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Fundamental limitations of cavity-assisted atom interferometry
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Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant
advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the
scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with
frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short
cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore
the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the
temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor,
the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the
cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement.
An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long
baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability
of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.
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I. INTRODUCTION

Since the demonstration of the first light-pulse atom
interferometer [1], this field has received great interest and
has found applications across many areas of science and
technology. It has made possible new measurements of the
gravitational constant [2,3] and the fine structure constant
[4–6], and tests of the weak equivalence principle [7,8].
It has seen an important development for applications in
inertial sensing, to measure gravity accelerations [9,10],
gravity gradients [11,12], and rotations [13–16]. It also has
proposed applications in tests of general relativity [17,18],
quantum electrodynamics [19], and quantum-entanglement
at macroscopic distances [20]. Perhaps the most tantalizing
application of all is in gravitational wave astronomy, where
atom interferometers are expected to observe gravitational
waves with frequencies below 1 Hz [21–25], a frequency band
forbidden in the most advanced optical interferometers, such
as Advanced LIGO [26].

In light pulse atom interferometry, atomic beams are
coherently split and later recombined using laser pulses as
beam splitters. The sensitivity of these devices increases with
the measured phase difference between the matter waves,
which scales with the relative momentum between the two
arms of the interferometer and the free evolution time between
pulses. In large momentum transfer (LMT) interferometry the
atoms coherently scatter 2n photons from the laser beams
and acquire a momentum difference of 2nh̄k. However, the
increased number of photon-atom interactions means that the
sensitivity to inhomogeneities of the relative laser phase is n
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times higher than that of a conventional interferometer. LMT
methods include sequential Raman pulses [27], sequential
two-photon Bragg diffraction [28], and multiphoton Bragg
diffraction [29]. The latter has the advantage of achieving large
momentum transfer using a single laser pulse while leaving
the internal energy state of the atom unchanged, leading to the
cancellation of important systematic effects. In addition to the
increased sensitivity to the relative laser phase, this method is
limited by the available laser power.

Optical cavities are proposed as the key enabling technol-
ogy for LMT beam splitters, as performing the interferometric
sequence inside the cavity (Fig. 1) can help mitigate the dis-
advantages of the technique: cavities provide spatial filtering
of the interferometry beam, thus “cleaning” the optical wave
fronts, and resonant enhancement in the cavity means that a
high intracavity power may be achieved using a relatively low
input power.

Intracavity atom interferometry was demonstrated in [30],
where they show a π/2-π -π/2 interferometer with cesium
atoms loaded horizontally into a vertical 40 cm cavity. In this
proof of principle experiment, the small cavity mode volume
placed a tight constraint on the total measurement time, which
was just 20 ms. The same group was able to increase the total
measurement time up to 130 ms [31–33]. A clever design of a
marginally stable cavity with an intracavity lens was proposed
in [34], also employing a perpendicular loading scheme but
with a large mode volume capable of accommodating a
1 μK cloud as it expands for up to 250 ms. Cavity-assisted
LMT beam splitters are also proposed for the gravitational
wave antenna MIGA [24,25], where the interferometric pulses
resonate inside two horizontal 200 m cavities and interrogate
three atom clouds launched vertically for a total measurement
time of 250 ms.

Despite its promising nature, the advantages and limitations
of cavity-assisted atom interferometry have not yet been
quantified. The cavity bandwidth plays a major role in the
performance of the interferometer. Power enhancement and
spatial filtering are both enhanced by increasing the cavity
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FIG. 1. An interferometer sequence using cavity-assisted large
momentum beam splitters. A cloud of atoms is coherently split (t =
0), deflected (t = T ), and recombined (t = 2T ) using light pulses
that resonate in the cavity.

finesse. The maximal allowed beam size increases with cavity
length. In atom interferometry, both good spatial filtering and
large beam sizes are desired qualities. The cavity bandwidth
scales inversely with the product of finesse and length. Thus,
it would seem obvious that the narrower the bandwidth is, the
better. We find, however, that there is a limit to the bandwidth
below which the pulses suffer severe elongation—leading to
undesirably long interaction times—and power enhancement
of the beam splitter pulses worsens dramatically, nullifying
the advantage of incorporating the cavity in the first place.
Having realized this bandwidth limit, the task then becomes a
balancing act between the quality of the cavity as a spatial filter
of the interferometric beams and its ability to accommodate
the size of the atomic cloud as it thermally expands during the
measurement.

