂
A
p −

√
2us cos(θs)Ŷ

A
p , (22)

dŶ A
s

dζ
= up cos(θp)X̂A

s + up sin(θp)Ŷ A
s + κX̂B

s

+
√

2us cos(θs)X̂
A
p +

√
2us sin(θs)Ŷ

A
p , (23)

dX̂A
p

dζ
= −

√
2us sin(θs)X̂

A
s −

√
2us cos(θs)Ŷ

A
s , (24)

dŶ A
p

dζ
=

√
2us cos(θs)X̂

A
s −

√
2us sin(θs)Ŷ

A
s , (25)

and the other four equations are obtained by exchanging again
u ↔ v, θ ↔ φ, and A ↔ B. This system of equations can be
rewritten in compact form as dξ̂/dζ = �(ζ )ξ̂ , where �(ζ )
is an 8 × 8 matrix of coefficients of Eqs. (22)–(25), and
ξ̂ = (X̂A

s ,Ŷ A
s ,X̂A

p ,Ŷ A
p ,X̂B

s ,Ŷ B
s ,X̂B

p ,Ŷ B
p )T . The formal solution

of this equation is given by

ξ̂ (ζ ) = S(ζ )ξ̂ (0), (26)

with S(ζ ) = exp{∫ ζ

0 �(ζ ′)dζ ′}. This is a linear canonical
transformation between the input and output quadratures of the
four fields which contains the full evolution of our quantum
system. Remarkably, Eqs. (24) and (25) provide information
about the propagation of the quantum fluctuations of the pumps
in each waveguide which, as we will see, are entangled when
the system is appropriately set.

Now, a suitable and experimentally accessible observable
of the system has to be selected. Since the input states we deal
with are Gaussian—actually coherent states—and since we are
interested in CV entanglement properties of the four modes
interacting within the system, we choose the second-order

moments of the quadrature operators, properly arranged in the
covariance matrix V with elements defined as [32,33]

V (ξj ,ξk) = 1
2 (〈�ξ̂j�ξ̂k〉 + 〈�ξ̂k�ξ̂j 〉), (27)

where �ξ̂ ≡ ξ̂ − 〈ξ̂〉. This is a real symmetric matrix that
contains all the useful information about the quantum states
propagating in the device. The covariance matrix correspond-
ing to the input four-mode state, where the pumps are coherent
states and the signals vacuum (spontaneous down conversion)
or coherent (optical amplification), is proportional to the
identity matrix V(0) = (1/2)I8, where 1/2 corresponds to the
shot noise in our notation. Likewise, the covariance matrix at
any normalized propagation plane ζ is given by

V(ζ ) = S(ζ )V(0)ST (ζ ). (28)

The positivity of V indicates that it is a bona fide covariance
matrix. This feature is mathematically given by the condition
V(ζ ) + i�/2 � 0, equivalent to the Heisenberg uncertainty
principle, where � is the symplectic form given by � =
⊕4

k=1σ with σ ≡ adiag[1,−1]. We have checked that this
condition is satisfied in all the cases studied in this paper.

The covariance matrix can be efficiently measured by
means of homodyne detection [33,34]. In these works, the
covariance matrices of bipartite systems are considered. Once
V is known, the amount of CV entanglement in bipartite
systems is easily quantified through the logarithmic negativity
EN [35]. This entanglement witness is based on the Peres–
Horodecki–Simon criterion, which establishes that a quantum
state is entangled if the partially transposed density matrix
is nonpositive. The logarithmic negativity is obtained from
the symplectic spectrum {νk}4

k=1 of the partial transpose of
the covariance matrix with respect to a subsystem j , VTj ,
computed as the standard eigenvalues spectrum of the matrix
|i�VTj |. EN is then given by [35]

EN =
4∑

k=1

F (νk) with F (ν) =
{

0 for ν � 1/2
− log2(2ν) for ν < 1/2,

(29)

such that any value EN > 0 indicates entanglement.
Furthermore, in addition to entanglement quantification, this
function also presents other appealing properties such as
additivity. It also represents an upper bound on the efficiency
of distillation, measuring to what extent a quantum state is
useful for a certain QIP protocol or the number of resources
needed to generate it [35].

