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Quantum caustics in resonance-fluorescence trajectories
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We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a
driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track
the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements.
We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial
and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the
most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing
on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we
study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action
occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable
quantitative agreement with theoretical calculations.
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I. INTRODUCTION

In ray optics, light travels the shortest optical path between
two points. While this minimizes the action associated with
the path, multiple minima in the action may occur under
some circumstances. These phenomena, known as caustics,
are described by catastrophe theory [1,2], which deals with
discontinuous and divergent phenomena and is applicable to
topics ranging from biology to social science [3]. Caustics are
well studied in optics and have been extended to stochastic
media for which the conditions are described by fixed
statistical models [1,4]. In analogy to the trajectory of light
propagating in a turbulent medium, a continuously monitored
quantum system also undergoes stochastic trajectories in its
quantum state space due to the backaction of continuous
measurement [5–7]. Similarly for rays in optics, stochastic
path-integral formalism has been applied to the dynamics
of diffusive quantum trajectories, revealing optimal quantum
paths connecting two points in quantum state space [8–10].

The probability density associated with a particular quan-
tum trajectory may be described with a stochastic action; just
as an action may be optimized to obtain classical paths in
Lagrangian or Hamiltonian mechanics, the stochastic action
in a path integral may be extremized to obtain optimal paths
through the state space of a measured quantum system. Such
most-likely paths (MLPs) have been studied in the context
of continuous quantum nondemolition and fluorescence mea-
surements [8,9,11] and quantum entanglement [12] and the
stochastic path-integral formalism has been applied to calcu-
late correlation functions in measurement observables [10].
More broadly, MLPs have been applied to general diffusion
processes [13] and the case of chemical kinetics where multiple
MLPs have been predicted for classical stochastic dynamics
[14,15].

Here we report on the observation of individual quantum
trajectories via homodyne monitoring of resonance fluores-
cence from a superconducting qubit. By analyzing trajectories

meeting the same pre- and postselection, we identify optimal
quantum paths that are in agreement with the paths predicted
from the path-integral formalism. As with optical caustics,
the path-integral formalism predicts the existence of multiple
optimal paths for quantum trajectories [16]. Under driving con-
ditions where such quantum caustics are predicted to occur, we
find that our observed quantum trajectories naturally split into
two communities [17–19]. We show the number of captured
trajectories in each community and associated MLPs are in
quantitative agreement with the theory prediction. Our results
provide insight into the fundamental light-matter interaction of
resonance fluorescence and highlight the connection between
quantum dynamics and divergent systems, offering routes to
investigate the possibility of chaos and understand the quantum
classical boundary.

II. QUANTUM TRAJECTORIES IN
RESONANCE FLUORESCENCE

Our experiment focuses on the stochastic trajectories
of a driven quantum emitter that interacts radiatively with
its environment. The combination of resonant drive and
decay—resonance fluorescence—results in emitted light with
uniquely quantum features that have been studied extensively
in atomic and condensed-matter systems [20–27]. In departure
from conventional studies of resonance fluorescence, here we
approach the quantum dynamics of resonance fluorescence in
the context of quantum measurement and use the fluorescence
signal to calculate quantum trajectories for the emitter’s state.
The experiment consists of an effective two-level system
(qubit) resulting from the resonant interaction between a
transmon circuit [28] and a three-dimensional (3D) aluminum
cavity [29] (see Appendix D for technical details). The
qubit decay is set by deliberate coupling of the cavity to a
50-� microwave transmission line allowing the fluorescence
signal to be collected with high efficiency [Fig. 1(a)]. The
effective Hamiltonian of the system under the rotating-wave
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FIG. 1. Resonance fluorescence quantum trajectories. (a) The ex-
periment uses a near-quantum-limited Josephson parametric amplifier
to perform homodyne measurement of the fluorescence emitted by an
effective two-level system that is realized by resonant interaction of
a transmon circuit and a 3D aluminum cavity. (b) The dimensionless
homodyne signal (denoted by dIt at time step t) reflects the quantum
fluctuations of the measured electromagnetic mode and is normalized
so that its variance is γ dt . Also shown are the (c) x and (d) z

components of several trajectories (faded colors) calculated using the
SME and homodyne signal. A specific trajectory (x̃,z̃) (dashed lines)
is compared to its tomographic reconstruction (x,z) (solid lines). The
close agreement between the curves indicates that the SME faithfully
tracks the quantum state.

approximation is (h̄ = 1)

Ĥ = −ωq

2
σz − �

2
σy + γ (a†σ− + aσ+), (1)

where the three terms in the Hamiltonian describe the qubit, the
drive, and the resonant interaction of qubit and environment,
respectively. Here, � is the Rabi frequency, a (a†) is the
annihilation (creation) operator for the quantized field in
the transmission line and the qubit is a pseudospin system
described by the Pauli spin operators σx , σy , σz, and σ±.

