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We review the unconventional photon blockade mechanism. This quantum effect remarkably enables a strongly
sub-Poissonian light statistics, even from a system characterized by a weak single-photon nonlinearity. We revisit
the past results, which can be interpreted in terms of quantum interferences or optimal squeezing, and show how
recent developments on input-output field mixing can overcome the limitations of the original schemes towards
passive and integrable single-photon sources. We finally present some valuable alternative schemes for which
the unconventional blockade can be directly adapted.
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I. INTRODUCTION

Nonclassical statistics [1] is a highly desirable feature
offered by quantum photonic platforms [2], as it stands
upstream from most single-photon emission schemes [3]. It
is typically achieved in cavity QED by optimally coupling
a strongly nonlinear degree of freedom, such as a two-level
emitter, to a harmonic cavity mode [4–9]. In this direction,
conventional schemes rely on the so-called “photon blockade”
(PB) mechanism [10–12] by analogy to the famous Coulomb
blockade effect [13]. The auxiliary element or the strongly
nonlinear medium induces a sizable anharmonicity in the
excitation ladder which shifts the n > 2 photon states off-
resonance. As a consequence, the cavity can only host one
photon at a time, behaving as a “photon turnstile” [14]. This
feature is associated with a sub-Poissonian statistics and a
photon antibunching [15] resulting from a non-Gaussian state.
The efficiency of the PB mechanism, however, requires the
single-photon nonlinearity U to be at least larger than the
mode linewidth (losses) κ to fully suppress the unwanted
transitions. While systems relying on the PB are steadily
improving and currently report close to optimal figures of
merit [16–18], they still pose major technological challenges
in term of integrability and scalability [19].

Weakly nonlinear systems, characterized by U � κ , are far
more natural and appear in many areas of photonics but also of
condensed matter physics. Weak nonlinearities typically stem
from the medium itself [20] or a weakly coupled nonlinear
element [21]. Contrary to what is commonly believed, small
nonlinear energy shifts are actually a sufficient ingredient
to build up sizable quantum correlations, even under weak
driving [22]. The key requirement is to couple at least two
degrees of freedom in order to assist quantum interferences
between excitation pathways [23–27]. In that framework, a
strongly sub-Poissonian statistics can be achieved by means
of a pair of driven-dissipative resonators with an arbitrarily
small single-photon nonlinearity. This effect is referred to
as the “unconventional photon blockade” (UPB) [24,28–30]
and was originally thought for Kerr resonators, namely, a
Bose-Hubbard dimer, but it can be easily transposed to various
configurations. As opposed to its conventional counterpart, the
UPB relies on close to Gaussian states in the regime of weak
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nonlinearity. The effect can therefore be interpreted in terms
of optimally squeezed states [31].

The UPB is a strongly resonant effect which, unlike
parametric downconversion [32] or four-wave mixing [33]
involved in heralded schemes [34], requires a minimum
input intensity to operate [35]. The drawback is to work
with intracavity fields below unity occupation and to accept
a probabilistic single-photon emission. Yet, the UPB is a
very promising mechanism for integrable and scalable single-
photon sources since it does not require any quantum emitter
to operate. It could be suitably applied to small-footprint
optimized silicon photonic crystal cavities where the χ (3)

response naturally offers a weakly nonlinear Kerr medium
[20,35,36]. Beyond single-photon applications, the UPB can
be used as a tool to reveal nonclassical features. For example,
the thriving field of semiconductor microcavities [37] is now
actively seeking genuine quantum correlations [38]. Given
the small single-particle nonlinearity offered by excitons, a
nonclassical light statistics can hardly be observed from the
exciton-polariton field without relying on the UPB [39].

Yet, there are two longstanding obstacles that have pre-
vented the experimental realization of the UPB in its original
form: (i) It requires a fine tuning of the intrinsic system
parameters, as the optimal sub-Poissonian statistic is obtained
for proper interrelations between the cavity coupling, the
nonlinearity, and the laser detuning. (ii) A weak nonlinearity
imposes a large coupling between the two cavities which, in
turn, results in fast oscillations of the second-order correlation
function on a time scale smaller than the cavity lifetime
[24,40]. As a result, the sub-Poissonian window of the UPB
is difficult to extract within the temporal resolution of state-
of-the-art detectors, and pulsed operation even turns out to
produce super-Poissonian light.

These issues actually arose due to the initial formulation of
the model where the authors imposed to drive only one of the
cavity modes [24,28]. Indeed, by allowing a mutual driving
of the modes and/or a mixing of their output, we will show
that the parameter constraints are naturally absorbed in the
relative phase and amplitude of the coherent sources that can
be tuned at will in experiments. As a consequence, one can
achieve a strongly sub-Poissonian statistics associated with
a well-behaved second-order correlation function for a wide
range of cavity parameters.

The manuscript is organized as follows: In Sec. II we
introduce the general formalism and the mathematical tools for
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the quantum description of the system. We review the original
proposals in Sec. III. In Sec. IV, we present the interpretation of
the UPB in terms of optimal squeezing. In Sec. V, we discuss
the latest developments and present additional schemes that
may lead to an experimental evidence of the UPB. Finally, in
the conclusions of Sec. VI, we discuss the outlooks in terms
of applications and variations of the UPB.

II. GENERAL FORMALISM

We shall consider here the general model of two coupled
single-mode cavities with resonant frequencies ωj (j = 1, 2),
both containing a Kerr medium, which are driven by classical
sources as sketched in Fig. 1(a). In the frame rotating at the
laser frequency ωL, the system Hamiltonian reads

Ĥ =
∑
j=1,2

[
�j â

†
j âj + Uj â

†2
j â2

j + F ∗
j âj + Fj â

†
j

]

+J (â†
1â2 + â

†
2â1). (1)

Here �j = ωj − ωL are the cavity detunings, Fj the complex
amplitudes of the driving fields, Uj are the Kerr nonlinearity
magnitudes, and J is the hopping amplitude between the two
cavities.