In the regime under study, the system is composed of four
quantum fields. Then, it would be also interesting to investigate
if there is any collection of parameters for which multipartite
entanglement is also displayed. The logarithmic negativity is
limited to the measurement of bipartite entanglement, where
each party is composed by one or more modes, but van Loock
and Furusawa introduced a set of conditions to be simultane-
ously fulfilled for detecting multipartite full inseparability in
CV systems [36]. This criterion leads to genuine multipartite
entanglement when pure states are considered. In the case of
mixed states a more general criterion has been devised [37].
Since we deal with pure states, we use the criterion established
in Ref. [36]. Transposed to our four-mode quantum state,
genuine quadripartite entanglement is present if the following
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inequalities are simultaneously violated:

〈[
�

(
X̂A

s − X̂A
p

)]2〉 + 〈[
�

(
Ŷ A

s +Ŷ A
p + r3Ŷ

B
s + r4Ŷ

B
p

)]2〉 � 2,〈[
�

(
X̂A

p − X̂B
s

)]2〉 + 〈[
�

(
r1Ŷ

A
s +Ŷ A

p +Ŷ B
s +r4Ŷ

B
p

)]2〉 � 2,〈[
�

(
X̂B

s − X̂B
p

)]2〉 + 〈[
�

(
r1Ŷ

A
s +r2Ŷ

A
p +Ŷ B

s +Ŷ B
p

)]2〉 � 2,

(30)

where rj (j = 1, . . . ,4) are arbitrary real parameters used
for optimization. These equations can be easily rewritten in
terms of the elements of the covariance matrix, being therefore
calculated from Eq. (28) [22].

Consequently, from the covariance matrix V related to the
multimode quantum system under study, we can measure the
bipartite entanglement and assess if quadripartite entangle-
ment is present with the tools introduced above.

V. NUMERICAL RESULTS AND DISCUSSION

We now present the numerical results obtained for a
specific example with the theory developed in Sec. IV. We
display a detailed study of the CV bipartite entanglement
in two regimes: negligible depletion (or undepletion) and
high depletion, and quantify it by means of the logarithmic
negativity given by Eq. (29). Then we assess the potential
of producing quadripartite entanglement with this device by
means of the van Loock and Furusawa inequalities given
by Eqs. (30), and finally we present a discussion about the
feasibility and possible applications of the investigated device
with current technology.

As device substrate we choose lithium niobate due to its
appealing properties such as low propagation losses, large
conversion efficiencies, and broad bandwidth when operated
in continuous wave [9]. The conversion efficiency of the
nonlinear process can be maximized mainly in two ways: First,
the input pumps are set as strong coherent fields generating
type-0 down conversion, which couples pump and signal
modes polarized along the extraordinary (e) axis of the crystal
through the higher component of the second-order nonlinear
tensor (d33 ≈ 34 pm/V). Second, a periodically poled grating
is engineered along the substrate (PPLN) to obtain quasi phase
matching of the propagation constants. The periodicity of the
grating � is such that the mismatch �k is compensated by the
wave vector associated with the grating �k ≈ 2π/�. Perfect
or partial quasi phase matching has been considered at the
quantum level in different theoretical articles, where it was
demonstrated that the linearization procedure also applies for
PPLN [38,39]. Typical PPLN chip lengths are on the order of
a few centimeters.

We have solved numerically the classical mean value equa-
tions (16)–(19), the quantum quadrature equations (22)–(25),
and the propagation of the covariance matrix (28) for the
following waveguide parameters: C = 8 × 10−2 mm−1 and
g = 25 × 10−4 mm−1 mW−1/2, which will be used in the
remainder of the article. These are standard values in PPLN
waveguides [9,12]. Particularly, the value of linear coupling
is chosen sufficiently low in order to obtain large nonlinear
effects in the considered PPLN lengths, but similar results are
obtained with other realistic values of C and g.

A. Bipartite entanglement

In Figs. 2 and 3 we show, respectively, for the negligible and
high depleted-pump-field regimes, the dimensionless classical
powers for each mode in each waveguide along the propagation
[Figs. 2(a) and 3(a)], relevant elements of the correlation
matrix, V (XA

(s,p),X
B
(s,p)) and V (YA

(s,p),Y
B
(s,p)) (see Appendix),

related to the signal (s) and pump (p) subsystems [Figs. 2(b)
and 3(b) and 2(c) and 3(c), respectively], and the logarithmic
negativity EN corresponding to the signals and pumps which
quantifies bipartite entanglement [Figs. 2(d) and 3(d)]. The
following effective coupling is chosen to be κ = 1.13, in such
a way that ζ = 1 stands for z ≈ 14 mm. Likewise, the ratio be-
tween the signal and pump powers at each waveguide is taken
as Ps/Pp = 10−20 for the negligible-depletion case [40] and as
Ps/Pp = 1 for the high-depletion case, fixing δ0 for each case.

