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We study the average intensity-intensity correlations signal at the output of a two-mode squeezing device with
|N〉 ⊗ |α〉 as the two input modes. We show that the input photon number can be resolved from the average
intensity-intensity correlations. In particular, we show jumps in the average intensity-intensity correlations signal
as a function of input photon number N . Therefore, we propose that such a device may be deployed as a
photon-number-resolving detector at room temperature with high efficiency.
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I. INTRODUCTION

Photon-number-resolving detectors (PNRD) are crucial
to the field of quantum optics, and quantum information
processing. PNRD can be useful in two major classes of
application: single-shot measurement of photon number, and
ensemble measurements for photon number statistics. Single-
shot photon number measurement is useful in the field of linear
optical quantum computing, quantum repeaters, entanglement
swapping, and conditional state preparation [1–5].

Ensemble measurement-based PNRD can be used in quan-
tum interferometry for measuring photon statistics, character-
ization of quantum light sources, and improvement in sensi-
tivity and resolution [6–10]. For example, a true single-photon
source is important for quantum key distribution. The ultimate
security of the key can be compromised if the source emits
more than one photon in the same quantum bit state. Hence,
a photon-number-resolving detector that can characterize the
single-photon source accurately is vital for the success of
quantum key distribution [11,12]. Also, the reconstruction
of photon statistics of unknown light sources by ensemble
measurements can be used to determine the nature of the
light source (classical or nonclassical), and detection of weak
thermal light, and coherent light. Therefore, a desirable feature
of a PNRD is accurate detection of the number of photons. In
this paper, we propose a room-temperature photon-number-
resolving detector using a two-mode squeezing device that
finds its application in the reconstruction of photon statistics of
unknown light states, and characterization of nonclassical light
resources. For example, source characterization for enhanced
quantum key distribution, and detection of weak thermal light.

Commonly used photon detectors are the bucket or on-
off detectors. These detectors can only distinguish between
zero or more photons. Photon-number-resolving detectors
typically include avalanche-based photodiodes, such as the
visible light photon counters [8,13], two-dimensional arrays
of avalanche photodiodes [14,15], time-multiplexed detectors
[16–18], photomultipliers [19], and weak avalanche-based
PNRD [20]. Most of these detectors have a high dark-count rate
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at room temperature, and are not sensitive to photon number
greater than one. Therefore, they cannot be used in applications
that require photon statistics. Another type of PNRD is a
transition edge sensor (TES), which is a superconducting
microbolometer. These detectors are highly efficient but they
operate at extremely low temperatures and have a low response
time [11,21–23]. Another superconductor-based PNRD uses
parallel superconducting nanowires, which can resolve a finite
number of photons at telecommunication wavelengths [24,25].
Recently, atomic-vapor-based photon-number-resolving de-
tectors have also been proposed [26]. The merit of any PNRD
is determined by detector efficiency, dark count rate, and
response time. Most of the current photon-number-resolving
detectors either have low efficiency or are plagued with high
dark-count rates and low response time. Moreover, they have
to be maintained at extremely low temperature to yield high
efficiency.

A two-mode squeezed vacuum (TMSV), also known as the
twin-beam state, is an entangled state containing strong cor-
relations between the two beams. However, individually these

FIG. 1. The schematic diagram of a room-temperature number-
resolving photon detector. The two-mode inputs to the four-wave
mixer (FWM) are N -photon Fock states, and a coherent state of
light |α〉, âin(âout), and b̂in(b̂out) represent the mode operators of input
(output) light beams. The average intensity-intensity correlations and
the noise in the intensity-intensity correlations are detected at the
output. The losses due to imperfect squeezing and the inefficiency of
the photon detectors, are modeled by adding fictitious beam splitters
each of overall transmissivity η, where the vacuum modes are denoted
by |0〉1 and |0〉2.
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FIG. 2. (a) and (b) Show the average intensity-intensity corre-
lations 〈Ĉ〉 and the noise �Ĉ in the intensity-intensity correlations
as a function of input photon number N incident on one port of
a two-mode squeezing device with n̄s = 2, respectively: Both 〈Ĉ〉
and �Ĉ increase in steps as the input photon number changes in
increments of one. When a single photon is incident, there is a huge
jump in 〈Ĉ〉 and �Ĉ. 〈Ĉ〉 and �Ĉ for vacuum as input in the second
mode shows smaller step sizes than those with coherent-light inputs.
Hence the coherent-light state provides a boost to the 〈Ĉ〉 and �Ĉ

