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Two-species boson mixture on a ring: A group-theoretic approach to the quantum dynamics
of low-energy excitations
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We investigate the weak excitations of a system made up of two condensates trapped in a Bose-Hubbard ring
and coupled by an interspecies repulsive interaction. Our approach, based on the Bogoliubov approximation
scheme, shows that one can reduce the problem Hamiltonian to the sum of sub-Hamiltonians Ĥk , each one
associated to momentum modes ±k. Each Ĥk is then recognized to be an element of a dynamical algebra.
This uncommon and remarkable property allows us to present a straightforward diagonalization scheme, to find
constants of motion, to highlight the significant microscopic processes, and to compute their time evolution.
The proposed solution scheme is applied to a simple but nontrivial closed circuit, the trimer. The dynamics of
low-energy excitations, corresponding to weakly populated vortices, is investigated considering different choices
of the initial conditions and the angular-momentum transfer between the two condensates is evidenced. Finally,
the condition for which the spectral collapse and dynamical instability are observed is derived analytically.
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I. INTRODUCTION

Bosonic mixtures formed by two atomic species have
proved to be a fertile ground for investigating the complex
interplay of the density-density interspecies interaction with
the interactions among bosons of the same species, boson
hopping, and interspecies population imbalance. Trapped in
optical lattices where the space fragmentation emphasizes the
quantum nature of microscopic processes, mixtures have re-
vealed an extraordinarily rich scenario of new exotic quantum
phases, dynamical behaviors, and properties. These include,
for example, unprecedented Mott-like states and types of
superfluidity [1–3], glassy phases [4], interspecies coherence
[5], spatial separation or coexistence of different phases
[6,7], and polaronlike excitations [8]. Dynamical properties
have also been explored within the mean-field picture and
a variety of aspects has been considered which range from
the dynamical stability of binary mixtures [9], different types
of self-trapping solutions [10], and the effectiveness of the
space-mode description in the Gross-Pitaevskii picture [11], to
the dynamics of the Rabi-Josephson regime [12] and quantum
many-body correlations [13]. More recent work has been
focused on the interspecies coherent transfer of superfluid
vortices [14], the analytic description of spectral collapse [15],
and the miscibility of a two-component mixture [16]. Mixtures,
well described within the Bose-Hubbard (BH) picture [17,18],
have been realized by means of either two atomic species [19]
or the same species in two different internal states [20].

While dynamical aspects of mixtures have been mainly
studied through the mean-field approach and in the simple
geometry of a double-well potential [9,16], minor attention
has been devoted to extended arrays of wells and the use of
techniques better incorporating the deep quantum character of
such systems. In this article, using the method applied to the
dynamics of bosons in a two-ring ladder [21], we analyze the
low-energy excitations in a two-component bosonic mixture
described within the BH picture and confined on ring lattice.

*andrea.richaud@polito.it

The ring geometry, designed more than ten years ago in [22],
has recently raised a lot of interest in the study of atomtronic
devices [23,24] and its feasibility has been proved to be within
the reach of current experimental techniques.

We focus on the regime where both condensed species
are superfluid and uniformly distributed in the ring lattice.
This allows us to reduce the system Hamiltonian to an
effective quantum model derived by means of the Bogoliubov
approximation, which well describes the low-energy excita-
tions in the uniform-density regime. After observing that the
original Hamiltonian decouples into many sub-Hamiltonians
(involving pairs of opposite-momentum modes), we apply
a well-established group-theoretic procedure based on the
identification of the dynamical algebra of a system [25,26].
In fact, we recognize that the dynamical algebra of each
sub-Hamiltonian is so(2,3). This important property provides
a viable, fully analytic diagonalization scheme, allows one to
find conserved quantities, and highlights the most important
microscopic processes that underlie the dynamical evolution
of the system.

We apply this quite general solution scheme to a three-site
BH model (trimer) with a ring geometry to find the energy
spectrum of low-energy excitations as a function of the
model parameters and the Heisenberg equations governing the
dynamics of the system. Then, we study the trimer-excitation
dynamics for different values of Hamiltonian parameters and
initial conditions relevant to simple but significant rotational
states. Interestingly, we observe that angular momentum can
indeed be transferred between the two condensed species and
we point out the condition under which this phenomenon
occurs. Finally, we focus our attention on the stability of the
system and derive the analytic parameter-dependent formula
giving the critical condition at which the energy-spectrum
collapse takes place and the system turns unstable. This
circumstance can reveal the presence of a phase transition,
an important point that will be studied in a future article.