1. Negligible depletion

In the negligible depleted-pump-field regime (Fig. 2), the
classical dimensionless signal powers u2

s = v2
s [Fig. 2(a)], the

covariances of the signal waves [Fig. 2(b)] and the logarithmic
negativity related to the signal modes [Fig. 2(d)], are driven
by the difference of classical phases �θ (�φ), as expected
from the simplified calculation of Sec. III, where vertical lines
at each subfigure stand for multiples of π . In more detail,
coming back to Eqs. (16)–(19) it is observed that, due to the
symmetry of the system, θ (ζ ) = φ(ζ ) (numerically checked),
so that the amplitudes depend only on the phase difference
�θ (ζ ) but not on the single phases. It is remarkable that the
classical amplitudes are periodic oscillatory functions with �θ

independent of the depletion, as shown in Figs. 2(a) and 3(a).
Besides, by closely inspecting Eqs. (22)–(25), it can be

easily seen that, for us(ζ ) � up(ζ ) (equivalent to getting rid of
the pump fluctuations), up(ζ ) ≈ 1/

√
2 and θp(ζ ) ≈ 0. Under

this approximation, the solutions for the propagation of the
signal quadratures lead to analytical expressions equivalent to
Eqs. (6) and (7) of Sec. III. Then, the elements of the covariance
matrix under scrutiny for the signals read

V
(
XA

s ,XB
s

) = −V
(
YA

s ,YB
s

) ≈ −23/2κL̃2
ab

π2
sin2

(
πζ

2L̃ab

)
,

(31)

with L̃ab = π/{2[κ2 − (1/2)]1/2} being the normalized beat
length. This equation shows the strong anticorrelations ap-
pearing in the signals subsystem. For SPDC, ζ/L̃ab ≈ z/Lab,
such that the covariances present the same periodicity as that
corresponding to the number of photons given by Eq. (8).

Conversely, the covariance matrix elements related to
the pump fields are very low, leading to negligible values
of entanglement, and do not show the same periodicity
[Fig. 2(c)]. These values are zero in the approximation
introduced above [us(ζ ) � up(ζ )], as well as by using
the theory of Sec. III. To get the required accuracy on the
covariance matrix elements (10−19), the fluctuations of the
pump fields have to be taken into account, allowing only
a numerical solution of Eqs. (22)–(25). Both the delay and
different periodicity shown in Fig. 2(c) are due to the inclusion
of the pump fluctuations (X̂p,Ŷp) in the calculation.
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FIG. 2. Negligible depleted-pump-field regime. From top to
bottom: (a) dimensionless signal powers (solid), the elements of the
correlation matrix V (XA,XB ) (dotted), V (Y A,Y B ) (dot-dashed) for
the (b) signal and (c) pump fields, respectively, and (d) the logarithmic
negativity EN corresponding to the subsystem of signals (solid) and
pumps (dashed), respectively. κ = 1.13 and Ps/Pp = 10−20. ζ is
the normalized propagation coordinate. The vertical lines show the
planes where the phase difference of the classical waves �θ (�φ) are
multiples of π .

FIG. 3. Highly-depleted-pump-field regime. From top to bottom:
(a) dimensionless signal (solid) and pump (dash) powers, the elements
of the correlation matrix V (XA,XB ) (dotted), V (Y A,Y B ) (dot-dashed)
for the (b) signal and (c) pump fields, respectively, and (d) the
logarithmic negativity EN corresponding to the subsystem of signals
(solid) and pumps (dash), respectively. κ = 1.13 and Ps/Pp = 1. ζ

is the normalized propagation coordinate. The vertical lines show the
planes where the phase difference of the classical waves �θ (�φ) are
multiples of π .
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Finally, notable values of logarithmic negativity for the
signal as high as 2 can be obtained in devices of less than
30 mm [21].

2. High depletion

Let us now analyze the highly-depleted-pump-field regime
(Fig. 3). The classical dimensionless powers oscillate period-
ically above (u2

s ,v
2
s ) and below (u2

p,v2
p) the normalized initial

value 1/4 [Fig. 3(a)]. Moreover, the signal covariances de-
crease as the pump covariances increase, reaching measurable
values V (ξj ,ξk) > 10−3 [Figs. 3(b) and 3(c)] [33,34]. This rise
brings as a consequence the entanglement of both the signal
and, remarkably, the entanglement of the pump modes which
have not directly interacted [Fig. 3(d)]. Actually, the seeding of
the signal waves acts as an entanglement switch for the pump
fields. It is important to outline that there are distances where
values of entanglement as high as 1/2 are found in both signal
and pump subsystems. These values are on the order of those
reported with schemes of optical cavities [21]. A very interest-
ing consequence of this effect is that the measurement of entan-
glement on one subsystem, signal or pump field, can be used
as a nonperturbative measure of entanglement on the other.