signals. Also this shows that even in the presence of coherent state
amplitude fluctuation, we still see the steps in the signal and the
noise. Therefore, for a slowly fluctuating coherent state, we expect to
observe a slowly fluctuating signal while still maintaining the steps,
representing the input photon number.

modes are not squeezed and resemble a thermal state [27–29].
Due to the correlations and symmetry between the two
modes, the average photon number in each mode is the same.
Also, the covariance between the two modes describe the
intermode correlations. TMSV is produced experimentally
via nondegenerate parametric downconversion or four-wave
mixing [30,31]. Recently TMSV light has proven to be
extremely useful in quantum metrology [32,33] and quantum
information processing [34].

The paper is organized as follows. In Sec. I, we propose the
scheme to resolve photon number at room temperature without
using photon-number-resolving detectors, and calculate the
output signal. We use a two-mode squeezing device, such as
an optical parametric amplifier (OPA), or a four-wave mixer
(FWM), in a spatially nondegenerate configuration. In Sec. III,
we analyze our scheme in the presence of losses, and calculate
the signal-to-noise ratio.

FIG. 3. The average intensity-intensity correlation signal as a
function of n̄α and n̄s . The signal attains the maximum value at
n̄α = n̄s .

II. PHOTON-NUMBER-RESOLVING SCHEME

The setup used for the proposed scheme is shown in
Fig. 1. An unknown N -photon state is incident on one
port of the FWM and a coherent-light state with average
photon number n̄α is incident on the second port. The
average intensity-intensity correlations 〈Ĉ〉 and the noise in
the intensity-intensity correlations �Ĉ are measured at the
output to detect the input photon number. The operators â and
b̂ after interacting with the two-mode squeezer become

â → âμ − b̂†ν,
(1)

b̂ → b̂μ − â†ν,

where μ = cosh(r) and ν = sinh(r). Intensities N̂a and N̂b and
the intensity difference 〈M̂ab− 〉 at the two output modes are

〈N̂a〉 = n̄s(n̄α + N ) + N + n̄s ,

〈N̂b〉 = n̄s(n̄α + N ) + n̄α + n̄s , (2)

〈M̂ab
− 〉 = N − n̄α,

FIG. 4. Plot comparing the step size of the average intensity-
intensity correlations signal, with the noise.
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FIG. 5. Correlation in photon number fluctuations as a function
of input photon number.

where n̄s is the average number of photons in a single-mode
squeezed vacuum and is fixed at the value of two in this
calculation, corresponding to 10 dB of squeezing [35,36].

The above equations show that correlations and symmetry
between the two modes has been disturbed because of different
input modes. In particular 〈M̂ab

− 〉 is identically zero for pure
TMSV. We exploit this change in the correlations between
the two beams to resolve the number of photons in the input
by detecting the average intensity-intensity correlations at the
output. The average intensity-intensity correlations signal is
calculated from

〈Ĉ〉 = 〈N |a〈α|bN̂aN̂b|α〉b|N〉a, (3)

and is given by

〈Ĉ〉 = (α2 + 1)(N + 1) sinh4(r) + α2N (1 + sinh2(r))2

+ (α4 + α2(2N + 3) + (N + 1)2) sinh2(r),

× (1 + sinh2(r)). (4)