Our work is organized as follows. In Sec. II we introduce the
model and, by implementing the Bogoliubov approximation,
we reduce it to a form charaterized by a well-defined dynamical
algebra. The derivation of the excitations spectrum and of
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the Heisenberg equations is described in Sec. III. In Sec. IV
we apply the dynamical-algebra method to the trimer and
investigate the dynamics of boson populations in various
regimes. Section V includes the stability analysis and, finally,
Sec. VI is devoted to concluding remarks.

II. RING-MIXTURE HAMILTONIAN
AND DYNAMICAL ALGEBRA APPROACH

The Hamiltonian describing a mixture of two condensates
loaded in a ring lattice and coupled by an interspecies repulsive
term is described, in the formalism of second quantization, by

Ĥ = Ua

2

L∑
j=1

Nj (Nj − 1) − Ta

L∑
j=1

(A†
j+1Aj + A

†
jAj+1)

+Ub

2

L∑
j=1

Mj (Mj − 1) − Tb

L∑
j=1

(B†
j+1Bj + B

†
jBj+1)

+W

L∑
j=1

Nj Mj , (1)

where Ta and Tb represent the hopping amplitudes, Ua and
Ub the intraspecies repulsive interactions, and W is the
interspecies repulsion. Aj and Bj are standard bosonic op-
erators, featuring the commutators [Aj ,A

†
k] = δj,k = [Bj ,B

†
k ]

and [Aj ,B
†
k ] = 0. The particle number N = ∑

j Nj and M =∑
j Mj is conserved in both condensates. Nj = A

†
jAj and

Mj = B
†
jBj are number operators and L is the site number in

the ring lattice.
By assuming Ta (Tb) sufficiently larger than Ua (Ub) in

order to avoid the emergence of Mott-insulator states, the
condition that W is sufficiently smaller than Ua , Ub implies
that the mixture ground state is a superfluid in which the
two components are completely mixed and delocalized (see,
for example, Ref. [6]) with local populations Nj = N/L and
Mj = M/L. As is well known, this uniform boson distribution
entails macroscopically occupied zero-momentum modes for
both species within the momentum-mode picture and suggests
the application of the Bogoliubov approximation. In order to
properly enact it, we take advantage of the ring structure of
the system, and move to momentum-mode basis. Momentum-
mode operators, ak and bk , are defined in terms of site-mode
operators

Aj =
L∑

k=1

ak√
L

e+ik̃aj , Bj =
L∑

k=1

bk√
L

e+ik̃aj ,

with k̃ = (2π/d)k and d = La. Parameter a is the lattice
constant, d is the ring length, N (M) is the number of atoms
of atomic species A (B) and the summations are restricted to
the first Brillouin zone. Momentum-mode operators ak and
bk are also characterized by standard bosonic commutators
[aj ,a

†
k] = δj,k , [bj ,b

†
k] = δj,k , and [aj ,b

†
k] = 0. In view of

the ring geometry, the number of bosons having (angular)
momentum equal to h̄k̃ is associated to number operators
nk = a

†
kak and mk = b

†
kbk . In the momentum-mode picture,

the Hamiltonian can be recast into the form

Ĥ = Ua

2L

L∑
p,q,k=1

a
†
q+ka

†
p−kaqap − 2Ta

L∑
k=1

a
†
kak cos(ak̃)

+Ub

2L

L∑
p,q,k=1

b
†
q+kb

†
p−kbqbp − 2Tb

L∑
k=1

b
†
kbk cos(ak̃)

+W

L

L∑
p,q,k=1

a
†
p+k b

†
q−k ap bq.