This paper is structured as follows: In Sec. II we introduce
the atom optics model of the cavity. In Sec. III we present
the simulation results, explaining the effect that the cavity
parameters have on the atomic transitions. In Sec. IV we treat
the problem from a purely geometrical and optical perspective,
analyzing the quality of the cavity as a spatial filter of the
interferometric beams.

II. ATOM OPTICS MODEL OF THE CAVITY

We build a computer model to simulate the outcome of
the photon-atom interactions inside the optical cavity. In order
to keep the effect of velocity selectivity [35] to a minimum,
the duration of the beam splitter and mirror pulses is set as
short as possible. The interaction time must be long enough
to obtain efficient population transfer to the excited state with
low losses, but as short as possible to maximize atomic flux
through the pulse sequence. This interaction regime is known
as the quasi-Bragg regime [36], and unfortunately there is no
shortcut for solving the equations of motion of the amplitudes
of the atomic states,

iġn = [ωrn
2 + �]gn + 1

2�[gn+2 + gn−2], (1)

where gn is the amplitude of the state with momentum nh̄k,
ωr is the recoil frequency, and � is the two-photon Rabi
frequency, which is in general an arbitrary function of time.
For a pulsed field we generally write �(t) = �̄G(t), where �̄
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FIG. 2. Cavity-induced deformation of a Gaussian input. Enve-
lope functions of the intracavity field for a 1 m cavity injected with
a 1 μs pulse for different cavity finesses. All areas are normalized
to the input pulse area for comparison. When the pulse duration is
comparable to the photon lifetime of the cavity, its envelope function
is elongated. Inset: Envelopes without normalization.

is the peak two-photon Rabi frequency—proportional to the
peak laser intensity—and G(t) is the envelope function of the
field intensity, of full width at half maximum (FWHM) δt .
Hereafter we will simply refer to the FWHM of the pulse as
pulse width or duration.

In this interaction regime the shape of G(t) plays a major
role in the evolution of the atomic states. For example, square
pulses are known to give high losses of the population into
the intermediate states [37], whereas pulses having smooth
envelope functions like the Gaussian can produce efficient
transitions even at short interaction times.

The photon lifetime of the cavity is defined as the time it
takes for the circulating intensity to drop by a factor 1/e after
the input is abruptly switched off. For an impedance matched
and lossless cavity it is approximated by τc = LF/πc, where
L is the length of the cavity, F is the finesse, and c is the
speed of light. If the pulse duration is comparable to the
photon lifetime of the cavity, the circulating field will present
a deformed G(t), asymmetric and with a larger area and width
than the input pulse (Fig. 2). For example, for a cavity with
a photon lifetime of 1 μs injected with a short pulse of width
δt = 1 μs, the intracavity field presents a deformed envelope
of width ≈1.8 μs, 80% longer than the input. A complete
account of the photon-atom interactions in the optical cavity
must include this effect.

Cavities having different photon lifetimes—or, equiva-
lently, different bandwidth—respond differently to the same
input (Fig. 3). For input pulse widths much larger than the
photon lifetime of the cavity, δt � τc, the circulating field
envelope tends to match the input envelope multiplied by
the optical gain. In this scenario the cavity offers maximum
power enhancement and does not cause any elongation, i.e.,
the temporal profile of the intracavity field is dominated by the
input. For pulse durations on the order of the photon lifetime or
lower, power enhancement drops as the cavity does not reach a
steady state, and the circulating field becomes elongated, with
a temporal profile dominated by the cavity. As the input width
approaches τc, the elongation becomes more severe and the
circulating power tends to match the input power.
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FIG. 3. Transient response of the cavity to short pulses. Intracav-
ity to input ratios of the pulse area (solid lines) and width (dashed
lines) vs input pulse width, for four cavities of different length and
finesse. The vertical lines represent the photon lifetime of each cavity.