A. Weak driving limit

Before introducing the full treatment of the open quantum
system, we present here a simplified description in terms
of pure states and in the limit of weak driving fields. In
this limiting case, we derive analytical expressions for the
system observables and find optimal conditions for the system
parameters that maximize the sub-Poissonian character of the
cavity field [24,29,40]. We shall express the quantum state as
an expansion on a Fock state basis. In the limit where F1,2 → 0,
it is then possible to retain only terms in this expansion,
whose coefficients depend to leading order in the driving field

1

1

1

1

2

2

2

2
(a)

(b)

J

10

0220
11

01

00

1F 2F

1F 2F

J J

J

1111

JJ
2F 1F

0 0

10
2F2

10
1F1

12U 22U

FIG. 1. (a) Scheme of the system: Coupled Kerr cavities in a
driven-dissipative environment. The modes of linewidth κ1,2 allow
for photon hopping with an amplitudes J and are excited by mutually
coherent classical sources of complex amplitudes F1,2. (b) Energy
levels in the two-photon manifold and the corresponding excitation
paths.

amplitudes. From the Schrödinger equation, it can be inferred
that the coefficient cnm depends exactly as O(Fn

1 Fm
2 ) to leading

order. Hence, in the weak driving limit, the time-dependent
state is well approximated in the two-photon manifold as

|ψ(t)〉 �
∑

n+m�2

cnm(t)|nm〉. (2)

Here |nm〉 denotes a state with n photons in the first cavity
and m photons in the second one. In the most general case, the
state (2) should evolve according to a stochastic Schrödinger
equation, including random quantum jumps [41–43]. For
vanishing occupation, however, in the presence of losses at
rates κj , the time evolution of the state (2) is well approximated
by its “jumpless” description, as quantum jumps become
extremely rare. Hence, the equations governing the time
dependence of the coefficients are found from the solution
of the Schrödinger equation H̃|ψ〉 = ih̄∂t |ψ〉 written for the
non-Hermitian Hamiltonian

H̃ = Ĥ − i
∑
j=1,2

κj

2
â
†
j âj . (3)

The equations for the cnm(t) are obtained by projection on the
|nm〉 states, and in particular,

iċ00 = F ∗
1 c10 + F ∗

2 c01, (4)

iċ10 = F1c00 + �̃1c10 + Jc01 + F ∗
2 c11 + F ∗

1

√
2c20, (5)

iċ01 = F2c00 + �̃2c01 + Jc10 + F ∗
1 c11 + F ∗

2

√
2c02, (6)

iċ20 = F1

√
2c10 + J

√
2c11 + 2(�̃1 + U1)c20, (7)

iċ02 = F2

√
2c01 + J

√
2c11 + 2(�̃2 + U2)c02, (8)

iċ11 = F2c10 + F1c01 + (�̃1 + �̃2)c11 + J
√

2c20 + J
√

2c02,

(9)

with the definition �̃j ≡ �j − iκj /2. The underlined terms
in Eqs. (4)–(6) are of subleading order in the driving field
amplitudes and can be neglected. Figure 1(b), showing the
energy levels and the links between the states imposed by
Eq. (3), directly illustrates the set (4-9). Under continuous
wave driving, the equations are solved for the steady state |ψss〉,
where ċnm(t) = 0. Given that c00 	 c10,c10 	 c20,c02,c11, we
impose the condition c00 = 1, which compensates for the
small decay of the norm induced by Eq. (3) and allows a
simple closing of the equations. Equations (5) to (9) are
solved recurrently and allow obtaining compact expressions
for the cnm. Then the average occupations and equal-time
second-order correlations approximate to

n1 = 〈â†
1â1〉 = |c10|2 + |c11|2 + 2|c20|2 � |c10|2, (10)

n2 = 〈â†
2â2〉 = |c01|2 + |c11|2 + 2|c02|2 � |c01|2, (11)

g
(2)
1 (0) = 〈â†

1â
†
1â1â1〉
n2

1

� 2
|c20|2
|c10|4

, (12)

g
(2)
2 (0) = 〈â†

2â
†
2â2â2〉
n2

2

� 2
|c02|2
|c01|4

. (13)
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In the general case of a n + m-photon manifold, the coeffi-
cients cnm are determined by the recurrence relation

iċnm = �̃nmcnm + F1
√

ncn−1m + F2
√

mcnm−1

+F ∗
1

√
n + 1cn+1m + F ∗

2

√
m + 1cnm+1

+J
√

n(m + 1)cn−1m+1 + J
√

m(n + 1)cn+1m−1, (14)

where �̃nm ≡ n�̃1 + m�̃2 + n(n − 1)U1 + m(m − 1)U2.
The second-order correlations read

g
(2)
1 (0) = 1

n2
1

∑
n,m

n(n − 1)|cnm|2, (15)

g
(2)
2 (0) = 1

n2
2

∑
n,m

m(m − 1)|cnm|2, (16)

given the mean occupancies n1 = ∑
n,m n|cnm|2 and n2 =∑

n,m m|cnm|2.

B. Numerical treatment

To correctly account for the driven-dissipative character of
the system, we introduce the quantum master equation for the
system density matrix,

i
∂ρ̂

∂t
= [Ĥ,ρ̂] − i

∑
j=1,2

κj

2
D̂[âj ]ρ̂ . (17)

Here, D̂[âj ]ρ̂ = {â†
j âj ,ρ̂} − 2âj ρ̂â

†
j are Lindblad terms ac-

counting for losses to the environment. The expectation
values are computed as 〈ô〉 = Tr (ôρ̂). In what follows, we
will derive numerical solutions of Eq. (17) in a truncated
Hilbert space where only states |nm〉 with n + m � Nmax are
retained, and the convergence of the results vs Nmax is carefully
checked. With this approach, cases with moderate driving field
amplitude can be accurately modeled.

For still larger driving fields, the relevant occupation num-
bers are such that the above approach becomes numerically
cumbersome. In this limit, however, we expect the field in
the two cavity modes to be well described by small quantum
fluctuations occurring on classical field amplitudes. It is then
possible to expand the photon operators as âj = αj Î + δâj ,
where αj = 〈âj 〉 is the coherent mean-field component and
δâj are the fluctuation (noise) operators fulfilling 〈δâj 〉 ≈ 0
[39,40]. The classical field dynamics follows

iα̇1 = [�̃1 + U1|α1|2]α1 + Jα2 + F1, (18)

iα̇2 = [�̃2 + U2|α2|2]α2 + Jα1 + F2, (19)

and the fluctuations are governed by the master equation

ih̄
∂ρ̂f

∂t
= [Ĥf ,ρ̂f ] − i

∑
j=1,2

κj

2
D̂[δâj ]ρ̂f . (20)

The corresponding semiclassical Hamiltonian reads

Ĥf =
∑
j=1,2

[
�j â

†
j âj + Uj

(
α2∗

j â2
j + α2

j â
†2
j

)]

+
∑
j=1,2

Uj [â†
j â

†
j âj âj + 2α∗

j â
†
j âj âj + 2αj â

†
j â

†
j âj ]

+J (â†
1â2 + â

†
2â1). (21)

We have voluntarily omitted the δ notation in Eq. (21) for
the sake of compactness. This approach, where nonlinear
fluctuation terms of all orders are kept, provides an exact
description of the quantum dynamics as long as 〈δâj 〉 � αj .
The expectation values are then computed as 〈δô + 〈ô〉Î〉 =
Tr [(δô + 〈ô〉Îρ̂f ].