If the system is in the superfluid phase (Tν/Uν , ν = a,b large
enough) and both species are uniformly distributed in the lat-
tice (small W/Uν,ν = a,b excludes spatial phase separation),
both atomic species are characterized by a macroscopically
occupied momentum mode, namely r = 0, and the Bogoliubov
procedure [27,28] can be easily enacted (details are given in
the Supplemental Material [29]). The resulting Hamiltonian

Ĥ = E0 +
∑
k>0

Ĥk (2)

can be written as the sum of a constant term E0 =
ua(N − 1)/2 − 2NTa + ub(M − 1)/2−2MTb + w

√
NM −∑

k>0(γk,a + γk,b) and (L − 1)/2 decoupled Hamiltonians
Ĥk , each one involving just one pair of (opposite) momentum
modes,

Ĥk = 2(γk,aA3 + γk,bB3) + ua(A+ + A−)

+ub(B+ + B−) + w(K+ + K− + S+ + S−), (3)

where

A+ = a
†
ka

†
−k, B+ = b

†
kb

†
−k,

A3 = nk + n−k + 1

2
, B3 = mk + m−k + 1

2
, (4)

S+ = a
†
kbk + a

†
−kb−k, K+ = a

†
−kb

†
k + a

†
kb

†
−k.

Note that operators X− (with X = A,B,S,K) are simply given
by X− = (X+)†, while we define

γk,a = ua − 2Ta(ck − 1), γk,b = ub − 2Tb(ck − 1),

ua = UaN

L
, ub = UbM

L
, w = W

√
NM

L
,

with ck = cos(ak̃) to lighten the notation.
An essential feature of Hamiltonian (3) is that the set of

two-mode operators A = {A±, B±,K±, S±, A3, B3} is closed
under commutation. The recognition of this set, the so-called
dynamical algebra [25,26], is particularly advantageous for
computing the conserved physical quantities, for a straight-
forward diagonalization of Hamiltonian Hk , and for deriving
the Heisenberg equations of the system. As regards our
problem, the dynamical algebra generated by A is so(2,3).
Its characteristic commutators and details on the dynamical-
algebra method can be found in [21].

Interestingly, the same algebra was found to feature the
completely different model of a single condensate trapped in
a two-ring ladder [21]. In that model, terms S± described the
angular-momentum transfer between two coupled rings via
tunneling effect. In the present model, in addition to terms
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S±, the new operators K± appear which describe creation and
destruction processes that were absent in the two-ring model.
This difference comes from the interspecies coupling term of
model (1) which replaces the inter-ring tunneling term of the
two-ring model [21].

Concluding, we note that this approach is valid also in
the case Ua,Ub < 0, describing attractive interactions among
bosons of the same species, provided that (i) the ratio
Tν/|Uν | (ν = a,b) is sufficiently large, in order to guarantee
a superfluid phase, and (ii) the ratio W/|Uν | is small enough
to determine uniform boson distributions [30] apt to apply the
Bogoliubov scheme.

III. DIAGONALIZATION OF THE MODEL

In order to diagonalize our model, we choose the set
{|nk, n−k,mk,m−k〉} as a basis of the Hilbert space of states
associated to sub-Hamiltonian Ĥk . The four quantum numbers
n±k and m±k which label a basis vector correspond to the
numbers of bosons endowed with angular momentum ±k

in either of the condensed species. Since the numbers of
particles in the two species are conserved, the number of
bosons in momentum modes r = 0 (modes that have been
made semiclassical) are

n0 = N −
∑
k �=0

nk, m0 = N −
∑
k �=0

mk.

A. Energy eigenstates and eigenvalues

The information that a Hamiltonian belongs to a certain
dynamical algebra allows one to calculate its spectrum in a
straightforward way. In general, one can exploit the algebra
structure to numerically diagonalize the Hamiltonian. In the
particular but significant case where ua = ub =: u and Ta =
Tb =: T , the diagonalization process is fully analytic, and sub-
Hamiltonian

Ĥk = 2γk(A3 + B3) + u(A+ + A− + B+ + B−)

+w(K+ + K− + S+ + S−)

can be put in diagonal form by making use of a unitary
transformation Uk belonging to group SO(2,3)

Uk = e
ϕ

2 (S−−S+)e
θa
2 (A−−A+)e

θb
2 (B−−B+).