Our model solves Eq. (1) for a truncated set of states
|−n − m〉 · · · |+n + m〉, where n is the order of the 2n-photon
Bragg diffraction process and m is the number of additional
outer states considered. We find that considering four outer
states is usually sufficient for n � 10, i.e., the solution is not
altered by considering more. Since Eq. (1) couples even and
odd states separately, we look only at solutions with either
all even or odd terms zero. The model is checked against the
known analytical solutions for first order Bragg diffraction
and Bragg diffraction in the Raman-Nath regime, and it also
reproduces the results presented in [34]. See Fig. 4 for an
example of a n = 4 process in which we scan the pulse width
at fixed intensity and plot the population of the final state
|+4h̄k〉. Throughout this article we present all results in terms
of the dimensionless interaction time or pulse width δtωr ,
and the dimensionless interaction strength or intensity �̄/ωr .
This makes all results readily scalable for the atomic transition
of interest, with ωr = h̄k2/2M , where M is the mass of the
atom. For example, ωr = 23 694 Hz for the rubidium-87 D2
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FIG. 4. Population of state |+4h̄k〉 as a function of pulse width for
a Gaussian envelope, for different values of the laser intensity. When
the interaction time is short (δtωr � 1) the intermediate states cannot
be adiabatically eliminated and the equations of motion need to be
solved numerically considering all intermediate states and sufficiently
many outer states.

transition (5 2S1/2 → 5 2P3/2), and ωr = 12 983 Hz for the
cesium-133 D2 transition (6 2S1/2 → 6 2P3/2).

III. EFFECT OF THE CAVITY ON THE ATOMIC
TRANSITIONS AND CAVITY BANDWIDTH LIMIT

Without loss of generality, we consider the interaction
of the circulating field in a 10 m cavity, injected with a
pulse of Gaussian envelope function, with an ensemble of
cold rubidium-87 atoms. For given cavity parameters, the
population transfer efficiency to the target state P is a function
of the input pulse’s intensity and width:

lim
t→+∞ |〈+n|ψ〉|2 = P(�̄,δt), (2)

where |ψ〉 = (· · · g−n,g−n+2 · · · ) is the wave function describ-
ing the state of the atom. We determine the mirror pulse
durations δtπ to transfer the ensemble to the target state with
losses below 5%:

δtπ (�̄) = min{δt : P(�̄,δt) > 0.95}. (3)

We restrict our computation to the first Rabi cycle—hence
the “min”—for simplicity. This is a reasonable restriction,
as the interferometer requires the interaction time to be as
short as possible. We perform this computation as we change
the finesse of the 10 m cavity and measure the width of the
elongated intracavity pulse τπ (Fig. 5). Note that τπ is the
actual interaction time, and not δtπ which refers to the width
of the injected excitation.

As we increase the cavity finesse we note three effects:
(1) The required laser intensity of the beam splitters becomes
considerably lower, as expected due to the cavity’s buildup
effect and highlighting the advantage of cavities for LMT beam
splitting. (2) Power enhancement reaches a maximum for some
value of the finesse Fmax; increasing the finesse further comes
at the price of increased intensity requirements for the short
pulses. (3) The duration of the mirror pulses stays roughly
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FIG. 5. Duration vs intensity of the first mirror pulses in the 10
m cavity for different values of the cavity finesse, indicated at the
bottom of each curve. As the cavity finesse increases, the curves shift
left as the beam splitters require less input power due to the increased
optical gain (a). After reaching a particular value of the finesse
Fmax, the curves shift right and up, as the cavity-induced elongation
becomes more severe and power enhancement of the beam splitters
worsens (b).
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FIG. 6. Duration vs intensity of the first mirror pulses for varying
cavity photon lifetimes. The required input power is minimized
for τc = τmax, in this case (n = 4) τmax ≈ 10 μs. For τc > τmax,
the minimum interaction time grows significantly. The input laser
intensity scale shown here can be adjusted for any cavity length L by
applying a factor L/1 m.

the same as if there was no cavity up to Fmax; increasing the
finesse further also comes at the price of increased interaction
times, as the cavity’s elongation effect becomes more severe.

The cavity’s effect on the pulse is therefore projected onto
the transition probabilities by shifting both the required laser
intensity and the photon-atom interaction time. Moreover,
simulating more cavity length and finesse ranges and addi-
tional diffraction orders, we find that the shape of P(�̄,δt)
is a function of the cavity bandwidth only. That is, there is
no distinction between a length change and a finesse change
with the exception of a linear shift in �̄ due to the scaling
in optical gain. This is expected, as the cavity bandwidth
univocally determines the shape of G(t). Therefore, Fmax

can be extrapolated for any cavity length from the value of
the cavity photon lifetime τmax. For example, cavities with
length L will exhibit the same behavior depicted in Fig. 5 for
finesses adjusted by the ratio 10 m/L and intensities adjusted
by L/10 m.