III. ORIGINAL PROPOSAL

A. Photon statistics under continuous wave driving

In the works by Liew and Savona [28] and Bamba et al.
[24], the analysis was restricted to the case where only one
of the quantum modes is driven, namely, F2 = 0. Identical
cavities where �1 = �2 = �, U1 = U2 = U , and κ1 = κ2 =
κ were also considered for simplicity. Under these simplifying
assumptions, the coefficients of Eq. (2) are found to be

c10 = F1
�̃

J 2 − �̃2
, (22)

c01 = −F1
J

J 2 − �̃2
, (23)

c20 = F 2
1

J 2U + 2�̃2[U + �̃]

2
√

2[U + �̃][�̃2 − J 2][�̃(U + �̃) − J 2]
, (24)

c02 = F 2
1 J 2 U + 2�̃

2
√

2[U + �̃][�̃2 − J 2][�̃(U + �̃) − J 2]
, (25)

c11 = F 2
1 J

U + 2�̃

2[J 2 − �̃2][�̃(U + �̃) − J 2]
. (26)

The sub-Poissonian character of the cavity 1 statistics can then
be optimized by solving for c20 = 0 as prescribed by Eq. (12),
provided that c10 �= 0.

In Ref. [24], the following relations for optimal UPB were
derived:

�|opt = ±1

2

√√
9J 4 + 8κ2J 2 − κ2 − 3J 2, (27)

U|opt = �|opt
(
4�2

|opt + 5κ2
)

2(2J 2 − κ2)

U�κ� 2

3
√

3

κ2

J 2
, (28)

resulting in a value of g
(2)
1 (0) = 0 associated with a perfectly

destructive quantum interference between the direct excitation
path |00〉 → |10〉 → |20〉 and the longest paths involving
the second cavity |00〉 → |10〉 → |01〉 → (|11〉 ↔ |02〉) →
|20〉, as it can be deduced from Fig. 1(b) and Eq. (7).
Indeed, the destructive interference occurs when the |10〉
and |11〉 contributions to |20〉 exactly cancel each other.
Strictly speaking, this holds true only in the framework of
the truncation of Eq. (2). Accounting for the n + m > 2 states
and/or allowing for state mixedness results in a small finite
value for the equal-time second-order correlation function. To
illustrate this point, we show in Fig. 2 the dependence of g

(2)
1 (0)

on the cavity mean occupancy n1 obtained by solving Eq. (20)
with optimal UPB conditions (27) and (28), for different values
of the optical nonlinearity. The result shows a linear increase
of g

(2)
1 (0) at low occupancy n1, which becomes nonlinear

when approaching unit occupancy. It differs significantly from
the conventional Kerr blockade case where the g(2)(0) �
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|�̃|4/|�̃(2U + �̃)|2 function is instead constant for n � 1.
We also see from Fig. 2 that the smaller the nonlinearity, the
smaller the g

(2)
1 (0) for a given occupancy. Remarkably, the

single-photon regime usually characterized by g
(2)
1 (0) < 0.5 is

guaranteed up to n1 � 0.1 for U = 10−2 − 10−3κ . We note
that the analytical criterion provides the smallest g

(2)
1 (0) value

possible for every occupancy n1 � 1, as we have checked
using a global minimization routine over U and J . It indicates
that the suppression of the two-photon probability is the best
strategy to optimize the sub-Poissonian statistics for the UPB.
The inset of Fig. 2 shows the photon probability distribution
Pn for U = 10−2κ and n1 � 10−3 compared to a Poissonian
distribution with the same average photon number. We see
the clear suppression by several orders of magnitude of the
two-photon probability induced by the UPB, while the n > 2
probabilities are slightly enhanced. An interesting quantity
to compute, in view of single-photon applications, is the
probability of emitting more than one photon Pn>1. In the
present case, the Poissonian statistics produces 1000 times
more multiphoton events on average for the same value of P1.

In Fig. 3(a) we show a full g
(2)
1 (0) map versus U and J

for F1 = 0.1κ . The dashed black line highlights the optimal
relation between J and U , and the white lines mark the
global minimum. We additionally show in Fig. 3(b) the
impact of variable detuning around the optimal condition
�1 = �2 = �|opt. The map reveals the strongly resonant
character of the unconventional photon blockade induced by
the underlying quantum interference mechanism. Note that by
adjusting the detuning, one can also prepare the system for a
super-Poissonian statistics [see dark-red areas] associated with
a suppression of the c10 coefficient.
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FIG. 2. Equal-time second-order correlations of the driven cavity
g

(2)
1 (0) versus its mean occupancy n1 under the optimal conditions

[Eqs. (27) and (28)] for several values of U (see legend). The
inset shows the corresponding probability distribution compared to a
Poissonian statistics for U = 10−2κ and n1 � 10−3.

FIG. 3. Equal-time second-order correlations of the driven cavity
g

(2)
1 (0) versus U and J and (b) versus �1 and �2. The dashed white

lines spot the minima of the g
(2)
1 (0) functions. The dashed black line

marks the optimal link between J and U .

Any realistic implementation of the mechanism will suffer
from some form of decoherence mechanism which affects the
quantum interference. Another possible detrimental mecha-
nism may arise in systems with frequencies in the microwave
range, such as superconducting circuits [44,45], where finite
temperature may induce a non-negligible thermal occupancy
n̄th. Thermal photons set a lower bound on the coherent
contribution to the occupancy needed to overcome the thermal
statistics leading to g

(2)
1 (0) = 2. The thermal contribution

requires one to consider a gain of excitations from the
reservoir. The Lindblad terms of Eq. (17) are therefore rewrit-
ten as −i(n̄th + 1)

∑
j κj /2D̂[âj ]ρ̂ − in̄th

∑
j κj /2D̂[â†

j ]ρ̂,
where n̄th follows a Bose distribution. Pure dephasing is ac-
counted for through the additional term −iη/4

∑
j D[â†

j âj ]ρ̂.
We show in Fig. 4 a map of the emission statistics versus n̄th and
the pure dephasing rate η. A smooth transition of the statistics
occurs from sub-Poissonian (i) to thermal with increasing n̄th

and (ii) to Poissonian when η approaches U .
Finally, to fully characterize the nature of the cavity-1

emission, we compute the delayed second-order correlation
function in the steady state:

g
(2)
1 (τ ) = 〈â†

1(0)â†
1(τ )â1(τ )â1(0)〉

〈â†
1(0)â1(0)〉2 . (29)

FIG. 4. (a) Cavity 1 mean occupancy (log scale) and (b) equal-
time second-order correlation function versus the mean thermal
occupation n̄th and the pure dephasing rate η. The optimal condition
is set for U = 10−2κ and we fix F1 = κ .
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FIG. 5. Delayed second-order correlations of the driven cav-
ity g

(2)
1 (τ ) under the optimal conditions (27) and (28) for U =

{10−3,10−2,10−1,1}κ , respectively, from panel (a) to panel (d). The
vertical dashed lines delimit the time window associated with one
lifetime τc = 1/κ .