A proper choice of angles ϕ, θa , and θb allows one to get rid
of those operators which are not diagonal in the Fock-states
basis. By choosing

ϕ = π

2
, thθa = u + w

γk + w
, thθb = u − w

γk − w
, (5)

one obtains the diagonal Hamiltonian

Ĥk = U−1
k Ĥk Uk = 2A3

√
(γk − u)(γk + u + 2w)

+2B3

√
(γk − u)(γk + u − 2w) (6)

in which operators A3 and B3 are linear combinations of
number operators [see formulas (4)], and thus are diagonal
in the Fock-states basis. Since Ĥ = ∑

k Ĥk , then the energy

spectrum of Ĥ takes the form

E({nk,n−k,mk,m−k})
= −4T N + U

L
(N2 − N ) + W

L
N2

+
∑
k>0

[4T (ck − 1) − 2u + h̄ωk(nk + n−k + 1)

+ h̄	k(mk + m−k + 1)], (7)

where k̃ = 2πk/(aL) in ck = cos(ak̃), k ∈ [1,(L − 1)/2] is an
integer index, and

ωk = 1

h̄

√
2T (1 − ck)[2T (1 − ck) + 2u + 2w], (8)

	k = 1

h̄

√
2T (1 − ck)[2T (1 − ck) + 2u − 2w] (9)

are characteristic frequencies associated to each Hamiltonian
Ĥk together with quantum numbers n±k and m±k .

B. Time evolution of physical observables
and microscopic processes

The knowledge of the dynamical algebra of the Hamiltonian
allows one to represent it as a linear combination Ĥ = ∑

i hi êi

of algebra generators êk . For our model these coincide with the
two-mode operators of the set A. Thanks to the characteristic
commutators of the algebra, the Heisenberg equation of any
êk is readily found to be

ih̄
d

dt
êk = [êk,Ĥ ] = i

∑
m

ρkmêm. (10)

Then, the time evolution of any observable of the form
O = ∑

k okêk is easily determined within the algebra. For
example, from Eq. (10) one easily discovers that operator Ck =
nk − n−k + mk − m−k (the angular momentum of bosons
populating the modes ±k) is constant of motion. Another
example concerns the number of bosons N∗ = A3 + B3 =
nk + n−k + mk + m−k with angular momentum (proportional
to) ±k, whose equation is

ih̄
dN∗
dt

= −2u(A+ − A− + B+ − B−) − 2w(K+ − K−)

= −2u(a†
ka

†
−k − aka−k + b

†
kb

†
−k − bkb−k)

− 2w(a†
kb

†
−k + a

†
−kb

†
k − akb−k − a−kbk). (11)

This equation shows how the time evolution of N∗ depends on
and implicitly defines two generalized currents of boson pairs
whose distinctive trait is to flow from the macroscopic modes
a0 and b0 [31] to the excited modes a±k and b±k . Remarkably,
while the intraspecies repulsive interaction u accounts for the
creation of opposite-momentum boson pairs within the same
atomic species through the terms A± and B±, the interspecies
coupling w causes the formation of opposite-momentum boson
pairs in a twisted fashion (i.e., one boson in an atomic species
and one in the other) through the terms K±. We remark that this
second process is due to operators K± which were absent in
the two-ring model [21]. Some of these microscopic processes
are illustrated in Fig. 1.
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FIG. 1. Some important microscopic processes that occur in the
mixture. Blue and red colors are used to distinguish the two species.
Faded colors denote particles that belong to the two macroscopic
modes, a0 and b0, that have been made semiclassic. Left panel:
U determines the creation and annihilation of excited boson pairs
within the same species. Right panel: W determines the creation and
annihilation of twisted boson pairs (left side) and is responsible for
scattering processes between particles of different species (right side).

Another application of formula (10) consists in computing
the dynamical equations of finer-grained observables such as
the single-mode number operators n±k and m±k related to
excited modes. To this end one must consider the enlarged
dynamical algebra so(2,4) [including so(2,3)] in which n±k and
m±k can be seen as algebra generators. The so(2,4) generators
and further details are given in the Supplemental Material [29]
and in [21]. For the excited-mode number operator nk , one
finds

ih̄ṅk = [u a
†
ka

†
−k + w(a†

kb
†
−k + a

†
kbk)] − H.c. (12)

A similar equation holds for operators mk in which operators
ak and bk are exchanged. This equation clearly shows that a
time variation of nk is caused both by intraspecies (u �= 0) and
by interspecies (w �= 0) interaction processes. Such processes
are depicted in Fig. 1.