In the absence of the cavity, the values of δtπ (�̄) decrease
slightly with increasing n for n > 2, i.e., higher order pro-
cesses yield shorter beam splitter pulses, which in turn have
greater intensity requirements. The cavity deforms the pulse’s
envelope function G(t), as determined solely by τc, and the
cavity with τc = τmax presents an optimal G(t) that minimizes
the required input power of the beam splitters. The value τmax

is observed, through simulation, to be approximately 1/3 the
duration of the shortest beam splitter pulse in the absence of
the cavity. We believe this is because the optimal G(t) occurs
at a certain ratio between the cavity photon lifetime and the
input pulse width, before the pulse gets significantly distorted
by the cavity. Hence, the dependence of τmax on n is roughly
the same as that of min {δtπ (�̄)}/3, which is a rather slow
dependence.

By increasing the interaction time, increasing the cavity
finesse has the effect of parametrically pushing the photon-
atom interactions towards the Bragg and channeling regimes.
An evidence of this is the change in the slope of τπ (�̄)
for cavities with τc > τmax, as can be seen in Fig. 6. The
very high finesse cavities have a slope dτπ/d�̄ → +∞ for
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FIG. 7. First Rabi cycle of a conventional 2h̄k beam splitter
for three cavities with different photon lifetimes, indicated next
to each curve. This transition is less lossy because of the direct
coupling between the initial and final states. High-finesse cavities,
with increased interaction times due to the severe elongation effect,
exhibit a sharp transition between the adiabatic Bragg regime and the
long-interaction steep-potential channeling regime, embodying the
uncertainty relation between time and energy in the parameter space
(a). The crosses represent the points where the transfer efficiency
falls below 95% for the lower finesse cavities, as the interaction time
approaches the Raman-Nath regime (b).

�̄ → 0, indicating adiabacity, and dτπ/d�̄ → 0 otherwise,
indicating the channeling effect. As the cavity storage time
becomes higher, the atomic interactions with the circulating
cavity field become inevitably longer, and as they do so the
diffraction process becomes more adiabatic. A high finesse
cavity will transform a short input pulse with a large energy
uncertainty into a long pulse with a well-defined energy. In
doing so, energy conservation will favor transitions to the
target state with low losses, unless the price is paid in terms
of input power to drive efficient transitions that violate the
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FIG. 8. Effect of the cavity photon lifetime τc on the atomic
transitions. The minimum photon-atom interaction time remains
largely unaffected for cavities with τc < τmax, and increases linearly
for τc > τmax (a). The required intensity for the shortest beam splitter
is minimal for τc = τmax (b).
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adiabacity condition, thus operating in the long-interaction
steep-potential channeling regime.

This is best seen in first order Bragg diffraction, n = 1
(Fig. 7). This case is unique because the initial and final states
|±h̄k〉 are coupled directly. While both states can transfer
population to and from their other neighbor, the direct coupling
between them makes the transition naturally less lossy. For
this reason the elongation effect appears to be less significant
in this case when compared to, e.g., n = 2, but in turn the
intensity required for the shortest beam splitters grows more
steeply. The adiabacity condition is lower for n = 1, i.e., the
gap separating the Bragg and channeling regimes is narrower,
and the higher finesse cavities with increased interaction times
are parametrically “pushed” to transition sharply between the
two regimes. In Fig. 7 note how the cavity with τc = 100 μs
produces efficient transitions with dτπ/d�̄ → 0 within the
first Rabi cycle, whereas at lower τc efficiencies fall below
95% as expected in the quasi-Bragg regime. The curve for
τc = 100 μs in Fig. 7 is a good representation of the well

known uncertainty relation between time and energy in this
parameter space.

To summarize, there is a value of the cavity bandwidth
�ωmin = (2πτmax)−1 which guarantees that the cavity offers
maximum power enhancement of the short beam splitter pulses
while keeping the interaction time unaffected (Fig. 8). A
higher or lower bandwidth will incur in the requirement of
a larger laser power, with lower bandwidths also incurring in
longer interaction times. It is thus reasonable to treat �ωmin

as a lower bound to cavity bandwidth or, equivalently, τmax as
an upper bound to the cavity photon lifetime. Note that these
bandwidth limits are specially significant for long-baseline
experiments, as the larger cavity length vastly reduces the
feasible finesse range. Of course, it may be a design choice to
use a bandwidth lower than �ωmin and suffer the consequences
(e.g., greater power requirements and a reduction of atomic
flux due to the elongated pulses being able to resolve the
velocity spread of the cloud). The bandwidth limit obtained
here is not a physical limit, but a design limit based on
optimizing the performance of the cavity-assisted atomic beam
splitters.