We use a near-quantum-limited Josephson parametric am-
plifier to perform phase-sensitive amplification of a single field
quadrature proportional to a†eiφ + ae−iφ of the fluorescence.
By virtue of the interaction Hamiltonian, this quadrature of
the field is correlated with a specific dipole of the emitter
σ−eiφ + σ+e−iφ . Measurements of this quadrature amplitude
therefore convey information about the emitter and can be
used to reconstruct the evolution of the emitter’s state [30].
Under appropriate scaling, the digitized measurement signal
is represented by (for φ = 0)

dIt = √
ηγ 〈σx〉dt + √

γ ξtdt. (2)

The measurement signal is proportional to 〈σx〉, but also
contains a zero-mean random increment ξt , with variance of
dt−1, arising from the quantum fluctuations of the field. Here
η = 0.45 is the quantum efficiency and γ = 1.42 μs−1 is the
decay rate of the emitter that characterizes the measurement
strength [30]. The random increments ξt imply a stochastic
evolution for the emitter’s state, represented by density matrix

ρ, which can be calculated by the corresponding stochastic
master equation (SME) [31]

ρ̇ = −i
�

2
[σy,ρ] + γD[σ−]ρ + √

γ ηH[σ−]ρξt , (3)

where D[σ−] and H[σ−] are the dissipation and jump superop-
erators, respectively [31]. We may recast this stochastic master
equation in Bloch vector components x ≡ 〈σx〉 and z ≡ 〈σz〉 as

ż = +�x + γ (1 − z) + √
ηγ x(1 − z)ξt ,

ẋ = −�z − γ

2
x + √

η(1 − z − x2)ξt , (4)

where the initial state, homodyne measurement phase,
and drive Hamiltonian (characterized by a Rabi frequency
�/2π = 0.9 MHz) allow us to restrict the evolution to the
x–z plane of the Bloch sphere.

Figure 1 depicts the quantum trajectories that are calculated
for the emitter as it evolves due to both unitary drive and radia-
tive decay. The quantum trajectories exhibit stochastic features
associated with the backaction of homodyne measurement
of the fluorescence [30] and evolution originating from the
unitary drive. The calculated quantum trajectories are validated
with quantum state tomography to verify that the predicted
expectation values 〈σx〉 and 〈σz〉 are in agreement with the
average outcomes of projective measurements. Figures 1(c)
and 1(d) show the close agreement between a specific
trajectory and reconstructed trajectory by the state tomography
technique described in previous work [7,9,30].

III. MOST-LIKELY QUANTUM PATH

We return to the analogy between the stochastic trajectories
of the emitter’s state in quantum phase space and stochastic
trajectories in optics such as starlight twinkling through a tur-
bulent atmosphere. In both cases the randomness immediately
suggests the question of statistical character. What is the most
probable path for the system for a given initial and final state?
To address this question we examine the relation between
the homodyne signal and the state coordinate x [Eq. (2)]. As
shown in Fig. 2, the detected signal is Gaussian distributed
about x; signals with values in a region close to

√
ηγ xdt are

more probable than signals that vary significantly from this
mean value. In a given trajectory, the measurement results lead
to stochastic evolution of the state coordinates (x,z), but the
distribution of measurement results follows the evolution of
x; the detection signals and state trajectories are thus coupled,
leading to rich phenomena associated with state and signal
correlations [11,32–34].

Considering this state-signal correlation, we are able to
calculate the joint probability density for each measurement
signal (dIt ) and state coordinates q ≡ (x,z) with initial state
qi and final state qf ,

Pjoint = δ2(qi − q0)δ2(qf − qN )
N−1∏
n=0

Pn(dIt |q), (5)

where Pn(dIt |q) is the probability density for signal dIt

at time t = n dt and N is the total number of time steps.
The most-likely path maximizes the total path probability
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density Pjoint. To find this path we introduce a stochastic
path-integral representation of the joint probability Pjoint ∝∫
Dp eS . The term S is the stochastic action and Dp is

an integral measure over the conjugate variables (px,pz),
which are auxiliary dynamical parameters that impose the
correct quantum measurement backaction dynamics [8,10].
This approach has been verified experimentally for continuous
quantum nondemolition measurement [9]. Here we adopt the
path-integral formalism for homodyne detection of resonance

fluorescence to obtain a corresponding stochastic Hamiltonian
whose solutions (via Hamilton’s equations) are the MLPs.
This is related to the stochastic action S = ∫

[−q̇ · p + H]dt ,
as discussed at length in [8,10,11,16]. The full stochastic
Hamiltonian for our driven-fluorescence system, using all
three dimensions x ∈ [−1,1], y ∈ [−1,1], and u ∈ [0,2] (u ≡
1 + z, for compactness) of the Bloch sphere, may be derived
using the master equation (3) and methods described in
Ref. [11], which yield

H = pu

[
�x + uγ

(
1 − 2η + ηu

2

)
+ √

ηγ xr(2 − u) + 2γ (η − 1)

]

+px

[
− �(1 − u) − γ

2
x(1 + ηu − 2η) + √

ηγ (2 − u − x2)r

]

+py

[
− γ

2
y(1 + ηu − 2η) − √

ηγ xyr

]
− r2

2
+ r

√
ηγ x − ηγ u

2
. (6)