This quantity, involving two-time correlations, is obtained by
means of the quantum regression theorem [39,46]. We show in
Fig. 5 the g

(2)
1 (τ ) function for different values of the nonlinear-

ity U � κ . The functions oscillate with a characteristic period
T = π/J|opt, which determines an antibunching time window,
and with an amplitude controlled by �.

B. Pulsed excitation regime

In order to use the unconventional photon blockade for
single-photon applications, the system must be operated under
pulsed excitation [47]. This requires either suppression of the
g

(2)
1 (τ ) oscillations or making them occur on a time scale longer

than the cavity lifetime τc = 1/κ . A value of � = �|opt = 0 is
not allowed by Eqs. (27) and (28), as it would require 2J 2 = κ2

and therefore U|opt → ∞. Besides, as shown in Eq. (28) and
Fig. 3(b), U|opt increases as ∝ 1/J 2, which imposes a lower
bound on J for weakly nonlinear systems where U � κ .
For instance, by targeting the limiting case where τc = π/J ,
namely, J = πκ , results in U|opt � 4 × 10−2κ , which is still
reasonably weak. However, in practice the bunched parts of
the g

(2)
1 (τ ) function bring additional constraints in the pulsed

operation. For illustration, we show in Fig. 6 the system
dynamics following the excitation by a Gaussian pulse F1(t) =
f1 exp[−(t − t0)2/2σ 2

t ], where σt = 3/κ and t0 = 3.5σt . Panel
(a) shows the cavity occupancy on a semilog scale and panel
(b) the equal-time second-order correlations versus time. The
g

(2)
1 (t,t) function reaches its minimum (dashed blue line)

shortly after the occupancy maximum. In panel (c) we show
the two-time second-order correlations g(2)(t1,t2) over the
time when the pulsed excitation occurs. The plot reveals
the oscillations previously discussed for the steady state (see

10 20 30
t

10-15

10-10

10-5

n
j(t

)

Mode 1
Mode 2

10 20 30
t

0

0.5

1

1.5

2

g
(2

)
j

(t
,t)

(a) (b)

FIG. 6. Dynamics of (a) the mean occupancies (log scale) and (b)
equal-time second-order correlation function. The dashed lines mark
the position of the g

(2)
1 (t,t) function. (c) Corresponding two-time

second-order correlations of the driven cavity g
(2)
1 (t1,t2) under the

optimal conditions (27) and (28) for U = 4 × 10−2κ and f1 = 0.1κ .
The contours display the two-time occupancy n1(t1,t2) = √

n(t1)n(t2),
and the dashed line stands for the equal time g

(2)
1 (t,t).

Fig. 5) along the (t1,t1 + τ ) time axis. The most relevant
quantity to study the average emission statistics over a pulse
is the second-order correlation integrated over two times [35]:

g
(2)
pulse =

∫
G

(2)
1 (t1,t2)dt1dt2∫

n1(t1)n1(t2)dt1dt2
, (30)

where G
(2)
1 (t1,t2) = 〈â†

1(t1)â1(t2)†â1(t2)â1(t1)〉. In the case
we consider here, despite a large antibunching window
(white/blue areas), the integrated statistics amounts to g

(2)
pulse ≈

1.06 and is therefore classical due to the presence of the
bunched regions (red areas) when the occupancy is still sizable.
This seems to indicates that the UPB in the terms introduced in
Refs. [28] and [24] cannot be operated under pulsed excitation.
One strategy, which was developed in Ref. [35], is to time-gate
the output signal in order to specifically target the antibunched
regions and extract a nonclassical statistics. For instance, a time
window of duration 1/κ centered on the g(2)(t,t) minimum
allows obtaining a value of g

(2)
pulse � 0.1, but at the price of an

emission rate reduced by a factor of 10. Below we will see
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that a mutual driving scheme is in fact sufficient to recover a
smooth behavior of the g(2)(τ ) function and therefore a direct
compatibility with pulsed excitation.

We note that an alternative strategy to reveal a nonclassical
statistics is to take advantage of the coherent population
oscillations between the coupled modes after a short excitation
pulse. Indeed, as predicted in Ref. [39] and measured in
Ref. [48], the free evolution of the weakly nonlinear system
is accompanied by strong dynamical modulations of the
second-order correlations. The photon statistics can period-
ically display sub-Poissonian time windows when the mean
occupation oscillates below unity.

IV. OPTIMAL SQUEEZING

A. Statistics of a coherent squeezed state

The unconventional photon blockade can be alternatively
described in terms of quadrature squeezing [31] in the limit
of weak Kerr nonlinearity where the state remains approxi-
mately Gaussian. A coherent squeezed state D̂(α)Ŝ(ξ )|0〉 =
D̂(α)|ξ 〉 = |α,ξ 〉 is obtained by the consecutive application
of the squeezing Ŝ(ξ ) = exp(ξ ∗â2/2 − ξ â†2/2) and displace-
ment D̂(α) = exp(αâ − α∗â) operators respectively defined
by the complex parameters ξ = r exp(iθ ) and α = ᾱ exp(iφ).
The n-photon probability distribution Pn = |〈n|α,ξ 〉|2 of such
a state is given by [49]

Pn = exp

[
−1

2
tanh(r)(α2e−iθ + eiθα∗2) − |α|2

]

× tanhn (r)

2n cosh(r)n!
Hn

[
γ√

eiθ sinh(2r)

]
, (31)

where we have defined γ ≡ α cosh(r) + α∗eiθ sinh(r) and Hn

is the nth Hermite polynomial. In particular, the two-photon
probability reads

P2 = 1
8 sech5(r)[sinh(2r) − 2ᾱ2e2r ]2e−ᾱ2[1+tanh(r)]. (32)

We have assumed here the intensity squeezing condition
θ = 2φ = 0 to favor a sub-Poissonian statistics [31]. One can
ask for the conditions for which P2 = 0, which results in the
relation

ᾱ|opt = 1
2e−2r

√
e4r − 1 . (33)

In the limit where r → 0, Eq. (33) reduces to ᾱ|opt = √
r ,

and in the limit r → ∞, the optimal displacement is bound
from above by ᾱ|opt = 0.5, as one can see in Fig. 7(a).
The average occupation of the coherent squeezed state is
n̄ = |ᾱ|2 + sinh2(r), which indicates that a suppression of
the two-photon probability can occur for an arbitrarily large
photon number if the state is sufficiently squeezed. Figure 7(b)
shows an example of Pn distribution in the optimal squeezing
condition for r = 1.