The values of τmax for n = 1–9 are depicted in Fig. 9.
The values for rubidium-87 for n = 1 are easy to remember
and very similar to the n = 4 case: 10 μs photon lifetime
(16 kHz bandwidth), which translates into a Fmax of roughly
10 000, 1000, and 100 for cavity lengths of 1, 10, and 100 m,
respectively. See Table I for a complete set of values for
n = 1–9.

IV. GEOMETRICAL AND OPTICAL LIMITS OF THE
CAVITY-ASSISTED ATOM INTERFEROMETER

The biggest constraint on the cavity parameters is set by the
fact that it must accommodate the size of the atomic cloud as it
thermally expands during the measurement. In this section we
study the limitations of the cavity as a spatial filter under this
constraint. The requirement of having a large waist may lead
the cavity to be pushed very close to the edge of geometrical
instability, which carries the consequent problems of increased
sensitivity to alignment errors, mirror surface imperfections,
and coupling to higher-order spatial modes. In addition, there
is an incompatibility between having a cavity with a large
beam size and simultaneously good spatial filtering (Fig. 10).

TABLE I. Maximal cavity parameters for atom optics. A cavity with photon lifetime τmax (or bandwidth �ωmin) minimizes the required
power of the atomic beam splitters and keeps the interaction time unaffected. The corresponding finesse Fmax is given for cavity lengths of 1,
10, and 100 m.

τmaxωr τRb87
max τCs133

max �ωmin/ωr �ωRb87
min �ωCs133

min FRb87
max FCs133

max

n (μs) (μs) (kHz) (kHz) 1 m 10 m 100 m 1 m 10 m 100 m

1 0.24 10.0 18.5 0.66 16.0 8.6 9 373 934 91 17 392 1736 171
2 0.30 12.4 23.1 0.53 12.8 6.9 11 717 1169 114 21 741 2171 214
3 0.28 11.6 21.5 0.56 13.7 7.4 10 936 1091 106 20 292 2026 200
4 0.25 10.4 19.2 0.64 15.3 8.3 9 763 974 94 18 117 1809 178
5 0.22 9.1 16.9 0.72 17.4 9.4 8 592 856 83 15 943 1591 156
6 0.20 8.3 15.4 0.80 19.2 10.3 7 810 778 75 14 493 1446 142
7 0.19 7.8 14.4 0.85 20.5 11.1 7 302 727 70 13 551 1352 132
8 0.18 7.3 13.5 0.90 21.9 11.8 6 834 681 65 12 681 1265 124
9 0.16 6.6 12.3 0.99 24.0 12.9 6 248 622 59 11 594 1157 113
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FIG. 10. The bandwidth limit places a constraint on the cavity’s
L-F parameter space, depicted here for n = 1. Higher finesses lead
to better spatial filtering (a), while longer lengths allow for larger
beams (b). In atom interferometry, both large beams and good spatial
filtering are desired qualities.

These findings, along with those from the previous section,
allow us to establish upper bounds on the temperature of the
atomic ensemble as a function of cavity length and three design
parameters.

We assume here a cavity with a symmetric two-mirror
configuration. Having the beam waist at the center of the cavity
means that the curvature of the beam is symmetric with respect
to it, allowing the possibility of running the interferometric
sequence along the optical axis (on-axis sequence). In this
configuration the cavity can be used to simultaneously inter-
rogate two clouds launched vertically in a juggling atomic
fountain. The cavity can also be used to interrogate several
atom interferometers running in parallel along the optical axis
with the clouds being loaded perpendicularly into the cavity,
as proposed for MIGA (perpendicular sequence). In on-axis
sequences the total measurement time scales with

√
L, as the

atoms explore some fraction of the cavity length, whereas
in perpendicular sequences the total measurement time is a
parameter independent of cavity length.