The stochastic readout is given by r , γ is the fluorescence rate, η is the measurement efficiency, and � denotes the Rabi frequency.
For our case, where the dynamics is restricted to the x–z plane of the Bloch sphere, we may eliminate ẏ and ṗy by setting

y = 0 (setting y = 0 decouples py from the remaining equations regardless of its value). This simplification leads to a reduced
stochastic Hamiltonian inhabiting a four- rather than six-dimensional phase space:

H = pu

[
�x + uγ

(
1 − 2η + ηu

2

)
+ √

ηγ xr(2 − u) + 2γ (η − 1)

]

+px

[
− �(1 − u) − γ

2
x(1 + ηu − 2η) + √

ηγ (2 − u − x2)r

]
− r2

2
+ r

√
ηγ x − ηγ u

2
. (7)

Since H is time independent, each MLP conserves a “stochastic energy” E = H . The deterministic equations of motion are

ż = +�x + γ (1 − z)

(
1 − η(1 − z)

2

)
+ √

ηγ x(1 − z)r, (8a)

ẋ = −�z − γ

2
x[1 − η(1 − z)] + √

ηγ (1 − z − x2)r, (8b)

ṗz = −γpz[1 − η(1 − z) + √
ηγ xr] + px(� + γ ηx/2 + √

γ ηr) − ηγ /2, (8c)

ṗx = −pz[� + √
ηγ (1 − z)r] + px{γ [1 − η(1 − z)]/2 + 2

√
ηγ xr} − √

ηγ r, (8d)

where r = √
ηγ [x + px(1 − z − x2) + pzx(1 − z)] is the (de-

terministic) optimal signal that replaces the homodyne signal
(2) dI/dt . Equations (8a) and (8b) are comparable with the
SME we use to update the experimental quantum trajectories
(in Stratonovich form) and Eqs. (8c) and (8d) pertain to
the auxiliary parameters. The four equations of motion for
the most-likely path involving z, x, pz, and px in Eqs. (8),
combined with the constraint for r , may be solved numer-
ically given initial and final states as we show in Fig. 2(d)
(solid curves) for initial {z(0),x(0)} = {−0.97,0} and final
{z(1.94 μs),x(1.94 μs)} = {−0.3,−0.6}. Analytical solutions
for these equations of motion for unity quantum efficiency and
pure state evolution are discussed in Appendix A.

We now turn to the experimental investigation of the
most-likely path. To experimentally determine the most-
likely path we examine the Euclidean distance di ≡

1
M−1

∑M
j �=i

∑N−1
k=0 [(xi,k − xj,k)2 + (zi,k − zj,k)2] between each

trajectory and all other trajectories in the ensemble. Because
the MLP should capture the highest density of other trajectories
in a nearby vicinity, trajectories that minimize the Euclidean

distance to others in the set should closely approximate
the MLP. As such, we rank the trajectories in order of
increasing di and average the top few percent. This method
was used to compare experiment and theory in the case of
continuous quantum nondemolition measurement [9]. From
an ensemble of ∼105 trajectories initialized in the excited state
(z = −0.97), we postselect a subensemble of trajectories that
achieve a final given boundary condition {z,x} = {−0.3,−0.6}
at t = 1.94 μs within a selection tolerance of ±0.05 as shown
for z in Fig. 2(c). These trajectories are ranked according to the
minimum Euclidean distance from all other trajectories, and
of these, we highlight the closest 5%. As shown in Fig. 2(d),
the average of these selected trajectories is in good agreement
with the theoretical MLP.

An alternate method to determine MLP is to simply
calculate the total path probability density [via Eq. (5)] and
average the top 5% of trajectories with the highest path
probability density. This naturally approximates the MLP. In
Fig. 3 we compare these two methods and find both methods
to produce experimental MLPs that are in close agreement
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FIG. 2. Path probability and most-likely paths. (a) Demonstration
of path-probability calculation. The blue (dashed) curve indicates√

ηγ xdt , which determines the probability distribution (blue back-
ground color) for a corresponding homodyne signal (red solid curve).
(b) Cross section of the probability density at the time indicated by
the long-dashed green line of (a). The Gaussian distribution is shifted
from zero by

√
ηγ xdt . The arrow shows the value of the homodyne

signal at that point. (c) Pre- and postselected trajectories for
initial {z(0),x(0)} = {−0.97,0} and final {z(1.94 μs),x(1.94 μs)} =
{−0.3,−0.6} boundary conditions (only z traces are shown). The top
5% of trajectories having the shortest Euclidean distance from the
others are highlighted in black. (d) The solid black line originating
from −0.97 is the theoretical MLP for z obtained from Eq. (6).
The solid blue line originating from 0 is the theoretical MLP for x.
The dashed lines are the corresponding experimental MLPs obtained
by averaging the highlighted trajectories. The shaded area along
experimental curves shows the standard deviation of the averaged
trajectories (see Appendix E for statistical information).

with theory. In contrast, a simple average of all of the pre-
and postselected trajectories is in clear disagreement with the
theoretical MLP.

