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Striped states in a many-body system of tilted dipoles
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We study theoretically and experimentally the behavior of a strongly confined dipolar Bose-Einstein condensate
in the regime of quantum-mechanical stabilization by beyond-mean-field effects. Theoretically, we demonstrate
that self-organized “striped” ground states are predicted in the framework of the extended Gross-Pitaevskii theory.
Experimentally, by tilting the magnetic dipoles we show that self-organized striped states can be generated,
likely in their metastable state. Matter-wave interference experiments with multiple stripes show that there is
no long-range off-diagonal order (global phase coherence). We outline a parameter range where global phase
coherence could be established, thus paving the way towards the observation of supersolid states in this system.
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Self-organization is a key many-body phenomenon in
which order arises spontaneously due to interactions between
the individual constituents. An extraordinary example in the
quantum world are supersolid states of matter, which feature
a self-organized density-modulation but, unlike an ordinary
crystal, also maintain superfluid properties. Amongst others,
possible candidates are ultracold atoms with a non-negligible
dipole-dipole interaction. The roton minimum [1] in the
dispersion relation of these dipolar Bose-Einstein condensates
(BECs) introduces a natural length scale for self-organization
of the system. However, the density-modulated states in-
duced by the roton softening are unstable within mean-field
theory [2]. In contrast to this prediction, stable liquidlike
“quantum droplets” were observed [3] with dysprosium atoms.
The initial observation was followed by the identification of
the underlying stabilization mechanism [4] and studies of the
collective oscillations with erbium atoms [5] as well as the
observation of self-bound single droplets [6] of dysprosium.
With a theoretical description of the single-droplet physics
at hand [7,8], here we turn to the fundamental question of
supersolidity in systems of multiple quantum droplets. The
density modulation of these states would break the transla-
tional symmetry. In addition, their global common superfluid
phase breaks an internal gauge symmetry. In contrast to recent
observations of supersolidity induced by an optical lattice in a
double cavity [9] and a spin-orbit-coupled BEC [10] where the
period of the density modulation is imprinted by an external
light field, the density modulation of this system would thus
be exclusively due to the intrinsic anisotropic long-range
dipole-dipole interaction of the atoms.

In the following we first demonstrate theoretically that
the ground state of a dipolar Bose gas in an anisotropic
harmonic trap is a “striped state” featuring multiple droplets
for a certain parameter range. This extends prior theoretical
work predicting only single-droplet ground states [11] within
the framework of the extended Gross-Pitaevskii (eGPE) equa-
tion [7,8]. All experiments observing multiple droplets [3,4,12]
have been carried out in weak traps where the ground state is
a single droplet.
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Striped phases and states are well known and studied in
electronic systems in superconducting materials [13] and have
been predicted for dipoles in two dimensions [14]. In this paper
we refer to striped states in confined geometries. We term the
found states this way in order to express the fact that the system
as a whole forms a collectively ordered ground state, where
anisotropy plays a crucial role. More precisely, we present a
symmetry-breaking effect along an axis perpendicular to the
confinement.

Second, we experimentally realize and study such an
ensemble of dipoles in a constrained geometry. By tilting the
polarizing magnetic field we effectively tune the mean-field
dipolar interaction and are able to control the number of
droplets with the underlying trap. Using these tools we observe
striped states with higher droplet numbers than expected from
theory and discuss their nature. We further conduct expansion
measurements of these states to investigate the coherence
properties and outline a way to reach phase coherence of the
whole system.

I. THEORY

Dipolar quantum droplets exist thanks to the interplay
between attractive mean-field interactions and a repulsive
beyond-mean-field correction arising from quantum fluctu-
ations [4–6]. These states are liquidlike, featuring a low
compressibility while preserving a peak density that is an
order of magnitude higher compared to the condensate phase.
In contrast to typical liquids, the binding mechanism of the
liquid relies on the dipoles being mainly in a head-to-tail
configuration and thus on an anisotropic density distribution.

When compressing a usual liquid droplet along one or two
directions, the droplet changes its overall shape to conserve
its volume and thus its density. In the case of dipolar quantum
droplets, the shape cannot be strongly altered without breaking
the binding mechanism. Thus, a strong confinement in two
directions including the droplet long axis (magnetic field
axis) will lead to a strong frustration, since both the nearly
constant peak density and the anisotropy cannot be kept
simultaneously. Therefore one expects a different ground state
in a strongly constrained geometry. For this reason, states with
multiple droplets might have energy lower than that of the
single-droplet states. In fact quantum Monte Carlo calculations
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predict ground states with multiple dipolar droplets for very
low atom numbers [15,16]. However, these calculations feature
molecular potentials that do not contain the short-range (van
der Waals) interaction. As recently shown [17] the realistic
scattering potential is well described by including contact and
dipolar interactions as practiced throughout this article.