The average intensity-intensity correlations and the stan-
dard deviation (noise) of the average intensity-intensity
correlations as a function of the input photon state are plotted
in Fig. 2 (see Appendix for the expression of �Ĉ). From the
figure we can see that there is a huge jump in both 〈Ĉ〉 and
�Ĉ even when a single photon is incident on the FWM. What
is interesting is the amplification of the noise in the intensity-
intensity correlations when a single photon is detected. Hence,
a large change in �Ĉ is an indicator of the presence of the
photon. In Fig. 2 we compare the amplitude of the signal for
vacuum and coherent-light input, respectively. The steps for
the case of nonzero coherent-light input are greatly amplified
compared to the vacuum, and hence this provides a boost to
the intensity-intensity correlation signal. Thus the purpose of
having coherent light as input to the second mode is to amplify
the output signal while still displaying the steps as the photon
number changes. Our scheme does not require a very strong
coherent light source, therefore the possibility of the coherent
light producing its own twin beam state is ruled out. In order
to have a well-calibrated nonlinear gain, a feedback system
to control the output measured coherent-state amplitude can
be used. This will be equivalent to controlling the gain, while
showing the jumps in the 〈Ĉ〉 or �Ĉ signals. Both 〈Ĉ〉 and �Ĉ

FIG. 6. (a) Two-mode second-order intensity correlation function
g

(2)
12 (0) as a function of number of input photons N for different n̄α

and n̄s = 2. When n̄α = 0, then g
(2)
12 (0) has maximum correlation

for N = 0. As N increases, g
(2)
12 (0) decreases. When n̄α �= 0, the

correlations increase with N , but still less than that of TMSV.
(b) g

(2)
12 (0) as a function of coherent-light amplitude. As the strength

of the coherent light is increased the curves for N = 0 and N = 1
approach the single-mode second-order intensity correlation function
g

(2)
1 (0) for a coherent state asymptotically.

display steps as the number of input photons is increased in
steps of one. Therefore, it is possible to know the input photon
number by counting the height of steps in 〈Ĉ〉 or �Ĉ. In Fig. 3
we show that the 〈Ĉ〉 signal is maximum when both n̄α and
n̄s are equal. Also, both the 〈Ĉ〉, and �Ĉ are comparable in
magnitude for any choice of n̄α , and n̄s . Therefore, the step
size of the 〈Ĉ〉 signal can never exceed the noise �Ĉ. Hence,
the current setup is not suitable for the single shot experiment.
In Fig. 4 we compare the noise and the step size. We can
also use the covariance or the correlation in photon number
fluctuations as a function of input photon number, shown in
Fig. 5 as the signal.

We also calculate the two-mode second-order intensity cor-
relation function g

(2)
12 (0) which is defined as 〈Ĉ〉/(〈N̂a〉〈N̂b〉)

[37], and is calculated at zero time delay. This is another way
of describing the intermode correlations as well as photon
bunching. We know that if g

(2)
12 (0) > 1, then the light has

bunching or represents the super-Poisson state. For a two-mode
squeezed vacuum light, g

(2)
12 (0) = 2 + 1/n̄s , where n̄s is the
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average photon number in a single-mode squeezed vacuum state. The g
(2)
12 (0) for |N〉a ⊗ |α〉b input is

g
(2)
12 (0) = Nn̄α

(
n̄2

s + (1 + n̄s)2
) + (

(N + 1)2 + (2N + 3)n̄α + n̄2
α

)
n̄s(1 + n̄s) + (1 + N + n̄α)n̄2

s

(n̄α(1 + n̄s) + (N + 1)n̄s)(N (1 + n̄s) + (1 + n̄α)n̄s)
. (5)

In Fig. 6(a) we plot g
(2)
12 (0) as a function of the coherent-state

mean photon number n̄α . As the strength of input coherent
light increases, the correlations between the two modes
decreases and g

(2)
12 (0) approaches the single-mode second-

order intensity correlation function g(2)(0)) of a coherent-light
state, asymptotically. Also, we see that the presence of a single
photon in the input mode is sufficient to reduce the correlations
between the two beams.