IV. MULTIPLE MOST-LIKELY PATHS

The MLP is the solution for the equations of motion (8).
Now it is natural to ask if these equations of motion have
more than one solution as suggested from the presence of
caustics in ray optics. Multiple solutions exist at states where a
Lagrangian manifold in MLP phase space overlaps itself, either
through a fold or divergence of the manifold [35,36], or at a
winding number overlap caused by the manifold wrapping over
itself as constituent paths orbit the Bloch sphere at different
speeds [16]. In either case, we expect distinct clusters of
stochastic trajectories corresponding to the different MLPs.
As shown in Fig. 4, we may find such solutions theoretically,
in Eqs. (8), by choosing an initial-state coordinate qi and
sweeping through different initial momenta pi ; this defines
the Lagrangian manifold we use throughout the subsequent
analysis. Evolution under Eqs. (8) deforms this initially flat
vertical plane in MLP phase space because different initial
momenta result in different final states. When the manifold
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FIG. 3. Comparison of different experimental measures for most-
likely paths. We compare the two different measures for experimental
MLPs to theory for the initial {z(0),x(0)} = {−0.97,0} and final
{z(1.94 μs),x(1.94 μs)} = {−0.3,−0.6} states; trajectories are shown
for (a) x and (b) z. The Euclidean distance method (red long-dashed
lines) and path probability density maximization (blue short-dashed
lines) are both in close agreement with theory (black). The average of
the full ensemble of pre- and postselected trajectories (gray) deviates
significantly from the MLP.

is no longer a one-to-one function between q and p, multiple
paths corresponding to extrema in the stochastic action connect
the initial and final states.

We note that in the absence of drive, the evolution of
the qubit is constrained to a deterministic ellipse for a given
evolution time [30,37,38]. In this case, the Lagrange manifold
is constrained to these deterministic ellipses. As a result, the
manifold is always a one-to-one function between q and p
and multiple MLPs (MMLPs) are not possible. As shown in
Figs. 4(b) and 4(c), the drive breaks this one-to-one character,
leading to an increasing number of MLPs for longer evolution
times.

In order to confirm the presence of these MMLPs in
experimental data, we pre- and postselect the trajectories by the
given boundary conditions. While the experimental trajectories
do not exactly follow one or the other MLP, the MLP solutions
should approximate the paths taken by many of the individual
trajectories. In this case, the pre- and postselected trajectories
should belong to two different groups such that the mean
Euclidean distance between the members in each group is
minimized. Therefore, we need a clustering algorithm [17–19]
that efficiently separates these trajectories into two groups.

In order to perform clustering, for each N -step trajectory we
define the weighted mean Euclidean distance to other elements
of the set dW

i ≡ 1
M−1

∑M
j �=i

∑N−1
k=0 Pj [(xi,k − xj,k)2 + (zi,k −

zj,k)2] and define the average weighted Euclidean distance
of the set as d̄W = 1

M

∑M
i=1 dW

i , where M is the number of
trajectories in the set and Pj is a weighting factor that is
proportional to the logarithm of the probability for trajectory
j as determined from Eq. (5). The algorithm aims to separate
the ensemble into two clusters that minimize the sum of
the weighted Euclidean distance between members of each
set, d̄W

set1 + d̄W
set2. The clustering algorithm starts by randomly

splitting the ensemble of trajectories into two sets. In each
iteration of the algorithm the weighted distance dW

i , given a
randomly chosen trajectory i, is calculated for each set and
the trajectory i is added to the set that minimizes d̄W

set1 + d̄W
set2.

The algorithm proceeds through the ensemble of trajectories
by transferring trajectories between clusters to minimize the
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FIG. 4. Lagrange manifold. (a) Schematic representation of the Lagrange manifold folding leading to multiple most-likely paths. For an
initial state {zi,xi} we consider all possible initial momenta, represented as a vertical red line. Evolution under Eqs. (8) results in different
final states for different initial momenta specifying the most-likely path that connects initial and final states, as shown in the left panels. When
the red curve fails the vertical line test as shown in the right panels; multiple initial momenta result in the same final state. (b) and (c) The
Lagrange manifold used to find MMLPs in this system is a two-dimensional object in a four-dimensional Hamiltonian phase space; we show
its projection into the x–z plane of the Bloch sphere. A sampled range of momenta {pzi,pxi} are initialized for the state ({zi,xi} = {−1,0})
at t = 0 and allowed to evolve up to (b) T = 1.4 μs and (c) T = 2.25 μs; each point in the scatter plot corresponds to a path generated by a
different initial momentum. Compare with (a): Just as a line of all p may intersect the manifold one or more times at a given qf , we may now
imagine sticking a pin into the figure at a particular point {zf ,xf }, which might go through one or more layers of the manifold. Each intersection
or layer corresponds to a distinct path reaching the chosen final state. Caustic regions emanating from a catastrophe in the manifold are clearly
visible at both of the times shown above. The counterclockwise spiraling of the manifold is the result of the Rabi drive applied to the qubit;
we see that overlap in the manifold due to this spiraling matures into a cusp catastrophe over time. Color denotes stochastic energy E for each
path. The two theory MLPs that are compared with data in Fig. 5 are shown superposed in black in (b); these are the paths that two distinct
points on the manifold trace out as each evolves and folds over itself.

average weighted distance. We find that the algorithm typically
finds the optimal configuration in 
M steps and finds the same
clustering configuration independent of the initial random
configuration [see Figs. 5(a) and 5(b)]. The weighting factor Pj

helps the algorithm converge to the final configuration faster,
but does not substantially affect the final cluster distributions.