IV. DYNAMICS ON A RING TRIMER

The theory and the formulas we have discussed so far
are valid for a ring having an arbitrary site number L. In
the present section, we investigate the simple model with
L = 3, the so-called ring trimer. This particular geometry
has been thoroughly analyzed in the past decade, because of
the rich scenario of nonlinear phenomena triggered by the
nonintegrable character of a system featuring three spatial
modes [32–36]. In the trimer case k takes just three values,
namely, ±1 and 0 (whose relevant momentum mode will
be made semiclassical in the Bogoliubov picture). Therefore,
the only sub-Hamiltonian is Ĥk = Ĥ1 [see (3)], associated to
parameter

γ1 = 2T [1 − cos (2π/3)] + u.

To diagonalize Ĥ1, the proper choice of generalized angles is
thθa = (u + w)(γ1 + w), thθb = (u − w)/(γ1 − w), and ϕ =
π/2, which gives Ĥ = E0 + 2h̄ωA3 + 2h̄	B3 with the two

characteristic frequencies

ω =
√

3T (3T + 2u + 2w)/h̄, (13)

	 =
√

3T (3T + 2u − 2w)/h̄. (14)

The energy eigenvalues then read

E(n±1,m±1) = Eg + h̄ω(n1 + n−1) + h̄	(m1 + m−1), (15)

where Eg = E0 + h̄(ω + 	). The good agreement of eigenval-
ues (15) with the spectrum calculated numerically is illustrated
in the Supplemental Material [29].

The frequencies (13) and (14) and the expressions of angles
θa and θb are correctly defined only in a portion of the
three-dimensional parameter space (T ,U,W ). This region of
the parameter space, where the spectrum is discrete, classically
corresponds to the region where the system exhibits a stable
dynamics. At the border of such stability region, the energy
cost to create excitations tends to zero and the system manifests
unstable behaviors. From the point of view of the dynamics,
in fact, one can observe the divergence of many physical
observables. This aspect will be resumed in Sec. V.

A. Time evolution of excitations

In the same spirit of Ref. [21], it is possible to describe
the dynamics of the momentum mode operators in terms of
their expectation values. The latter are represented by the four
(complex) order parameters

a±1 = √
n±1e

iφ±1 , b±1 = √
m±1e

iψ±1 .

Over the remainder of this subsection, we will show that
one can trigger different dynamical regimes by performing
different choices both for the initial state (i.e., the complex
order parameter at t = 0), and for the Hamiltonian parameters
T , u, and w. The plots that we present below correspond
to the analytic solutions of the dynamical equations (12)
for the excited populations n±1(t) and m±1(t) for four
different choices of initial conditions. Note that the excitation
of angular-momentum modes corresponds to excite weakly
populated vortices.

(1) Absence of excitations at t = 0. Although, at the
beginning of the dynamics, none of the condensates feature
any excitation, the presence of interactions w �= 0 and u �= 0
causes the periodic formation of excited bosons within the
mixture, according to the formula

n±1(t) = m±1(t)

= 1

2h̄2

[
(u − w)2

	2
sin2(	t) + (u + w)2

ω2
sin2(ωt)

]
.

In other words, the fact that interactions u and w are nonzero
causes fluctuations in the vacuum state |n1, n−1,m1,m−1〉 =
|0, 0, 0, 0〉.

(2) Vortexlike excitation in condensate A; no excitations
in condensate B. If, at time t = 0, one of the two atomic
species exhibits a nonzero population (e.g., n1 �= 0, namely
a vortex excitation with k = +1), one observes, apart form
minor quantum fluctuations (the high-frequency ripple in
the figure), a periodic transfer of angular momentum (AM)
between the two atomic species. This effect is illustrated in
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FIG. 2. Dynamics of excitations for n1(0) = 10, n−1(0) =
m±1(0) = 0, and W/U = 0.19 (upper panels) and W/U = 0.9
(lower panels), with T = 2, U = 0.01, N = 1000, and h̄ = 1. Left
(right) panel concerns atomic species A (B). Red dashed (blue)
color corresponds to bosons with k = +1 (k = −1). The fact that
n1(t) features a maximum when m1(t) is zero and vice versa
entails the periodic and complete AM transfer between the two
species. Increasing W strongly changes the time scale of population
oscillations.

Fig. 2 for W << U (upper panels) and W � U (lower panels).
Of course, this case is equivalent to the case with condensate
B excited and condensate A unexcited at t = 0.