The general expression of the second-order correlation of
the coherent squeezed state is

g(2)(0) = 1 + p2 + s2 + 2ᾱ2[p − s cos(θ − 2ϕ)]

(ᾱ2 + p)2 , (34)

with p = sinh2(r) and s = cosh(r) sinh(r). Sub-Poissonian
statistics is indeed favored for θ = 2φ, and one can then

(a)

P n

(b)

FIG. 7. (a) Optimal displacement ᾱ|opt (33) as a function of r . (b)
Probability distribution Pn (31) for r = 1 and ᾱ = ᾱ|opt ≈ 0.5. The
black dots show the corresponding Poissonian distribution for the
same average occupation n̄.

minimize Eq. (34) versus r to obtain the optimal squeezed
state for every field amplitude. In the limit ᾱ → 0 one
simply obtains g(2)(0) � 4ᾱ2

|opt = 4r|opt, which coincides with
Eq. (33). The results are summarized in Fig. 8, where panel
(a) shows the optimal r|opt value versus ᾱ and panel (b)
the corresponding values of g(2)(0) versus the corresponding
mean occupancy n̄, which sets a lower bound for the most
general Gaussian state. The dashed red line corresponds to the
condition (33). We see that at low occupancy the two curves
are in perfect agreement while, when approaching n̄ = 1,
suppressing P2 becomes suboptimal as compared to the full
g(2)(0) optimization. A value of g(2)(0) = 0.5 is reached for an
occupancy as large as n̄ � 0.35.

B. Role of squeezing in the UPB

The degenerate parametric amplifier (DPA) seems to be an
obvious candidate for the realization of optimal squeezing [31].
However, in practice, it requires a two-pump configuration so
as to trigger the parametric process from the source mode and
to set the suitable displacement of the idler mode. The Kerr
nonlinearity is another useful and widely adopted resource
for squeezing [50,51]. It is easily revealed by linearizing the
interaction after expanding â → δâ + αÎ to obtain (up to a
displacement and a constant energy shift)

ĤK = Uâ†2â2 ≈ U (α2δâ†2 + α∗2δâ2). (35)

10-3 10-2 10-1 100
n–

10-3

10-2

10-1

100

g(
2)
(0
)

0 1 2

0.1

0.2

0.3

0.4

r |o
pt

(a) (b)

FIG. 8. (a) Optimal value of r versus ᾱ in the case for θ = 2φ = 0.
(b) Second-order correlation versus the mean occupancy n̄ = |ᾱ|2 +
sinh2(r) (blue line). The dashed red line shows the values obtained
under the condition (33).
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FIG. 9. Comparison between UPB and the optimal squeezed state
in the case where U = 10−2κ . (a) Second-order correlation function.
The inset shows the variations of g

(2)
1 (0) versus the nonlinearity U . (b)

Corresponding squeezing parameter versus the mean occupancy n1.

Equation (35) is nothing but a DPA interaction of magnitude
λ = U |α|2, which, however, binds the subsequent squeezing
parameter to the displacement α. It therefore prevents the
independent tuning of α and ξ required to reach the optimal
condition discussed in the previous section. This ultimately
illustrates why two coupled Kerr resonators may instead lead
to optimal conditions, as the increased number of system pa-
rameters allows for independent variation of the displacement
and squeezing parameters. Indeed, from Eqs. (20) and (21),
one can extract the effective parametric interaction [31] seen,
e.g., by cavity 1 in the steady state:

λeff
1 = U1α

2
1 − J 2

U 2
2 |α2|4 − |�̃2|2

U2α
2
2 . (36)

In the limit where λeff
1 � κ1, this quantity can be related to

a generic squeezing parameter ξ1 as r1 � 2|λeff
1 |/κ and θ1 =

arg(λeff
1 ). The latter can also be directly computed from the

quantum fields [51] following

rj = ∣∣〈â2
j

〉 − 〈âj 〉2| + |〈âj 〉|2 − 〈â†
j âj 〉 , (37)

θj = arg
[〈
â2

j

〉 − 〈âj 〉2
]
. (38)

Drive and dissipation unavoidably induce some degree
of mixedness of the state, which can be quantified by the
purity of the density matrix P = Tr(ρ̂2). One can then link
the mixedness to an effective thermal noise with average
occupation n̄eff = (1 − P )/(2P ) [31]. This allows comparing
the UPB states with the most general form of Gaussian
state, namely, a thermal squeezed coherent state. The cor-
responding second-order correlation function is obtained
from Eq. (34), with s = (n̄eff + 1/2) cosh(2r) − 1/2 and p =
(n̄eff + 1/2) sinh(2r) and the mean occupation is n̄ = ᾱ2 + p.
We show in Fig. 9 a comparison between the UPB and the
corresponding optimally squeezed state both in the pure and
thermal cases for U = 10−2κ . We also display the linearized
results obtained by neglecting the second line of Eq. (21),
which leads to purely Gaussian states. While the optimal
squeezing is achieved in all cases, as seen in panel (b)
showing r1 versus n1, the second-order correlation curves
display a clear hierarchy. We see that while the UPB (blue
line) obviously stands above the pure-state limit (yellow line)
due to mixedness, it remarkably lies below the thermal limit

(dashed purple line). This feature cannot be attributed to a
possible non-Gaussian nature of the state, as the linearized
result (dashed red line) is in very good agreement with the full
quantum one, suggesting a close-to-Gaussian state. The actual
explanation resides in the fact that the UPB state presents a
form of mixedness far from that of a thermal state. In the inset
of panel (a), we show the impact of the nonlinearity for a
fixed occupancy n1 = 10−3. With increasing nonlinearity, the
non-Gaussian character results in an increasing second-order
correlation function that crosses the thermal limit at U =
5 × 10−2κ . The subsequent drop of g

(2)
1 (0) when approaching

U = κ is a signature of the onset of the standard blockade
mechanism.

V. UPB FOR ARBITRARY SYSTEM PARAMETERS

In this section, we shall report on a generalized scheme
for UPB. In particular, we will show that it is possible
to completely relax the link between the intrinsic system
parameters �, J , U , and κ , required in the original proposal
for optimal UPB. Optimal conditions can be instead achieved
by driving both modes with the proper relative phase and
amplitude, which are given by compact analytical formulas.
This finding indicates that, in an experimental realization of
UPB on a given photonic platform, fine tuning of the intrinsic
system parameters is not strictly needed. Moreover, it shows
that UPB can be achieved in a two-resonator scheme with
small mode coupling J and small detuning �, which should
enable operability under pulsed excitation. More generally,
the input-output theory will reveal the possibility to work
with completely uncoupled optical modes upon an adequate
mixing of their outputs. We will then discuss alternative
implementations of the UPB in a weakly coupled Jaynes-
Cummings or optomechanical system to show the universality
of the mechanism.