By averaging the individual paths of each group that
have the minimum Euclidean distance from other members
in each set, we obtain the experimental most-likely paths
[Figs. 5(c) and 5(d)]. These experimental MLPs are in
reasonable agreement with the two MLPs terminating at the
desired boundary conditions. In Appendix B, we also study
the closest analytic solution to the experimental MMLPs.

While the occurrence of multiple most-likely paths is
associated with multiple extrema of the stochastic action,
these solutions may have different values of stochastic action,
meaning that the paths have different total path probability
densities. We can check if these path probability densities are
accurately represented by the relative occurrence of paths in
each cluster.

Figure 6(a) displays a histogram of the Euclidean distance
E of trajectories from their MLP in each set. Given the fact
that the MLP captures most trajectories in its vicinity, one
would think these histograms would acquire a maximum at
E = 0 and decrease as we go far from the MLP. However,
the multiplicity increases for trajectories with larger E and the
peak of the histogram occurs for nonzero E . The multiplicity
n(E), which accounts for the number of different trajectories

that have same Euclidean distance E from a MLP, is given
by the number of ways a Euclidean distance can be obtained
from N time steps, E2

1 + E2
2 + · · · + E2

N = E2, where Ei is the
deviation from the MLP at the ith time step.

With this understanding of the multiplicity, the distribution
of trajectories attaining an average Euclidean distance from
the MLP, H (E), is given by the product of the path probability
distribution and the multiplicity H (E) = P (E) × n(E),

H (E) = P (0)e−E2/2σ 2 × 2πN/2

�
(

N
2

) EN−1, (9)

where we assume that P (E) is a half-normal distribution
centered at zero and characterized by the variance σ 2. The
multiplicity n(E) is given by the area of an N -dimensional
hypersphere and � is the Gamma function. The variance σ 2

can be determined directly, given the fact that H (E) acquires
its maximum at E = σ

√
N − 1. Since we are interested in the

relative probability of two MLPs P1(0)/P2(0), we divide two
experimental histograms

H1(E)

H2(E)
= P1(0)

P2(0)
exp

[
− E2

2

(
1

σ 2
1

− 1

σ 2
2

)]
(10)

and fit this function to the data to extract the relative
probability. We show the result in Fig. 6, which has reason-
able agreement with the theoretical path probability values
calculated by stochastic action.
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FIG. 5. Experimental multiple most-likely paths. (a) and (b) By
applying a clustering algorithm to experimental trajectories that attain
the chosen initial and final boundary conditions, we obtain two groups
that minimize the mean Euclidean distance between members of
each group. The trajectories in each group with lowest Euclidean
distance from other members in the group are highlighted in black
(z trajectories are shown). (c) and (d) Comparison to theory; the
solid curves are theory predictions and the dashed lines are obtained
from averaging the highlighted experimental trajectories. The curves
starting from 0 are the x trajectories and the curves starting from
−0.97 are the z trajectories. The shaded area along experimental
curves shows the standard deviation of the averaged trajectories (see
Appendix E for statistical information).

Looking at the two MLPs shown in Figs. 4 and 5, we
immediately see that they have different winding numbers
about the Bloch sphere (see Appendix B and Ref. [16] for a
discussion of winding number MMLPs). A given noise realiza-
tion or measurement record can move the state approximately
with the Rabi drive or move the state substantially ahead or
behind the drive; thus it is possible to obtain MLPs that end
at the same state, having gone around the Bloch sphere a
different number of times. What we have with the MMLP
example shown is (i) a path that moves approximately with
the drive and (ii) a path whose initial momentum corresponds
to an optimal readout that lags behind the drive such that
it reaches the given final state with one less winding count.
In summary, the quantum dynamics of the MLP is given by
the competition between the stochastic evolution associated
with measurement and the unitary evolution arising from the
drive. Different MLPs occur when one or the other types of
evolution dominate at different times. This example illustrates
that the existence of several MLPs arises from the presence
of several different effects in the system; they can each take
precedence over the other, in a given case, and generate
qualitatively different behaviors that land at the same final
state.

V. CONCLUSION

In the absence of measurement, a closed quantum system
has a dynamics that is described by the Schrödinger equation.
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FIG. 6. Relative probability of multiple most-likely paths. (a)
The peak of the probability density distribution of the Euclidean
distance from the MLP (green, left distribution) is related to the
extremum of the stochastic action (Smax). The observed distribution
(blue, center distribution) has a maximum that is shifted from 0
due to the increasing multiplicity of trajectories (right distribution)
with a larger Euclidean distance from the MLP. (b) To compare
the experimental distributions to the theoretical stochastic entropy
maxima, we use the multiplicity n(E) and observed distribution
H (E) to determine P (0). We compare the relative probability
P (0)cluster1/P (0)cluster2 to the predicted relative probability S1 − S2.
Error bars indicate the uncertainty in the fit to the relative distribution
(see Appendix E for statistical information). We apply this analysis
to four different MMLP pairs with initial state {z(0),x(0)} =
{−0.97,0} and final states {z(T ),x(T ),T (μs)} = {0.65,−0.08,1.2},
{0.19,−0.93,1.4}, {0.36,0.47,1}, and {0.21,−0.62,1.4} (from left to
right on the graph).