It should be noted that in this regime, the quantum features
of the system are no longer fully driven by the classical phase
difference �θ : a depletion-based phase mismatch drives the
entanglement evolution (Fig. 3). In this case the relation of
the cascade effect with the correlations gets more complex.
Since both the pump and signal amplitudes and phases are of
the same order, the auto-interaction of the signal quadratures
given by the up sin(θp) factors in Eqs. (22) and (23) are no
longer negligible. They are at the origin of the phase mismatch
between classical and quantum propagation shown in Fig. 3.
Furthermore, note that, unlike the signals subsystem, where
V (XA

s ,XB
s ) and V (YA

s ,YB
s ) are the only relevant elements,

in the pumps subsystem other elements like V (XA
p ,YB

p ) and
V (YA

p ,XB
p ) (not shown) yield also non-negligible correlations

which EN also takes into account.
Let us now analyze more deeply the entanglement of the

pump modes. Figure 4(a) shows the values of logarithmic
negativity EN versus propagation for different ratio of signal-
pump input powers Ps/Pp and a fixed value of the effective
coupling κ . All the curves display a maximum close to ζ = 3.
However, the global maximum is obtained for Ps/Pp = 1/4,
which optimizes the pump depletion. It is important to outline
that the entanglement is obtained over a broad range of values
of ζ , in such a way that the length of the coupler is not a
critical parameter. This is a fact of great practical importance
when designing a sample. In Fig. 4(b), we set Ps/Pp = 1/4
and the different curves are obtained for different values of
κ , i.e., the total power per waveguide. It is shown that the
entanglement negativity follows the input power (κ → 1),
reaching its maximum for κ = 1.01, which corresponds to
the largest value of total input power considered here. In other
words, for a given nonlinearity g and fixed total input power P ,
the lower the linear coupling C, the higher the entanglement
strength. The reason is that the rate of down or up conversion
scales with the

√
2Pg factor whereas the linear coupling

controls the speed of cascading, such that, if the coupling
is low, more down-converted signal photons are available to

FIG. 4. Pump entanglement for different values of κ and ratio
Ps/Pp . (a) Logarithmic negativity EN for a set value of κ = 1.13 and
different ratios Ps/Pp: 1/10 (solid), 1/9 (small-dashed), 1/4 (large-
dashed), 2/3 (dotted), and 1 (dot-dashed). (b) Logarithmic negativity
EN for a set value of the ratio Ps/Pp = 1/4 and different values of κ:
1.01 (solid), 1.13 (small-dashed), 1.6 (large-dash), 2.26 (dotted), and
3.2 (dot-dashed). ζ is the normalized propagation coordinate. Note
that, in the panel (b), ζ is different for each plot.

be up converted back to the pump modes and get entangled.
Note that the normalized coordinate ζ is different for each
plot, due to its dependence on the input power. In terms of
physical lengths, the maxima of entanglement are obtained for
lengths z = 34 mm with κ = 3.2 (dot-dash) and z = 39 mm
with κ = 1.01 (solid), both values being easily attainable in
lithium niobate.

B. Quadripartite entanglement

Eventually, we demonstrate the existence of quadripartite
entanglement in the system under study. Figure 5 shows the
van Loock and Furusawa inequalities given by Eqs. (30) for an
effective coupling κ = 2.26 and Ps/Pp = 1. The normalized
propagation coordinate is such that ζ = 1 is equivalent to z ≈
28 mm. The parameters rj (j = 1, . . . ,4) have been optimized
to maximize the violation of Eqs. (30). Due to the symmetry
of the system, the violation of the first and third inequalities
are equal (solid). Notably, there are lengths over which all
the inequalities are violated, therefore showing two-color
quadripartite entanglement within the system (Fig. 5, gray
area). Note that the degree of violation of the three inequalities
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FIG. 5. Optimized van Loock–Furusawa inequalities. Simulta-
neous values under the threshold value imply CV quadripartite
entanglement. Solid line shows the first and third inequalities. Dashed
line shows the second inequality. Dotted line shows quadripartite
entanglement threshold. In gray the area where the violation of the
three inequalities is obtained. κ = 2.26 and Ps/Pp = 1. ζ is the
normalized propagation coordinate.

is much lower than that obtained in cavities [22]. However,
as highlighted above, our nonlinear directional coupler does
not couple the pump fields through the evanescent coupling,
so the mere appearance of this effect, even though weak, is
outstanding. Furthermore, it is obtained for relatively low input
powers and interaction lengths of about 30 mm.