Having established a lower bound on the cavity bandwidth
on the previous section, we determine the maximum level
of spatial filtering achievable by the cavity as a function of
beam size. This will help in understanding the limitations of
the cavity given the constraint imposed on beam size by the
expanding atomic cloud. The optical suppression factor of

higher-order modes Snm indicates the fraction of power on the
nmth mode with respect to the fundamental mode [38]:

Snm = 1√
1 + (

2F
π

)2
sin2[(n + m) arccos(

√
g1g2)]

, (4)

where g1,2 are the cavity’s g factors, gi = 1 − L/Ri , and Ri

are the mirrors’ radii of curvature. The total cavity g factor,
defined as gc = g1g2, is a useful quantity to determine if the
cavity is geometrically stable (0 � gc � 1) or otherwise.

We introduce the local Gouy phase for a Hermite-Gaussian
beam as [39]

φG = arctan

(
z

zR

)
, (5)

and the roundtrip Gouy phase shift in the cavity as [40]

�φG = 2 arccos(
√

g1g2), (6)

where z is the position along the optical axis with respect to
the center, zR = πw2

0/λ is the Rayleigh range, and w0 is the
beam waist at the center. The Gouy phase shift stems from the
transverse spatial confinement of the beam and the consequent
spread in transverse momenta [41]. Using Eqs. (4)–(6) we can
derive an expression for the optical suppression of higher-order
modes in terms of the cavity finesse, length, and beam waist:

Snm = 1√
1 + (

2F
π

)2
sin2

[
2(n + m) arctan

(
λL

2πw2
0

)] . (7)

A lower suppression factor, specially of the first and second
order modes (S01 and S02), indicates that the cavity serves
as a better spatial filter, as the circulating field will have a
cleaner wave front. The spatial filtering effect improves the
quality of the beam inside the cavity regardless of the origin of
the beam distortion, and applies in addition to other means
of improving the input beam quality, such as prefiltering,
alignment, and mode matching. Here we do not consider
specific input beam properties nor any fluctuations of the cavity
parameters. Figure 11(a) indicates the relative difference in
the intracavity buildup of the first and second order spatial
modes, which represents the additional improvement in spatial
filtering provided by the cavity.

We consider, as an example, three cavities of different
length—1, 10, and 100 m—all having the same bandwidth of
16 kHz, which is the lower limit for Bragg diffraction orders
n = 1,4 (Fig. 11). In the limit where the waist of the cavity is
in the order of interest for atom interferometry, the suppression
factors are approximately the same for all cavities having the
same bandwidth,

lim(
large
waist

) Snm = 1 − (n + m)2c2λ2

2π4�ω2
minw

4
0

+ O

(
1

w0

)8

, (8)

as evidenced by the overlapping curves to the right of
Fig. 11(a). That is, for the large beam sizes needed in order
to accommodate the thermally expanding clouds, the spatial
filtering properties of cavities having the same bandwidth are
approximately the same. When the cavity bandwidth is limited
for design reasons, the wave front quality is therefore also
limited. Note that despite the fact that the bandwidth limits
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FIG. 11. Spatial filtering and geometrical properties of the cavity.
The optical suppression factor of the first and second order spatial
modes serve as indication of the quality of the laser wave fronts as
a function of beam waist size (a). Cavities with the same bandwidth
(16 kHz here, the limit for n = 1,4) have the same spatial filtering
properties in the large waist limit. Also plotted: variation of the
total cavity g factor (b), the roundtrip Gouy phase shift (c) and
the mirror radii of curvature (d) of each cavity. As the beam waist
varies from 10−2 to 102 mm, the cavity geometries (e) go from near-
unstable concentric (R → L/2, g1,2 → −1, �φG → 2π ) through
critically stable confocal (R → L, g1,2 → 0, �φG → π ) and up to
near-unstable plane-parallel (R → +∞, g1,2 → +1, �φG → 0).

obtained in the previous section set a very high bar for the
finesse of short cavities (e.g., roughly 10 000 for n = 1,4
at L = 1 m), they have very similar performance as longer
cavities with much smaller finesse (e.g., the 100 m 100 finesse

cavity) for beam waist sizes on the order of a few millimeters.
And of course, short cavities with finesses below the limit
would have even worse performance in the region of interest
than longer cavities operating at the limit.