Given an initial condition, a unique, deterministic solution
emerges that specifies the quantum state at all future times.
In contrast, resonance fluorescence is an intrinsically open
quantum system phenomenon, leading to a dynamics that
differs dramatically from that of a closed system. This
difference is highlighted in the phenomenon of quantum
caustics; even for relatively short periods of evolution,
catastrophes may form in manifolds of the most-likely path
phase space, generating caustic regions where several most-
likely paths link a given initial and final state over a given
time evolution. By understanding multiple most-likely paths
through this catastrophe formation in the manifold, we see an
analogy between the multiple-path propagation of our quantum
trajectories and caustic phenomena in optical propagation
through random media. These phenomena may have important
consequences for quantum control and open new possibilities
in the investigation of dynamical instabilities and chaos in
continuously measured quantum systems.
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APPENDIX A: REDUCTION OF THE
STOCHASTIC HAMILTONIAN

We may reduce our stochastic Hamiltonian (7) to an
even simpler form. Consider a canonical transformation from
Cartesian to polar coordinates

⎛
⎜⎝

x

z

px

pz

⎞
⎟⎠ =

⎛
⎜⎝

R sin θ

R cos θ

pR sin θ + pθ cos θ/R

pR cos θ − pθ sin θ/R

⎞
⎟⎠, (A1)

where the Poisson brackets {x,px} = 1 = {z,pz} are preserved
to obtain {R,pR} = 1 = {θ,pθ }. We apply the transformation
(A1) to (7) to obtain H → h. We may once again obtain
equations of motion from Hamilton’s equations in the new
coordinates, i.e., Ṙ = ∂pR

h and θ̇ = ∂pθ
h. We find that

Ṙ|R=1,η=1 = 0 (A2)

and that θ̇ does not depend on pR , meaning that the phase
space can be reduced further to two dimensions, by restricting
ourselves to pure states (R = 1), which stay pure with perfect
measurement efficiency (η = 1), in the x–z plane; states
are then parametrized entirely by the polar angle θ . No
experimental detection scheme can presently achieve η = 1,
but this idealized case is still useful to gain insight into the
behaviors we see in more realistic forms of the system, while
keeping the mathematics as simple as possible.

The stochastic Hamiltonian for the two-dimensional phase
space is h = h|R=1,η=1, or

h = p[−� + r
√

γ (1 − cos θ ) − γ sin θ ]

−√
γ r sin θ − r2 + γ (1 − cos θ )

2
, (A3)

where pθ → p. The optimal readout for the MLPs is
r� = −√

γ [p(cos θ − 1) + sin θ ] and is obtained by solving
∂rh|r=r� = 0 for r�.

We additionally write the stochastic Hamiltonian with the
optimal readout substituted in, which reads h� = a(θ )p2 +
b(θ )p + c(θ ), where we have

a(θ ) = γ

(
− cos θ + 1 + cos2 θ

2

)
, (A4a)

b(θ ) = −� + γ

2
[−3 sin θ + sin(2θ )], (A4b)

c(θ ) = −γ

2
(cos2 θ − cos θ ). (A4c)

The probability cost function, discussed in related work [16],
is

Ṡ = γ sin2

(
θ

2

)
[p2(cos θ − 1) + cos θ ], (A5)

which is the integrand of the stochastic action S and describes
approximately how the probability density for a MLP is
affected by time spent in different regions of phase space.
(The full joint probability may be written P ∼ eS in the small
noise approximation.) Note that h� = pθ̇ + Ṡ and therefore
Ṡ = −ap2 + c. We plot the phase portrait and contour plot

FIG. 7. We show lines of constant stochastic energy (top) and
lines of constant Ṡ (bottom). Here E and Ṡ are in the same units
of MHz as � and γ . Green (top) and red (bottom) lines are those
for the energy Ec = −2.13 MHz containing the lone fixed point at
(θ̄ = 4.16,p̄ = 0.967). Paths in region A all travel right to left (with
the Rabi drive) and remain relatively probable over long periods of
time provided they have a modest momentum or stochastic energy.
Paths in region B contain both branches p+ and p− (A6), which
move in opposite directions; these paths may also have reasonably
high relative probabilities to occur for initial conditions just to the
left of the fixed point, over modest time evolutions (approximately
less than the time required to almost a period or approach the next
fixed point), but asymptote into regions of very negative Ṡ over long
time intervals. Paths in region C only go from left to right (against
the Rabi drive) and inhabit regions of more negative Ṡ, meaning that
they are relatively improbable over any appreciable time interval.

of Ṡ in Fig. 7. The phase portrait contains lines of constant
stochastic energy E = h�, which may be solved to obtain
functions p±(θ,E). These have the form

p±(θ,E) = − b

2a
±

√
E − c

a
+ b2

4a2
, (A6)
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where a, b, and c are shown in (A4). Plots of the lines of
constant stochastic energy (phase portrait) and lines of constant
Ṡ are included in Fig. 7.