To investigate the behavior of quantum droplets in a con-
strained geometry we use the framework of the eGPE which
was verified by quantum Monte Carlo simulations [18] and
describes well recent experiments with dipolar droplets [5,6].
The eGPE itself,

ih̄∂tψ =
[
− h̄2∇2

2m
+ Vext + g|ψ |2 + �dip + gqf|ψ |3

]
ψ,

(1)

includes the external potential Vext = ∑
k

1
2mω2

kk
2 (ωk = 2πfk

with k = x, y, and z), the mean-field contact, the dipolar
interaction potential

�dip(r) = 3 gdd

4π

∫
dr′ 1 − 3 cos2(ϑ)

|r − r′|3 |ψ(r′)|2, (2)

with ϑ being the angle between the polarization direction of the
dipoles and their relative orientation [19], and the term gqf|ψ |3,

with gqf = 32 g a
3/2
s

3 π1/2 (1 + 3
2

a2
dd

a2
s

) taking into account quantum
fluctuations within a local density approximation [20]. The
main assumptions of this zero-temperature model are thus the
validity of the local density approximation, the weakness of the
quantum depletion, and the validity of the interaction potential
resulting from the first-order Born approximation [21]. In the
following, we consider N = 104 164Dy atoms with contact and
dipolar interaction in an anisotropic harmonic trap. The contact
interaction is defined by the scattering length as = 70 a0,
with g = 4πh̄2as/m. The reported values for the background
scattering length of Dy are somewhat higher [22,23]; however
the critical atom number for self-bound states observed in our
earlier work implies a background value of abg ≈ 63 a0. The
exact value is still uncertain, so we pick an intermediate value.
The dipolar length add = 131 a0 with the corresponding gdd

is a result of the strong magnetic moment μ = 9.93 μB of Dy.
We further assume a magnetic field B ‖ ŷ and an anisotropic
trapping potential with fx = 70 Hz, fy = 10–500 Hz, and
fz = 1 kHz [see the schematic inset in Fig. 1(a)].

To gain initial insight, we perform semianalytical calcu-
lations, making use of a variational ansatz. As detailed in
Appendix A we extend the variational ansatz of a Gaussian
density profile [7,8] to a double-droplet state consisting of two
droplets with Gaussian wave functions characterized by sizes
σx , σy , and σz and inter-droplet distance d. By minimizing
the energy with respect to these parameters using the energy
functional corresponding to Eq. (1), we can determine the
ground state within this ansatz. As a function of d, we find
in general two energy minima (see Appendix A). One at
d = 0 (solid red) corresponding to a single droplet and one
at d > σx > 0 (solid green) corresponding to two separated
droplets, as presented in Fig. 1(a). For increasing fy the ground
state changes from the single-droplet to the double-droplet
state. This confirms the scenario outlined earlier whereby
the combined effect of liquidlike properties and the strong
anisotropy leads to a density-modulated ground state.

FIG. 1. Striped ground states. (a) Total energy per atom Etot/N

for single (solid red) and double (solid green) droplet solutions
obtained from a variational ansatz. For fy � 200 Hz the state with
two droplets has energy lower than that of a state with a single
droplet. The schematic shows a double-droplet configuration in the
proposed harmonic trap. Numerical simulations of the extended
Gross-Pitaevskii equation [see eq. (1)] predict higher numbers of
droplets for increasing fy in the ground state. Insets show the
integrated column density along z for ground states with one (red
dots), two (green squares), and four (blue diamonds) droplets.
(b) Integrated column density of the ground state for fy = 800 Hz.
There are several droplets with finite density between the droplets
indicating overlap of the single-droplet wave functions. (c) For a
similar system with periodic boundary conditions along x (fx = 0)
the ground state exhibits the same density modulation, thus breaking
the continuous translational symmetry. Vertical lines represent the
edge of the box. See text for further parameters.

Further increasing the confinement is thus expected to favor
states with higher droplet numbers, which are not covered
by the variational approach. To fully confirm our scenario
within the eGPE and to account for the possibility of more
than two droplets, we perform, as in Ref. [6], full numerical
simulations of the eGPE to find the ground state of the
system via imaginary-time evolution. Within the investigated
parameter range, we indeed obtain ground states with a single
droplet (red dots), two droplets (green squares), or even four
droplets (blue diamonds). Figure 1(a) shows the total energy
per atom and the number of droplets with representative insets
of the column density integrated along z. In general, higher
confinement along the droplet axis [see Fig. 1(b)] as well as
increasing the total atom number leads to a larger number of
droplets in the ground state. For even larger confinement along
y the ground state becomes a “uniform” gaseous BEC phase.
We note that compared to the variational ansatz the frequency
fy at which the ground state splits up into two droplets is
shifted to a slightly higher value.
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To verify that this is a general effect independent of the
x confinement, we study the case of an infinite system along
x. We find that the system exhibits the same transition to a
density-modulated ground state, as can be seen in Fig. 1(c).
This state is realized with periodic boundary conditions, a
linear density nx = 800 μm−1, and trap frequencies fx = 0,
fy = 800 Hz, and fz = 1000 Hz. In this case the system
features a continuous translational symmetry, which is broken
by the transition to a periodic density-modulated ground state.
The corresponding length-scale is determined by the interplay
between y confinement and interactions.