The relevance of the interspecies parameter on the popu-
lation dynamics is highlighted in the lower panels of Fig. 2:
increasing W clearly shows how the periodic collapse and
revival of populations n−1, m−1 is replaced by an essentially
regular oscillation while the oscillation of n+1, m+1 as well as
the AM transfer take place on a much smaller time scale. The
same periodic AM transfer is also observed when, in addition
to a vortex, the initial configuration includes an antivortex in
the same species.

(3) Vortex in condensate A and equal vortex in condensate
B. Let us assume that, at t = 0, species A exhibits a weakly
populated vortex while an equal vortex is present in species B.
This is an interesting situation, because different initial phase
differences φ1(0) − ψ1(0) can trigger different dynamical
regimes. Namely, if the complex quantities a1 and b1 are in
phase at t = 0, the two condensates seem to be decoupled
and just feature quantum fluctuations (upper panels of Fig. 3).
Conversely, an initial nonzero phase difference makes possible
a periodic AM exchange between the two condensates (lower
panels of Fig. 3). Once more, we note that the same dynamics
is observed by exchanging A and B at t = 0.

(4) Vortex excitation in condensate A and equal antivortex in
condensate B. Finally, let us consider the case where a weakly
populated vortex of species A (n1 �= 0) is superimposed to an
equal but counterpropagating antivortex of species B (m−1 �=
0). It turns out that the two kinds of excitations are periodically
transferred from one species to the other (see upper panels of
Fig. 4). The left lower panel of Fig. 4 confirms the relevance
of parameter W : as discussed in the case (2), increasing W

implies that the population oscillations and the AM transfer
take place on a much smaller time scale. In particular, the right
lower panel of Fig. 4 illustrates the AM transfer through the

FIG. 3. Dynamics of excitations for n1(0) = m1(0) = 10,
n−1(0) = m−1(0) = 0, and T = 2, U = 0.01, W/U = 0.19, N =
1000, and h̄ = 1. Left (right) panels concern species A (B). Red
dashed (blue) color is used to depict n1(t) and m1(t) [n−1(t) and
m−1(t)]. Upper panels: for an initial phase difference φ1(0) − ψ1(0) =
0 the system features a trivial dynamics, entailing that the interspecies
AM transfer is suppressed. Lower panels: conversely, the periodic AM
transfer is active if φ1(0) − ψ1(0) is nonzero (e.g., equal to π/2).

quantity L = n+1 − n−1 − (m+1 − m−1), where the signs ±
in front of the mode population take into account the clockwise
(or counterclockwise) rotations of bosons.

It is important to note that the equation governing the
dynamics of the AM transfer L in the cases (2)–(4),

ih̄
dL

dt
= 2w(a†

kb
†
−k + a−kbk + a

†
kbk + a−kb

†
−k − H.c.),

0 2 4 6 8 10
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0 2 4 6 8 10
0
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0 2 4 6 8 10
0
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0.01

0.015

0 2 4 6 8 10

–20

0

20

FIG. 4. Upper panels: dynamics of excitations for n1(0) =
m−1(0) = 10, n−1(0) = m1(0) = 0, and W/U = 0.19, T = 2, U =
0.01, N = 1000, and h̄ = 1. The left (right) panel concerns species
A (B). Red dashed (blue) color corresponds to bosons with k =
+1 (k = −1). Note, up to quantum fluctuations (high frequency
ripple), the periodic and complete transfer of excitations between
the two species. Lower left panel: for W/U = 0.9 the frequency of
oscillations increases (the color code is the same as in the upper
panels). Right lower panel: gray (dashed black) lines describe the
time evolution of the interspecies AM difference for W/U = 0.19
(W/U = 0.9).
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FIG. 5. Energy levels vs interspecies interaction W for a trimer. If
the two atomic species do not interact (W = 0), the two characteristic
frequencies ω1 and 	1 coincide. When W/U approaches the limiting
value 1.009, one can observe the collapse of the energy spectrum
relevant to the second generalized harmonic oscillator. Parameters
T = 2, U = 1, N = 1000 have been chosen.

clearly shows how the microscopic processes involved by
operators S± and K± both contribute to activate the AM
transfer. This circumstance is due to the fact that, unlike the
two-ring ladder model, where the transfer is controlled by
the inter-ring tunneling, in the current model the transfer is
triggered by the interspecies interaction.