Hamilton’s equations are a subset of dynamical systems
of the form ẋ = F[x], where x = (θ,p). Fixed points of a
dynamical system are points x̄ that satisfy F[x̄] = 0, i.e., denote
points where the system sits still. We search for the fixed points
(θ̄ ,p̄) of this system, noting that

θ̇ = 2ap + b, (A7a)

ṗ = −a′p2 − b′p − c′, (A7b)

where a, b, and c are functions defined in (A4) and a′, b′, and
c′ are their derivatives with respect to θ . Then θ̇ = 0 leads to
p̄ = −b/2a, which may be put into the expression for ṗ = 0
to obtain

a′
(

b

2a

)2

− b′
(

b

2a

)
+ c′ = 0. (A8)

Any fixed-point coordinate θ̄ must satisfy (A8). The left-hand
side of (A8) depends only on θ and the dimensionless ratio
ω ≡ �/γ . We find that (A8) admits one solution for ω > 0.145
and three solutions for ω < 0.145, shown diagrammatically in
Fig. 8. We define a critical ωc = 0.145 where this bifurcation
occurs. We may interpret this in terms of the optimal readout;
we require that θ̇ = −� − γ sin θ + r

√
γ (1 − cos θ ) be zero,

FIG. 8. We plot the locations of fixed points θ̄ against the dimen-
sionless parameter ω = �/γ . Color and size denote the momentum
p̄. Experimentally we operate at ω = 0.63 × 2π , where there is only
one fixed point. This fixed point is a location in the phase space
where the Rabi drive and fluorescence cancel. Another pair forms for
ω < 0.145 = ωc, splitting around θ = 5.18. As the drive is eliminated
entirely, these show that the system is able to stall at either the
ground (θ = 0 or 2π ) or excited (θ = π ) states. All fixed points
exist on the half of the Bloch sphere where the fluorescence and drive
compete (the drive pushes the state from ground to excited, whereas
the fluorescence pushes the state from excited to ground); none exist
on the half where the fluorescence and drive work together (both push
towards the ground state), indicating that no optimal readout can fight
both the drive and spontaneous emission at the same time to hold the
system still at some particular state.

which is equivalent to a requirement that the terms for driving,
fluorescence, and measurement backaction (written in that
order) cancel out. The constraint on p in the MLP phase
space enters indirectly through the optimal readout. We may
understand a fixed point as a combined value of θ and readout
where the system will sit still.

The parameters used in the accompanying experiment are
�/2π = 0.9 MHz and γ = 1.42 (μs)−1, well above the value
of ω where there are three fixed points. At these parameters
there is only one fixed point, which sits on the separatrix of
energy Ec = −2.126 MHz shown in Fig. 7. Its location is
(θ̄ ,p̄) = (4.155,0.967).

APPENDIX B: WINDING NUMBER MMLP
SIMILAR TO EXPERIMENT

In Figs. 4 and 5 we show an example of a winding number
path from the four-dimensional phase space that moves
from (xi,zi) = (0, − 0.97) to (xf ,zf ) = (−0.62,0.21). By
simply taking the angles involved, we can find a pure-state
analog of this MMLP, with θi = π and θ

(B)
f = −1.24 or

θ
(A)
f = θ

(B)
f − 2π (such that the number of winding counts also

match the case shown from the experimental data). Mapping
the mixed-state coordinates to the surface of the Bloch sphere
gives us (xi,zi) = (0,−1) and (xf ,zf ) = (−0.95,0.32).
The pure-state analog reinforces the winding-number
interpretation of the paths in the larger space. A graphical
comparison is shown in Fig. 9.

In the pure state case, the faster of the two paths exists in
region A of the phase space (as labeled in Fig. 7). The slower
of the two paths must exist in region B, because all paths in
region A between the single (but periodically repeating) fixed
point actually move through that region too fast (all are past the
desired point θ

(B)
f by the time T = 1.4 μs). We find the energy

in region A that traverses the distance θi → θ
(A)
f in T = 1.4 μs

to be EA = 11.09 MHz. We find that EB = −4.09 MHz meets
the boundary conditions for θ

(B)
f .

We make an additional observation that for initial states
immediately to the left of the system’s fixed point, as in the
case above, we see a narrow caustic in the Lagrange manifold
across region B. These paths will diverge into regions of very
negative Ṡ within the caustic, meaning that the window of
opportunity to actually observe MMLPs here will be somewhat
short lived, in addition to being restricted to a narrow range of
initial and final states.

APPENDIX C: CAUSTICS FOR SLOW DRIVE

Suppose we take ω = 0.13 such that we have three fixed
points in our MLP phase space instead of just one. The phase
portrait for this case is shown in Fig. 10. As ω → ωc from
above, region B from Fig. 7 deforms towards the shape
shown in Fig. 10. When ω passes below ωc, we see the
creation of the two new fixed points that form an additional
separatrix, bounding off regions D (a periodic island) and E,
as labeled in Fig. 10, inside region B. The creation of an elliptic
fixed point and surrounding island D of periodic MLPs is of
particular interest with regard to MMLPs, because it forces the
possibility of true caustics (bounded by a diverging Van Vleck
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θ