III. EFFECT OF LOSSES

Next, we address the issue of imperfect squeezing and
inefficient detection of photons. Generally, the devices used
to produce two-mode squeezed light do not perform perfect

FIG. 7. (a) Average intensity-intensity correlations signal as a
function of input photon number, for different efficiencies represented
by η and fixed n̄α = 25. The imperfect two-mode squeezing and
correlator can be modeled by adding fictitious beam splitters of
transmissivity defined as η = εT . Where ε represents imperfect
squeezing and T represents the efficiency for the photon detector.
(b) Signal-to-noise ratio (SNR) as a function of η.

squeezing and the TMSV is a mixed state. Also, the photon
detectors used to detect the photons also have a limited
efficiency leading to losses. We model these losses by
introducing fictitious beam splitters of transmissivity η = εT ,
where ε represents imperfect squeezing and T represents the
efficiency of the photon detectors. Therefore the total loss
is 1 − η.

FIG. 8. (a) and (b) 〈Ĉ〉 and �Ĉ as a function of η1 and η2, plotted
against the number of input photons for n̄α = 25. (c) SNR plotted
against η1 and η2.
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FIG. 9. The effect of dark counts on the room-temperature
number-resolving photon detector. The input number state is approx-
imated with the thermal state. The losses due to imperfect squeezing
and the dark counts at the output, are modeled by adding fictitious
beam splitters each of overall transmissivity η, where the thermal
modes are denoted by ρth1 and ρth2.

Figure 7(a) shows 〈Ĉ〉 in the presence of losses as a function
of the input photon number N . We can see that as the
efficiency increases the amplitude of the signal 〈Ĉ〉 increases.
Also it is possible to attain the same amplitude of the
intensity-intensity correlation signal even when the efficiency
is low (η ∼ 0.5), by using a stronger coherent-light source
to compensate. Hence, the use of coherent light acts as a
boost that overcomes the effect of inefficiency in the squeezing
and photon detection. Also, unbalanced detector inefficiencies
and losses (η1 �= η2) frequently give rise to adverse effects
in experimental quantum optics schemes. However, in our
scheme, having detectors of different efficiencies does not
degrade the signal, nor the performance, of the PNRD. In
Fig. 8 we plot the signal-to-noise ratio as a function of η1 and
η2 and the average intensity-intensity correlations when the
two detector efficiencies are different. Additionally, phase-

FIG. 10. Plot comparing the average intensity-intensity correla-
tions as a function of number of input photons N for a Fock state
input, and a thermal state input. For a thermal input state, N is
actually N thermal, which we have chosen to be an integer increasing
in increments of one. This helps in making an easier comparison
between the two input states. The average number of photons in the
coherent state is n̄α = 25. From the plot we can see that 〈Ĉ〉 does not
vary much for the two different input states. Hence, we can conclude
that the thermal state is a good approximation for the input Fock state
in the calculation for dark counts.

FIG. 11. (a) Average intensity-intensity correlation signal as a
function of input photon number, for different efficiencies represented
by η and fixed n̄α = 25. Again, the N used in this plot is the N thermal.
(b) Signal-to-noise ratio in the presence of dark counts against
detector efficiency.

sensitive detection and amplification schemes are difficult to
implement experimentally, as care must be taken to control the
(typically) optical phases of the involved beams. Our scheme
avoids such difficulties, as the relative phases of the involved
modes is not an issue due to the orthogonality of the Fock
states. This is true for the thermal state as well, so we can
use our scheme to detect weak thermal light. However, it is
worth noting that this does not overrule the mode matching
with respect to the wave vectors between the different input
modes to complete the nonlinear process. The signal-to-noise
ratio (SNR) is a measure of the system performance. It is
defined as

SNR = 〈Ĉ〉/�Ĉ. (6)

In Fig. 7(b) we plot the signal-to-noise ratio as a function of
the transmissivity (see Appendix for the expression of SNR).
The SNR decreases as the transmissivity decreases, however,
this can be compensated for by increasing the strength of the
coherent-light state.