One always has to mind that the roundtrip Gouy phase
shift is not a ratio of π so as to avoid bunching of higher-
order modes. For example, S02 peaks when S01 is minimum
indicating confocality for a roundtrip Gouy phase shift of
�φG = π [Fig. 11(a)]; all even modes bunch together at this
point. Note that, e.g., for a beam waist size of w0 = 5 mm,
the 1 and 10 m cavities are near-unstable plane-parallel
(�φG ≈ 0.006 π and 0.063 π , respectively), while the 100
m cavity is clearly stable (�φG ≈ 0.587π ).

We distinguish two different limiting factors affecting the
maximum allowed beam waist size in the cavity. The first one
is the requirement of having a geometrically stable cavity,
i.e., having a total g factor of less than what would be
experimentally unrealizable. The second one stems from the
requirement of achieving a certain level of spatial filtering
while staying within the bandwidth bound established in the
previous section. We introduce this requirement by constrain-
ing the optical suppression factor of the first and second order
spatial modes S01 and S02.

(1) Geometrical limit:

gc � gmax. (9)

(2) Optical limit:

S01,02 � Smax, (10)

�ω � �ωmin. (11)

Short cavities will operate in the geometrical limit, as the
smaller length comes at the price of putting the cavity very
near the edge of geometrical instability. Larger cavities, on the
other hand, will be optically limited, while easily maintaining
an stable configuration despite the large waist. These upper
bounds on beam waist size yield upper bounds on cloud
temperature in order to keep the cloud within the confines
of the beam (Fig. 12).

Using Eqs. (5) and (6) we derive an expression for the
maximum beam waist given a maximum cavity g factor gmax:

w0,geo(L) =
√

Lλ

2π
cot

(
arccos

√
gmax

2

)
. (12)

Using Eq. (7) we derive an expression for the maximum beam
waist given a maximum suppression factor of the first and
second order spatial modes Smax:

w0,opt(L) =
⎛
⎝ λ2

4π4�ω2
min

2c2S2
max + π2L2�ω2

min

(
S2

max − 1
) + 2cSmax

√
c2S2

max + π2L2�ω2
min

(
S2

max − 1
)

1 − S2
max

⎞
⎠

1/4

, (13)

with

L ∈
(

0,

√
3c

2π�ωmin

Smax√
1 − S2

max

]
. (14)

In the geometrical limit w0,geo < w0,opt, whereas in the optical limit w0,opt < w0,geo.
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length. For the perpendicular type we show the limits for total measurement times of 100 and 250 ms.

The size of the atomic ensemble after a time t during the
experiment is characterized by a Gaussian distribution of width

σt =
√

σ 2
0 + σ 2

v t2, (15)

where σ0 is the width of the initial position distribution,
σv = (kBTe/M)1/2 is the width of the velocity distribution of
temperature Te and mass M , and kB is the Boltzmann constant.
Assuming that σvt is much larger than σ0, we can approximate
Eq. (15) by

σt ≈
√

kBTe

M
t. (16)

The size of the cloud at time t must be, at most, equal to the
size of the cavity waist. Thus, the temperature of the atomic
ensemble is limited by the maximum waist sizes in either the

geometrical or the optical limits:

Te � Mw2
0

kBt2
. (17)

A cavity operating in the geometrical limit will have its
temperature limited by

Te � MλL

2πkBt2
cot

(
1

2
arccos

√
gmax

)
, (18)

whereas a cavity operating in the optical limit requires, to first
order in L:

Te � Mcλ

π2kBt2�ωmin

Smax√
1 − S2

max

. (19)

The approximation given here is valid to first order in L. For
the exact expression, see Eqs. (13) and (17).
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Lastly, the maximum cavity length allowed under the
optical constraints is

Lmax =
√

3c

2π�ωmin

Smax√
1 − S2

max

. (20)

This length limit is independent of the temperature of the
atomic ensemble. There are, thus, two factors at play limiting
the length of cavities for atom interferometry, and when
designing long cavities a sacrifice on either of these limits must
be made: either the cavity bandwidth is chosen smaller than
�ωmin, with the consequent problem of increased interaction
times and higher power requirements; or the requirements on
spatial filtering are relaxed, losing part of the advantage of
incorporating the cavity in the first place.