C. Feasibility and applications

We would like to outline that losses could be straightfor-
wardly included in our analysis by following Ref. [28], where it
was shown that entanglement is maintained even under strong
damping. Typical values of losses in PPLN waveguides are
on the order of 0.1 dB cm−1 [9] which, under the assumptions
of Ref. [28], would lead to a reduction of approximately 6%
(12%) in the 2-wave (4-wave) interaction strength after 30 mm
of propagation within the device. These figures guarantee the
suitable operation of the proposed device with the waveguide
parameters C and g considered above. Further optimization of
these parameters for a requested operation mode, leading to
either bipartite or quadripartite entanglement, can maximize
the performance of the device.

Overall, all the results presented in this article could be
obtained for reasonably low pump and seed powers by using
already existing technology. Note that strong depletion in the
traveling-wave regime usually requires high levels of pump
power. Here it is not the case due to two main reasons: First, the
depletion can be governed by the ratio of signal-pump input
powers Ps/Pp. This property was discussed at the classical
level in Ref. [41]. Second, the periodical funneling of the signal
waves between the waveguides increases the depletion effect.

As closure, we outline that bright sources of bipartite
entanglement can be of primary importance in several CV-
based quantum protocols such as quantum communications
[42,43], quantum key distribution [44,45], optomechanical
entanglement [46], and quantum imaging [47], among others.
Multipartite entanglement of bright beams opens up additional
interesting avenues, such as multipartite EPR steering [48].

VI. CONCLUSION

We have studied the CV entanglement in a nonlinear χ (2)

directional coupler and have shown that two noninteracting
bright pump fields become entangled during the propagation
due to a nonlinear cascade effect. Likewise, we found that there
are distances where both subsystems, pump and signal modes,
show large values of entanglement, in such a way that the
measurement of entanglement on one subsystem can be used
as a measure of entanglement on the other, without destroying
it. Moreover, we have shown that two-color quadripartite
entanglement is also present in the system under certain condi-
tions. Finally, we have demonstrated that the device proposed
here can be realized with current technology. Consequently, it
stands as a good candidate for a source of multicolor and/or
multipartite entangled states for complex continuous-variable
quantum information processing protocols.
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APPENDIX

To clarify the origin of the covariance matrix elements shown in Figs. 2 and 3, we include here the complete covariance matrix
related to our system:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V
(
XA

s ,XA
s

)
V

(
XA

s ,YA
s

)
V

(
XA

s ,XA
p

)
V

(
XA

s ,YA
p

)
V

(
XA

s ,XB
s

)
V

(
XA

s ,YB
s

)
V

(
XA

s ,XB
p

)
V

(
XA

s ,YB
p

)
V

(
YA

s ,YA
s

)
V

(
YA

s ,XA
p

)
V

(
YA

s ,YA
p

)
V

(
YA

s ,XB
s

)
V

(
YA

s ,YB
s

)
V

(
YA

s ,XB
p

)
V

(
YA

s ,YB
p

)
V

(
XA

p ,XA
p

)
V

(
XA

p ,YA
p

)
V

(
XA

p ,XB
s

)
V

(
XA

p ,YB
s

)
V

(
XA

p ,XB
p

)
V

(
XA

p ,YB
p

)
V

(
YA

p ,YA
p

)
V

(
YA

p ,XB
s

)
V

(
YA

p ,YB
s

)
V

(
YA

p ,XB
p

)
V

(
YA

p ,YB
p

)
V

(
XB

s ,XB
s

)
V

(
XB

s ,YB
s

)
V

(
XB

s ,XB
p

)
V

(
XB

s ,YB
p

)
V

(
YB

s ,Y B
s

)
V

(
YB

s ,XB
p

)
V

(
YB

s ,Y B
p

)
V

(
XB

p ,XB
p

)
V

(
XB

p ,YB
p

)
V

(
YB

p ,YB
p

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with the relevant elements in bold. Repetitive entries have been omitted since V = VT .
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