We also address the effect of stray thermal photons on our
detection scheme. The thermal photons at room temperature
are completely uncorrelated between detectors, and the aver-
age number of photons at optical frequencies is very small
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(∼10−40) [30]. Again the average number of stray thermal
photons at room temperature is of the order of 10−3, which
does not affect the detector efficiency.

We mix the stray thermal photons with the output at the two
beam splitters as shown in Fig. 9. In order to make the dark
count calculation easier, we approximate the Fock states with
a thermal state enabling us to use Wigner functions [38]. We
compare the average intensity-intensity correlations between
the input Fock state and the thermal state input in Fig. 10.
We find that the two signals do not differ much, hence the
thermal state is a good approximation for the Fock state as
input, and we expect the effect of dark counts on an actual
number state |N〉 to be similar. In Fig. 11 we show the effect
of stray thermal photons on the intensity-intensity correlation
signal and the signal-to-noise ratio. The average number of
thermal photons NDark at the room temperature, i.e., 300 K,
have been calculated at the wavelength of 9.7μm.

IV. CONCLUSION

In summary we propose a room-temperature photon-
number-resolving detector using a two-mode squeezer. The
N -photon number state is fed into a two-mode squeezing
device, along with a coherent-light input which amplifies
the output signal. The output intensity-intensity correlations
signal reports jumps with the changing photon number. Even
in the presence of losses, the output signal is strong due
to the amplification provided by the coherent light. Hence,
we have a high efficiency photon-number-resolving detector.
Since the scheme is robust against low detector efficiency, the
intensity-intensity correlation measurement can be carried out
at room temperature for optical photons.

Additionally since the photon-number states to be counted
are boosted (amplified) in the squeezer, dark counts will have
negligible effect, particularly at room temperature. Also, this
particular setup is robust against any phase fluctuations due
to the presence of Fock states which are insensitive to phase.
Hence, phase matching is not required, making our technique
easier to implement in the laboratory. Also, the synchro-
nization of the different light pulses will depend mainly on

the coherent state. Most experiments use a continuous-wave
coherent light which will give a steady background signal, and
is easy to synchronize due to a narrower line width. Moreover,
if the temporal profile of the input Fock state is known, it is
easy to produce coherent light with the same temporal profile.
Also our scheme is robust against coherent state amplitude
fluctuation, as we still see the steps in the signal and the noise.
Therefore, for a slowly fluctuating coherent state, we expect
to observe the slowly fluctuating signal but still maintaining
the steps, representing the input photon number. Since both
〈Ĉ〉 and �Ĉ are comparable in magnitude, the step size
never exceeds the noise �Ĉ. Therefore, the current setup is
not suitable for a single-shot experiment. Our results can be
applied to a wide range of squeezers and each would need
to be addressed separately in any experiment. Similarly, the
time required for ensemble measurements would depend on
the different experiments.

Our scheme is not a general photon-number-resolving
detector because it does not implement the POVM |N〉〈N |
in the |N〉 basis. Therefore for thermal light, squeezed light,
and coherent light, it will give a distribution around the mean.
However, for many applications in quantum technology such
as quantum key distribution [39], the photon state is known to
be in a Fock state, which is unknown. For such applications
our scheme will be ideal. Nevertheless, because of the coherent
light boosting, this device should be useful for detecting weak
thermal light, squeezed light, and coherent light states that has
application, for example, in quantum LIDAR [40]. In future
work, we plan to explore our setup for the multifrequency
mode.
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APPENDIX

The average intensity-intensity correlation for imperfect detections with efficiency η is