Owing to how the measurement time scales differently with
cavity length for the two types of interferometers considered,
the upper bound on cloud temperature scales differently too. In
on-axis sequences it scales with 1 in the geometrical limit and
L−1 in the optical limit, whereas in perpendicular sequences it
scales with L and 1, respectively. For the value gmax = 0.999
used here, which was determined experimentally to be a safe
choice in order to maintain controllability of the cavity [42],
an interferometer running on-axis sequences and using the
entire cavity length requires sub-μK temperatures throughout
the range. When restricting the atomic trajectories to use only
a fraction of the cavity length, these limits are relaxed: if the
atoms explore a fraction 1/α of the length, the upper bound
on cloud temperature scales with α. Note that for on-axis
interferometers the temperature limits in the optically limited
region are always lower than those in the geometrical limit,
independent of the value of Smax.

For running perpendicular sequences the temperature
bounds are more forgiving, specially for larger optically
limited cavities. We have presented two cases with total mea-
surement times of 250 and 100 ms, and the value Smax = 0.02
was chosen to obtain substantial suppression of higher order
modes. This yields w0,opt ≈ 5 mm, which is a typical design
value [34]. Under these constraints large cavities put an upper
temperature limit of 4.9 μK at L = 10 m and 3.8 μK at L =
100 m for the t = 250 ms case, and 30.9 μK at L = 10 m and
23.8 μK at L = 100 m for the t = 100 ms case. For perpen-
dicular sequences cavity stability yields w0,geo ≈ 2.8 mm at
L = 1 m, giving upper temperature limits of 1.3 and 8.1 μK for
the t = 250 ms and t = 100 ms cases, respectively. However,
regardless of t , Te, or the sequence type, the maximum cavity
length is Lmax ≈ 100 m, and longer cavities would lie in the
forbidden region under these constraints. The higher the order
of the diffraction process, the more strict the temperature and
length limits are due to the increasing value of �ωmin.

These limits are conservative in the sense that the cavity
is constrained to accommodate the size of the cloud at the
center, where the beam size is smallest. However, both in the
geometrical limit and most of the optical limit (when the g

factor is close to 1), the cavity is in a near-unstable plane-
parallel configuration and thus the size of the beam at the
mirrors is approximately equal to the size of the beam waist.

We have assumed that Doppler shifts between atom states
are less than the cavity bandwidth. If the cavity is subject to
accelerations along the optical axis, the bandwidth must be

large enough so as to compensate for the Doppler detuning of
the interferometric pulses. The larger bandwidth will result in
worse spatial filtering, and therefore in lower upper bounds to
cloud temperature in order to maintain the same level of sup-
pression of higher-order modes. To compensate for an increase
over the minimum cavity bandwidth, the constraint on the
optical suppression of the first and second order spatial modes
would have to be relaxed by approximately the same amount.
For example, the situation presented in Fig. 12 is analogous
for a cavity with bandwidth 160 kHz and Smax = 0.2.

V. SUMMARY

The evolution of an atomic ensemble as it interacts with a
pulse of radiation resonating inside an optical cavity has been
considered in detail by means of a numerical model. We have
shown that there is a lower bound on the cavity bandwidth
below which the photon-atom interaction time increases
substantially. Cavities with bandwidths below the minimum
parametrically push the atomic diffraction process into the
long-interaction Bragg and channeling regimes. A cavity
operating at the bandwidth limit for the specific diffraction
process provides: (1) Maximum power enhancement of the
atom optics pulses. (2) Minimum elongation of the interaction
time, potentially minimizing the degradation of atomic flux
due to velocity selectivity. (3) Best spatial filtering of the
interferometric beams.

We have derived the spatial filtering properties of cavities
operating at this bandwidth limit as a function of beam
waist size. We have further derived beam waist size limits
for the interferometer as a function of cavity length, which
are divided into what we call the geometrical and optical
limits. These limits allow us to determine the maximum
temperatures of the atomic ensemble so that the atoms fit
within the confines of the beam. A cavity operating with a
beam waist size in these limits guarantees that: (1) the cavity
is stable, and (2) the first and second order spatial modes are
suppressed below the desired threshold. In the geometrical
limit—affecting short cavities—the maximum beam waist
size scales with

√
L, whereas in the optical limit—affecting

long cavities—it stays approximately constant.
A length limit emerges from the optical constraints,

restricting the practicality of long-baseline detectors. This limit
is independent of temperature, scales inversely with the cavity
bandwidth and, to first order, scales directly with the maximum
suppression factor of higher-order modes.

These findings should assist the design of current and future
detectors using two-mirror cavities, and pave the way towards
alternative cavity designs.
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