A. Dissipative coupling

The interpretation of the UPB in terms of optimal squeez-
ing, discussed in Sec. IV B, suggests that UPB may be achieved
in a scheme where the input is processed in two subsequent
stages: one producing the squeezing and the following one
displacing the resulting field appropriately. Recently there
was a growing interest in nonreciprocal photonic structures
in view of creating optical isolation or topological states of
light [52–56]. It naturally led us to investigate the case of a
dissipative interaction between the cavities [40] instead of a
coherent hopping. We notice that, differently from the original
proposal then, here the field displaying UPB will be that of
the second (i.e., target) cavity. A unidirectional transmission
between two quantum modes is treated within the formalism
of cascaded quantum systems [57,58]. If the output of cavity
1 (source) is driving the input of cavity 2 (target), then the
corresponding Lindblad term to add in Eqs. (17) and (20)
reads

iχD̂[â1,â2]ρ̂ = iχ ([â1ρ̂,â
†
2] + [â2,ρ̂â

†
1]) , (39)

where χ = √
ηκ1κ2 and η ∈ [0,1] is a measure of the one-

directional coupling efficiency. The analytical formalism of
Sec. II A can still be applied, in the spirit of Ref. [58], by

053810-7



H. FLAYAC AND V. SAVONA PHYSICAL REVIEW A 96, 053810 (2017)

0 10 20 30

 t1

0

5

10

15

20

25

30

 t 2

g(2)
2

(t
1
,t

2
)

1

0

0.5

(b)

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

g(2
)

2
(

)

(a)

FIG. 10. (a) Delayed second-order correlation in the steady state
for κ1 = κ2 = κ , U = 10−2κ , �1,2 = 0, F2 = 10−2κ , F1 = F1|opt, and
χ = κ . (b) Two-time second-order correlation for a Gaussian pulsed
excitation of duration 5/κ . The white contour shows the occupancy
n1(t1,t2) = √

n(t1)n(t2).

setting J = 0 and by adding the non-Hermitian jump operator
iχâ

†
2â1 to Eq. (3). It then simply translates into an effective

nonreciprocal hopping term. For such a scheme, it is crucial
to drive both modes, namely, to have F1,2 �= 0. Indeed, the
target cavity is fed by the squeezed output of the source while
the laser will set the right amount of displacement to reach
the optimal squeezing condition or equivalently, the quantum
interference. In the absence of driving of the target cavity, the
latter would behave as a bare filter, which is not sufficient to
produce sub-Poissonian light. As before, an optimal condition
can be derived by solving Eqs. (5)–(9) and requiring that c02

vanish. The advantage, however, is that this condition can
now be achieved as a relation between the complex driving
amplitudes F1 and F2 for any given values of the intrinsic
system parameters. The resulting equation reads

F1|opt = iF2
�̃Ũ1 ±

√
U1Ũ1�̃�̃2

(�̃ + U1)χ
, (40)

with the definitions �̃ ≡ �̃1 + �̃2, Ũ1 ≡ �̃1 + U1, and as-
suming F2 ∈ R+ without loss of generality. The condition (40)
does not depend on U2, meaning the target cavity could be a
purely harmonic mode, as it is the case for the driven mode of
the original scheme [24]. Besides, an optimal condition can be
found for vanishing detunings �1,2. This results in the delayed
second-order correlation function of the target cavity varying
smoothly instead of oscillating, as shown in Fig. 10(a). As
an additional advantage, when comparing this result with the
result of Fig. 5, the antibunching time window extends over
several lifetimes in the present case. The single-photon regime
g

(2)
2 (τ ) < 0.5 is ensured over at least five lifetimes. Panel (b)

displays the corresponding two-time correlation map under
pulsed excitation. The photon statistics over a pulse, computed
from Eq. (30), gives g

(2)
pulse � 0.3, which can be reduced below

0.1 by additionally time-gating the output pulse [35] over a
time window of duration �T = 5/κ delimited by the dashed
white lines in the plot.

The source cavity behaves as a squeezed source for the
target cavity. We deduce that the cascaded configuration
described above is equivalent to that of a single cavity driven
by a displaced squeezed vacuum as studied in Ref. [31].
This can be modeled by considering a bare driven-dissipative

1

1

1

1

2

2

2

2

21

1 2

in

out

FIG. 11. Scheme of the input-output mixing scheme: Each cavity
mode is driven by a mutually coherent field of complex amplitude
F1,2 and the output fields are mixed in proportions set by the complex
coefficients γ1,2.

mode Ĥ = �â†â + F â† + F ∗â whose coupling to a squeezed
vacuum reservoir is introduced in the master equation as [41]

i
∂ρ̂

∂t
= [Ĥ,ρ̂] − i

κ

2
D̂[â]ρ̂

+ i
κ

2
ξ ∗D̂[â2]ρ̂ + i

κ

2
ξD̂[â†2]ρ̂, (41)

where here D̂[ô2]ρ̂ = {ô2,ρ̂} − 2ôρ̂ô and ξ = r exp iθ is
the squeezing parameter. One can show that, for small
occupations, the optimal squeezing condition is achieved for
r � |〈â〉|2 and θ = 2 arg 〈â〉 as expected. It can be reached
by tuning the amplitude and phase of the driving field F for
a given value of ξ . The cascaded cavity configuration can
therefore be pictured as a system where the squeezed source
is directly integrated in the structure.

B. Input-output theory

1. Optimal driving fields

A natural question that can be asked at that stage is, whether
the optimization strategy with two driving fields of Sec. V A
can be applied also to the original case with coherent coupling.
This scheme was studied Refs. [29,59–61], where the authors
derived some optimal values of the nonlinearity and detuning
in the presence of a bilateral drive. Here we follow the most
natural approach of Sec. V A and solve Eqs. (5) and (9) in the
case where J �= 0 and F1,2 �= 0 (see Fig. 11). We obtain the
optimal condition

F1|opt =
F2�̃Ũ1J ±

√
F 2

2 J 2U1[�̃2�̃Ũ1 − J 2(�̃ + U1)]

J 2(�̃ + U1)
,

(42)
absorbing all the parameter constraints in the driving fields.
This again shows that, even for the coherent coupling case,
arbitrary values of the intrinsic system parameters can be
assumed, provided the driving fields are appropriately tuned
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in amplitude and phase. In particular, not only are we able to
consider any value of �1,2, but also arbitrarily small values of
the coupling which can, e.g., be set to J < κ so as to suppress
the oscillations of the g(2)(τ ) function.