〈Ĉ(η)〉 = η2(Nα2(1 + sinh2(r))2 + ((1 + N )2 + (3 + 2N )α2 + α4)(1 + sinh2(r)) sinh2(r) + (1 + N )(1 + α2) sinh4(r)). (A1)

The expressions for the variance in the intensity-intensity correlation signal �Ĉ2 = 〈Ĉ2〉 − 〈Ĉ〉2 and signal-to-noise ratio are
given by the following equations,

�Ĉ2 = N2α2(1 + sinh(r)2)4 + (1 + sinh(r)2)3 sinh(r)2 + 3N (1 + sinh(r)2)3 sinh(r)2

+ 3N2(1 + sinh(r)2)3 sinh(r)2 + N3(1 + sinh(r)2)3 sinh(r)2

+ 7α2(1 + sinh(r)2)3 sinh(r)2 + 19Nα2(1 + sinh(r)2)3 sinh(r)2

+ 11N2α2(1 + sinh(r)2)3 sinh(r)2 + 2N3α2(1 + sinh(r)2)3 sinh(r)2 + 6α4(1 + sinh(r)2)3 sinh(r)2

+ 13Nα4(1 + sinh(r)2)3 sinh(r)2 + 4N2α4(1 + sinh(r)2)3 sinh(r)2 + α6(1 + sinh(r)2)3 sinh(r)2

+ 2Nα6(1 + sinh(r)2)3 sinh(r)2 + 10(1 + sinh(r)2)2 sinh(r)4 + 20N (1 + sinh(r)2)2 sinh(r)4

+ 12N2(1 + sinh(r)2)2 sinh(r)4 + 2N3(1 + sinh(r)2)2 sinh(r)4 + 43α2(1 + sinh(r)2)2 sinh(r)4

+ 68Nα2(1 + sinh(r)2)2 sinh(r)4 + 32N2α2(1 + sinh(r)2)2 sinh(r)4
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+ 4N3α2(1 + sinh(r)2)2 sinh(r)4 + 32α4(1 + sinh(r)2)2 sinh(r)4

+ 36Nα4(1 + sinh(r)2)2 sinh(r)4 + 10N2α4(1 + sinh(r)2)2 sinh(r)4

+ 6α6(1 + sinh(r)2)2 sinh(r)4 + 4Nα6(1 + sinh(r)2)2 sinh(r)4 + 9(1 + sinh(r)2) sinh(r)6

+ 15N (1 + sinh(r)2) sinh(r)6 + 7N2(1 + sinh(r)2) sinh(r)6 + N3(1 + sinh(r)2) sinh(r)6

+ 29α2(1 + sinh(r)2) sinh(r)6 + 47Nα2(1 + sinh(r)2) sinh(r)6 + 19N2α2(1 + sinh(r)2) sinh(r)6

+ 2N3α2(1 + sinh(r)2) sinh(r)6 + 14α4(1 + sinh(r)2) sinh(r)6

+ 21Nα4(1 + sinh(r)2) sinh(r)6 + 4N2α4(1 + sinh(r)2) sinh(r)6

+α6(1 + sinh(r)2) sinh(r)6 + 2Nα6(1 + sinh(r)2) sinh(r)6

+α2 sinh(r)8 + 2Nα2 sinh(r)8 + N2α2 sinh(r)8, (A2)

SNR = (η2(Nα2(1 + sinh(r)2)2 + ((1 + N )2 + (3 + 2N )α2 + α4)(1 + sinh(r)2) sinh(r)2

+ (1 + N )(1 + α2) sinh(r)4))/((1 − η)2η2(Nα2(1 + sinh(r)2)2 + ((1 + N )2 + (3 + 2N )α2 + α4)(1 + sinh(r)2) sinh(r)2