zx

θ

FIG. 9. We show MMLPs with different winding numbers, from
θi = π to either θ

(B)
f = −1.24 (black thick-dashed line) or θ

(A)
f =

−1.24 − 2π (blue solid line). These are shown as (a) θ (t) and (b)
and (c) x(t) and z(t) and (d) in phase space. In the phase-space plot
we show θi as a yellow dash-dotted line (the Lagrangian manifold at
t = 0), the two θf as cyan dash-dotted lines, the separatrix as a red
dotted line, and the Lagrangian manifold at T = 1.4 μs as a green
dash-dotted green line. Finally, in (e) we show the pure state paths
(still blue solid and black thick-dashed lines) in the x–z plane of the
Bloch sphere. The red dotted line marks the edge of the sphere; the
pure-state curves are given an artificial radius outside the sphere for
added visibility. The cyan solid and green thin-dashed curves in (e)
are the theory calculations for the example with η = 0.45 from Figs. 4
and 5, shown for comparison.

determinant), with relatively long-lived MMLPs with an onset
time that could be predicted by the theory. This is true provided

FIG. 10. We include the phase portrait for ω = 0.13 and γ = 1
(in the regime with three fixed points), with a complete picture
(top) and reduced range to zoom in on the features of greatest
interest (bottom). Two of the fixed points are hyperbolic (pink ×),
at (θ̄ = 6.04,p̄ = −0.201) and (θ̄ = 4.63,p̄ = −1.25), and one is
elliptical (pink +), at (θ̄ = 5.55,p̄ = −5.63). The latter two points
are responsible for partitioning off the new regions D and E inside
region B. Periodic paths are possible within the island D, which is
bounded by a separatrix of energy Es = −0.938 MHz. We note that
for smaller ω compared with Fig. 7, we have a larger region B, which
now encroaches asymmetrically into A (making winding-number
MMLPs less likely), and region C has grown (indicating that it is
easier for trajectories to travel against the weaker Rabi drive).

that the periods inside the island D are not uniform (i.e., vary
through the island as a function of energy). This will necessar-
ily be the case, as paths near the edge will have to slow down
near the fixed point in the separatrix. Then catastrophes will be
forced to appear in the Lagrangian manifold as in the example
in [16]. This island will form different shapes in the manifold
from the one we have studied previously, however, because it
only has a fixed point in one end, rather than two, and is asym-
metrically shaped. Catastrophes should also be possible to a
much greater extent in region B, where it is possible to choose
initial states such that the manifold wraps around the island.

APPENDIX D: EXPERIMENTAL SETUP

The transmon circuit (EJ /h = 24.6 GHz and EC/h = 270
MHz) was fabricated using double angle evaporation of
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aluminum on a high resistivity silicon substrate. The circuit
was placed at the center of a 3D aluminum waveguide cavity
(dimensions 34.15×27.9×5.25 mm3), which was machined
from 6061 aluminum.

The cavity geometry was chosen to be resonant with the
lowest-energy transition of the transmon circuit. The resonant
interaction between the circuit and the cavity (characterized
by coupling rate g/2π = 136 MHz) results in hybrid states, as
described by the Jaynes-Cummings Hamiltonian. The lowest-
energy transition of hybrid states (ωq/2π = 6.3 GHz) can
therefore be considered a “one-dimensional artificial atom”
because the radiative decay of the system is dominated by the
cavity’s coupling to a 50-� transmission line. This radiative
decay was characterized by the rate γ = 1.42 μs−1. Resonance
fluorescence from the artificial atom is amplified by a near-
quantum-limited Josephson parametric amplifier, consisting
of a 1.5-pF capacitor, shunted by a superconducting quantum
interference device (SQUID) composed of two I0 = 1 μA
Josephson junctions. The amplifier is operated with negligible
flux threading the SQUID loop and produces 20 dB of gain
with an instantaneous 3-dB bandwidth of 20 MHz. The
quantum efficiency was measured to be 45% [30]. We drive
the qubit by sending a resonant coherent signal via a weakly
coupled transmission line characterized by a Rabi frequency
of �/2π = 0.9 MHz.

The initial-state fidelity was limited by a 3% thermal
population of the excited state. The readout fidelity was
enhanced by transferring the excited-state population to a
higher excited state of the system before applying the readout
pulse [30]. All tomography results were corrected for the
readout fidelity of 80%.

APPENDIX E: STATISTICAL INFORMATION

In the main text, the finite number of postselected trajec-
tories contributes a statistical uncertainty in the experimental
MLP. We present this as a uncertainty band indicating the
standard deviation of the averaged 39 paths (Fig. 2), 18 paths
[Fig. 4(c)], and 13 paths [Fig. 4(d)]. Although the predicted
experimental curves are in nice agreement with predicted
theory curves, there are slight deviations that we attribute
to the limited ensemble of trajectories and the finite size of
postselection windows. In Fig. 6 the error bars indicate the
uncertainty in the fit to the relative distribution (10). For this fit,
the values for σ1 and σ2 are determined from the distributions
H1(E) and H2(E) and the fit determines the mean value of
P1(0)/P2(0). The error bars of Fig. 6 indicate the standard
error of this mean based on the number of bins of E . The
number of bins is (16,36,22,26), respectively, from left to
right in Fig. 6(b).
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