2. Output mixing

Let us now study the opposite situation in which arbitrary
driving fields are present and the output fields are instead mixed
as sketched in Fig. 11. The standard input-output theory [57]
allows us to write the global output field as

âout = âin + γ1â1 + γ2â2, (43)

where âin is an input noise operator. For zero thermal
occupations n̄th = 0, all the normally ordered correlation
between the field and the noise vanish [46] and the subsequent
output occupation and second-order correlation read [29]

nout = 〈â†
outâout〉 ≈ ∣∣γ 2

1 c10 + γ 2
2 c01

∣∣2
, (44)

g
(2)
out(0) = 〈â†

outâ
†
outâoutâout〉
n2

out

�
∣∣γ 2

1 c20 + γ1γ2

√
2c11

∣∣2 + ∣∣γ 2
2 c02 + γ1γ2

√
2c11

∣∣2

n2
out

+
∣∣γ 2

1 c20 + γ 2
2 c02

∣∣2

n2
out

. (45)

We can now look for the values of the coefficients γ1,2 that
realize the condition g

(2)
out(0) � 0. Remarkably, provided that

both cavities are driven, one can consider the fully decoupled
case for which J = 0. Assuming further identical cavities by
setting U1 = U2 = U , �1 = �2 = �, and κ1 = κ2, we obtain
the optimal output condition

γ1|opt = γ2

√
F 2

1 F 2
2 (2�̃ + U )U ± F1F2(�̃ + U )

F 2
1 �̃

. (46)

In view of the realization of a single-photon source, it is
interesting to look for the parameters required to allow for a
perfectly symmetric input F1 = F2 = F or output γ1 = γ2 =
γ , where {F,γ } ∈ R+. Under these requirements we obtain

γ1|opt = γ2

√
(2�̃ + U )U ± (�̃ + U )

�̃
, (47)

F1|opt = F2

√
(2�̃ + U )U ± (�̃ + U )

�̃
, (48)

assuming F2 ∈ R+ and γ2 ∈ R+. Hence, in the weak driving
limit F1,2 → 0, two separate optimal conditions hold for the
input and output parameters, respectively. We note that there is
no condition for which the system is fully symmetric, namely,
F1 = F2 and γ1 = γ2, even by allowing distinct parameters for
the two cavity modes.

To study the occurrence of antibunching as a function of
input and output parameters, it is convenient to define these
parameters in the Stokes representation as

F1 = F0 cos(θin/2),F2 = F0 sin(θin/2)eiϕin , (49)

FIG. 12. Maps of the output (a) population nout and (b) second-
order correlation g

(2)
out(0) as a function of θout and φout. The parameters

are U = 10−2κ , J = 0, F0 = 10−1κ , θin = π/2, φin = 0, �1,2 = 0.
(c) Delayed second-order correlations g

(2)
out(τ ) at a minimum of the

panel (b) map (dashed white lines) corresponding to the optimal
output condition. (d) Two-time second-order correlation map under
pulsed excitation.

γ1 = γ0 cos(θout/2),γ2 = γ0 sin(θout/2)eiϕout , (50)

where θin,out control the relative amplitudes and φin,out the
relative phases. For given values of F0 = 10−1κ , θin = π/2,
and φin = 0 (equal driving), and assuming a perfect detection,
namely, γ0 = √

κ , we plot in Figs. 12(a) and 12(b) the nout and
g

(2)
out(0) maps obtained by varying θout and φout in the cases

J = 0. Strong antibunching areas appear in the white and
blue regions. In Fig. 12(c), we show the delayed second-order
correlations g

(2)
out(τ ) computed at a minimum of the function

in panel (b), corresponding to the optimal output condition
(47). Finally in Fig. 12(d), we show the two-time second-order
correlation map obtained from a pulsed excitation simulation.
We used here a pulse of duration σt = 1/κ with the very same
parameters as previously. We obtain an integrated value, as
defined in Eq. (30), of g

(2)
pulse � 0.4, which drops, e.g., to 0.1

when the time window delimited by the dashed lines is targeted
[35]. These values could be greatly improved by optimizing
the pulse duration and/or its temporal shape.

The assumptions leading to the results shown in Fig. 12
are particularly well suited to model the case of a single
cavity with two degenerate resonant modes of orthogonal
polarization [62], driven by a laser polarized according to
Eq. (49) and a suitably selected polarization angle for the
detection, defined by Eq. (50). Systems with these features
are those based on a semiconductor micropillar etched out
of a planar semiconductor microcavity with distributed Bragg
reflectors [63]. The nonlinearity can be implemented through
an embedded quantum well, whereby coupling to the excitons
results in microcavity polaritons [64], or by including one
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semiconductor quantum dot [6], resulting in a physical
realization of the Jaynes-Cummings model as discussed in
the next section. Progress in terms of fabrication quality and
photon lifetime for these systems has been remarkable in the
last decade [65], and very recently strongly bunched photon
statistics has been experimentally demonstrated [48].

We conclude this paragraph by pointing out that the case
where, e.g., U1 �= 0, U2 = 0, and J = 0 models a configuration
close to the proposal of Ref. [66]. In that work, the output of
a Kerr oscillator is mixed with the input through a delay line
setting the suitable displacement to produce antibunching in
the output field. This scheme opens the way to integrated
single-photon emission from a bare Kerr resonator. It could
be easily implemented with photonic crystal cavities [67]
to realize a “self-homodyning” scheme [68]. Indeed, recent
progress in design optimization has produced photonic crystal
cavities displaying an ultrahigh-quality factor, both in silicon
[69] and in wide-band-gap materials [70]. These latter have
demonstrated high-efficiency optical nonlinearity of both
second and third order [71].

C. Alternative systems

The UPB can be realized in many different configurations
involving Kerr nonlinearities, which may be a route to the
realization of a passive single-photon source [20,35]. UPB
can, however, be obtained in the presence of other kinds
of nonlinearities. The first example is that of the Jaynes-
Cummings model in the so-called dispersive regime, where the
detuning �ce = ωc − ωe between the cavity and the two-level
emitter is much larger than their mutual coupling g. In this
limit, the Jaynes-Cummings modes results in an effective
Kerr nonlinearity Ueff = g4/�3

ce once the two-level system has
been traced out [72,73]. An equivalent configuration to that of
Sec. III would then be that of two coupled cavities where at
least one of them hosts a two-level emitter [24,74]. In this
case one can easily recover the optimal UPB condition for
the effective Kerr nonlinearity Ueff , which would give rise to
a sub-Poissonian statistic even in the weak-coupling regime
g � κ .

The optomechanical interaction [75] Ĥom = gâ†âx̂, where
x̂ is the position operator of a mechanical oscillator with
resonant frequency �m, can also be mapped to a Kerr
nonlinearity Ueff = g2/�m via a polaron transformation [76].
It allows realization of the UPB [77,78] in such a hybrid
system where the typical regime of parameter g � κ normally
prevents the conventional blockade from occurring.