+ (1 + N )(1 + α2) sinh(r)4) − η4(Nα2(1 + sinh(r)2)2

+ ((1 + N )2 + (3 + 2N )α2 + α4)(1 + sinh(r)2) sinh(r)2

+ (1 + N )(1 + α2) sinh(r)4)2 + (1 − η)η3(N (α2 + α4)(1 + sinh(r)2)3 + (2α2 + N2α2

+ 2N (1 + N )α2 + 4α4 + α6 + N (1 + N )(1 + α2) + N (α2 + 2α4)

+ (1 + N )(1 + 5α2 + 2α4))(1 + sinh(r)2)2 sinh(r)2 + (N (1 + N )2 + (N2 + N (1 + N ))α2

+ (1 + N )(3 + 2N )(1 + α2) + N (2α2 + α4)

+ (1 + N )(1 + 7α2 + 3α4))(1 + sinh(r)2) sinh(r)4 + (1 + N )2(1 + α2) sinh(r)6)

+ (1 − η)η3(N2α2(1 + sinh(r)2)3 + (N2(1 + N ) + (−1 + N )Nα2 + N2α2 + N (1 + N )(1 + α2)

+ (1 + N )2(1 + α2) + N (α2 + α4) + 2N (2α2 + α4) + (1 + N )(2α2 + α4))(1 + sinh(r)2)2 sinh(r)2

+ (4α2 + N (1 + N )α2 + 5α4 + α6 + 2N (1 + N )(1 + α2) + (1 + N )2(1 + α2)

+N (α2 + α4) + N (2α2 + α4) + (1 + N )(1 + 3α2 + α4)

+ (1 + N )(2 + 4α2 + α4))(1 + sinh(r)2) sinh(r)4 + (1 + N )(1 + 3α2 + α4) sinh(r)6)

+ η4(N2(α2 + α4)(1 + sinh(r)2)4 + ((2 + 7N )α2 + (4 + 15N )α4

+ (1 + 4N )α6)(1 + sinh(r)2)3 sinh(r)2 + (N3α2 + 2N2(1 + N )α2

+N2(1 + N )(1 + α2))(1 + sinh(r)2)3 sinh(r)2 + (1 + 5α2 + 2α4 + 2N2(1 + 6α2 + 4α4)

+N (3 + 14α2 + 4α4))(1 + sinh(r)2)3 sinh(r)2 + N2(1 + N )2(1 + sinh(r)2)2 sinh(r)4

+ (3 + 3N + 27α2 + 30Nα2 + 24α4 + 36Nα4 + 4α6

+ 8Nα6)(1 + sinh(r)2)2 sinh(r)4 + (4α2 + 14α4 + 8α6 + α8)(1 + sinh(r)2)2 sinh(r)4

+ (1 + 2N )(3(1 + α2) + N2(2 + 4α2) + N (5 + 4α2))(1 + sinh(r)2)2 sinh(r)4

+ ((−1 + N )Nα4 + (N2 + 2N (1 + N ))(α2 + α4)

+ (2N2 + 6N (1 + N ) + 2(1 + N )2)(2α2 + α4) + (2N (1 + N ) + (1 + N )2)(1 + 3α2 + α4)

+ (1 + N )(2 + N )(2 + 4α2 + α4))(1 + sinh(r)2)2 sinh(r)4 + (N (1 + N )2α2 + 2N (1 + N )2(1 + α2)

+ (1 + N )3(1 + α2))(1 + sinh(r)2) sinh(r)6 + ((N2 + N (1 + N ))(3α2 + 2α4) + ((1 + N )2

+ (1 + N )(2 + N ))(3 + 7α2 + 2α4))(1 + sinh(r)2) sinh(r)6 + (N (4α2 + 5α4 + α6)

+ 2(1 + N )(4α2 + 5α4 + α6) + (1 + N )(1 + 7α2 + 6α4 + α6))(1 + sinh(r)2) sinh(r)6

+ (1 + N )2(1 + 3α2 + α4) sinh(r)8))))1/2. (A3)
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