V. TOWARDS DYNAMICAL INSTABILITY

In this section we resume the discussion on the diagonal-
ization procedure of Sec. III and comment on the stability
of the system. One can observe that the angles associated to
generalized rotations, θa and θb [see Eqs. (5)], are subject to
some constraints. The same constraints can also be found in
relation to the diagonal Hamiltonian (6), i.e., in the expressions
of characteristic frequencies (8) and (9). Recalling that T ,
U , and W have been assumed to be non-negative, all the
dynamical results and the solution scheme that we have
discussed up to now are valid provided that

w < T (1 − ck) + u. (16)

When w approaches this upper limiting value, the energy
spectrum collapses, i.e., the energy difference between two
adjacent energy levels tends to vanish (Fig. 5 well illustrates the
collapse). As a consequence, each Ĥk is associated to a specific
limiting value for w, namely T (1 − ck) + u. Recalling that
1 − ck = 1 − cos(ak̃) is an increasing function in the interval
k ∈ [0,(L − 1)/2], the global limiting value is always found
at the smallest momentum, i.e., for k = 1, irrespective of site
number L. In other words, increasing w, the sub-Hamiltonian
which could first be affected by the spectral collapse is Ĥ1, no
matter the number of ring-lattice sites L.

With reference to the most elementary closed circuit, the
trimer, the stability condition becomes

w < 3
2T + u (17)

[namely, W < Wc := 9T/(2N ) + U in terms of the model
parameters], which guarantees the correctness of formulas
(13), (14), and (15). As far as excited populations, they reveal
a diverging evolution when one approaches the border of the
stability region. Figure 6 clearly depicts this situation. In view
of this, the inequality (17) is particularly significant in that,
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FIG. 6. Time evolution of populations for U = 0.01, T =
2, W/U = 1.895, h̄ = 1, N = 1000, n1(0) = 10, and n−1(0) =
m±1(0) = 0. Notice that W is close to the critical value Wc, i.e.,
W/Wc = 0.997. n1(t) and m1(t) are depicted in red, while n−1(t)
and m−1(t) are represented in blue. All the excited boson populations
quickly grow and soon get unphysical.

in addition to setting the limits of validity for our model, it
can be seen as the hallmark of a dynamical phase transition
[30,37]. Finally, we note how the more general inequality (16)
reproduces, for a generic ring lattice, the spectral-collapse
conditions related to the demixing effect for a mixture in a
two-well potential [38].

VI. CONCLUDING REMARKS

We have studied the weak excitations of a two-species
bosonic mixture confined in a BH ring. In Sec. II we proved
that, after enacting the well-known Bogoliubov procedure, the
model Hamiltonian reduces to the sum of (L − 1)/2 inde-
pendent sub-Hamiltonians Ĥk related to pairs of (opposite)
momenta. In particular, we showed that each Ĥk belongs
to a specific dynamical algebra, the algebra so(2,3). Thanks
to the knowledge of the dynamical algebra, in Sec. III, we
diagonalized the effective Hamiltonian, determined the energy
spectrum, computed the Heisenberg equations for various
physical observables, and highlighted microscopic processes
characterizing the mixture.

In Sec. IV, we applied the proposed solution scheme
to the simple but nontrivial three-well ring, the BH trimer,
featuring r = 0 as a macroscopically occupied momentum
mode. The corresponding energy spectrum was determined
and shown to provide the two frequencies that characterize the
trimer dynamics. We computed the time evolution of excited
populations for different choices of the model parameters and
different values of initial conditions. More specifically, we
pointed out the presence of fluctuations in the vacuum state,
the possible coherent periodic transfer of angular momentum
between the two species, and its relation with their initial
phase difference. Also, we emphasized the influence of the
interspecies interaction W on the population dynamics by
comparing the population oscillations in the case when W is
smaller than U and when W � U . We showed that increasing
W makes the AM transfer faster.

As a conclusion, in Sec. V, we identified the region where
the system is stable, and observed that, for w → u + 3T/2,
the system approaches instability, a possible signature of the
mixing-demixing phase transition [38]. This issue, the analysis
of attractive interactions and of strong interspecies repulsions,
will be considered in a future work.
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