Beyond the Kerr nonlinearity, the UPB was also shown to be
achievable with second-order χ (2) nonlinearity [79,80] but also
very recently in the framework of the driven-dissipative Rabi
model for an arbitrarily strong coupling [81] between a cavity
and an emitter. Here we shall present the simplest configuration
possible, sketched in Fig. 13(a), allowing exploration of
the UPB in the weak-coupling regime g � κ of a cavity
QED system. We consider the original Jaynes-Cummings
Hamiltonian in the frame rotating at the cavity frequency

Ĥ = �1â
†â + �2

2
σ̂+σ̂− + g(â†σ̂− + σ̂+â)

+F1â
† + F ∗

1 â + F2σ̂+ + F ∗
2 σ̂−, (51)
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FIG. 13. (a) Scheme of the cavity QED system. (b) Bare energy
levels in the two-photon manifold. (c) Second-order correlation
function of the cavity g(2)

c (0) versus its occupation nc. The parameters
are �2 = 0, �1 = �1|opt = 0, κ1 = κ2 = κ , g = g|opt = κ/

√
2. (d)

Two-time second-order correlations computed for the red square of
panel (c).

where we allow the emitter to be directly driven. The master
equation is obtained from Eq. (17) via the substitution â2 →
σ̂−, â

†
2 → σ̂+, and �2 → �2/2. The Sec. II A treatment can

be directly applied simply by disregarding the c02 coefficient
in the expansion leading to Eq. (2). In the case where
F2 = 0, there exists an optimal UPB condition resulting in a
suppression of the two-photon probability |c20|2 of the cavity
requiring

�1|opt = −�2(κ1 + 2κ2)

2κ2
, (52)

g|opt = ±
√(

�2
2 + κ2

2

)
(κ1 + κ2)

2
√

κ2
, (53)

which for the resonant case �1 = �2 with equal losses κ1 = κ2

simplifies to g|opt = κ/
√

2 and �1|opt = 0. This result was
originally discussed by Carmichael in Refs. [82] and [23]. The
effect involves the quantum interference between the direct
excitation of the two-photon state of the cavity |00〉 → |10〉 →
|20〉 via the pump and the path involving the coupling to
the emitter |00〉 → |01〉 → |11〉 → |20〉. The corresponding
energy-level diagram and the links between the states is given
in Fig. 13(b). Once again the antibunching condition is very
restrictive when only the cavity mode is driven. Our treatment
shows that the mechanism can be extended to the case where
F2 �= 0 to allow for arbitrary system parameters. Such a
configuration was implemented in Ref. [9], for example, where
both the cavity and the single atom are driven. In that case, we
obtain the following optimal condition on the field driving the
emitter:

F2|opt = F1
�̃1 + �̃2 ±

√
�̃1(�̃1 + �̃2) − g2

g
. (54)

We show in Fig. 13(c) an example of second-order correlation
function of the cavity field as a function of its occupation,
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under the conditions of Eqs. (52) and (53). We recover the
linear increase obtained in the case of the coupled Kerr cavities.
The sub-Poissonian statistics, however, breaks down at lower
occupation in that case. In panel (b), we have computed
the corresponding two-time correlation g(2)

c (τ ) for a mean
occupation of nc � 10−2 [red square in panel (c)], which
displays smooth variations given that g < κ .

VI. CONCLUSIONS

The UPB could be suitably implemented in most nonlinear
quantum photonics systems, where coupled modes and/or po-
larization degeneracies are available, provided that dephasing
is sufficiently small.

Among the most promising systems, we have mentioned
optimized silicon photonic crystal cavities [36], which present
very low footprints, operate at room temperature, and are
highly integrable. Moreover, the UPB does not require a
quantum dot and was shown to require very low input power
as opposed to heralded sources for similar repetition rates of
a few MHz [35]. While coupled cavities are easily engineered
[83–85], some simpler configurations involving a single cavity
could be envisaged. Indeed, since only one of the two modes
must host a finite nonlinearity [24,40], one could implement a
scheme where the cavity field is mixed with that of a properly
designed waveguide [67,68].

Superconducting quantum circuits [45] are seen nowadays
as the most serious contender for quantum computation
schemes. In such systems, the effective Kerr nonlinearity, or
coupling between the circuit and microwave photons, can be
tuned in wide ranges, while at the same time, the signal-to-
noise ratio is extremely small. A suitable configuration towards
a proof of principle of the UPB could be that of Ref. [44],
where coupled nonlinear modes were engineered. However,
as mentioned in Sec. III A, at microwave wavelengths the
unavoidable presence of thermal photons imposes constraints
on the minimum intracavity occupation.

As we have shown in Sec. V C, the UPB can also be used to
obtain a sub-Poissonian statistics in a weakly coupled cavity
QED system. It would, e.g., relax the requirement for a finely

positioned two-level emitter inside the cavity. Besides, the
UPB can even be considered to enhance antibunching in the
strong-coupling regime [26,86].

Finally, we have mentioned the potential of the UPB to un-
cover nonclassical signatures in semiconductor microcavities
[37] assisted by the excitonic interactions. One could either
rely on spatially coupled polariton modes [48,87] or on the
polarization degree of freedom [63]. In the latter case the input-
output mixing we described in Sec. V B would be naturally
realized by varying the driving and detection polarization. As
a result, a single micropillar would be sufficient to achieve
the UPB. In semiconductor microcavities, the typical photon
losses occur on a picosecond time scale, which paves the way
to high emission rates in the GHz to THz range despite a low
intracavity occupation.

The UPB concept can be extended to several other schemes.
In particular, it was shown to occur in parametrically coupled
modes [28] or three coupled cavity QED systems [24],
and even to induce entanglement [88] in the presence of a
weak nonlinearity. In general, quantum interferences can be
engineered to occur for arbitrary photon numbers. Noteworthy
is the suppression of the one-photon probability, inducing a
strong bunching and favoring photon pairs, which could turn
out to be beneficial for potential heralded schemes. One could
even think of networks for which the probability distribution
is fully tailored. Finally, the UPB could be exploited for
conventional single-photon protocols, e.g., to optimize the
performances of single-photon sources based on four-wave
mixing or parametric downconversion.

In conclusion, we have reviewed the unconventional photon
blockade mechanism that can be interpreted in terms of
quantum interference or optimal squeezing. We have shown
how a proper mixing of the input and output fields allows a
measurable antibunching to be obtained for arbitrary system
parameters. In particular, the output mixing allows consider-
ation of fully decoupled nonlinear modes, which could turn
into a great advantage for the experimental realization of the
effect. In particular, it allows one to consider, for instance, a
single cavity mode with polarization degeneracy. Finally, we
have discussed alternative systems where the unconventional
blockade can be transposed and the ensuing applications.
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Rev. Lett. 108, 183601 (2012).

[26] M. Radulaski, K. A. Fischer, K. G. Lagoudakis, J. L. Zhang,
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