Although multiple droplets have been observed in prior
experiments [3,4] these have been carried out with weak
trapping potentials. In the following section we present our
experimental advances towards the theoretically predicted
multidroplet regime.

II. EXPERIMENT

In order to explore the behavior of strongly dipolar bosons
in confined geometries like the ones considered above, we
extended our experimental apparatus presented in Ref. [6]
in two ways. First, we use three pairs of coils that allow us
to orientate the magnetic field along an arbitrary direction.
Second, we implement a light sheet that strongly confines the
atoms along the vertical z direction, which allows us to realize
the strongly anisotropic traps that we studied in the theoretical
analysis. Details are given in Appendix B. We always start
our experimental sequence with a BEC of 164Dy containing
about 5000 atoms at a temperature of T ≈ 30 nK (≈30%
thermal fraction) and the magnetic field along z. The trapping
potential is oblate with trapping frequencies above 250 Hz
along z. In this configuration the atomic dipoles are arranged
side by side, the dipole-dipole interaction (DDI) is repulsive,
and we observe that the angular-roton instability we reported
in Ref. [3] is prevented. Our ability to rotate the magnetic field
in the plane of the light sheet allows us to effectively tune the
DDI, turning it from repulsive to attractive. Experiments are
carried out in the vicinity of a Feshbach resonance (position
B0 = 1326(3) mG and width 	 = 8(5) mG [3]) to tune the
scattering length.

In a first set of experiments we study the behavior of a BEC
in an oblate cylindrical trap (fx ≈ fy � fz) with the magnetic
field tilted in the plane. In a second set we investigate this
system breaking the radial trap isotropy (fx �= fy), allowing
us to study geometries considered in the previous section.

Let us describe our first set of experiments. In a trap with
fixed frequencies, we tilt the magnetic field along the y axis
[angle β with respect to z axis; see Fig. 2(a)], at a constant
amplitude B and rate β̇ = 0.33 deg/ms. We find that the results
of our experiments are independent of the field rate for rates
slower than β̇ � 0.4 deg/ms (see Appendix B). When tilting
the magnetic field we first observe magnetostriction of the
BEC: the elongation of the condensate along the magnetic
field axis [19], reported here for the first time in situ rather
than during time of flight. Subsequently, we observe a sharp
transition at the angle βc to a state consisting of one or two
droplets, which are very elongated in the plane, as depicted
in the inset of Fig. 2(b). The number of droplets varies
between one and two depending mainly on the atom number.
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FIG. 2. Tunability of the mean-field dipolar interaction �dip.
(a) Schematic of dipolar atoms strongly confined along the z direction
with a magnetic field tilted under an angle β with respect to
the confinement axis. (b) Determination of the critical angle βc

via the Fourier anisotropy AFT (see Appendix B). The gray bar
marks the corresponding error. Insets show a BEC elongated by
magnetostriction (left) and a double droplet state (right). Measured
critical tilt angle βc over (c) z trap frequency and (d) magnetic field
close to a Feshbach resonance. In panel (c) the power of the light
sheet is varied at fixed magnetic field B = 1240(5) mG. (d) The
dependence on the scattering length is measured by changing the
magnetic field for fz = 950(10) Hz (red) and 300(10) Hz (green).
The Feshbach resonance at B0 = 1326(3) mG with width 	 =
8(5) mG [3] is marked.

We quantify this transition by measuring the anisotropy
AFT of the Fourier-transformed images, which we define in
Appendix B. This linear image analysis allows us to avoid
fitting the observed distribution with a simplified function
and provides a measure of the anisotropy for one droplet or
several droplets. The Fourier anisotropy does exhibit a sharp
steplike form, which allows us to extract the critical angle βc

[see Fig. 2(b)].
We measure the critical angle βc for varying z trap

frequency from fz = 255(15) to 1669(43) Hz. The trap is
almost cylindrical with transversal trap frequencies fx =
46(1)–53(2) Hz and fy = 46(1)–60(2) Hz leading to a trap
aspect ratio λ = fz/

√
fxfy = 5.5(4)–29.6(8), while the mag-

netic field amplitude is fixed to B = 1240(5) mG. As shown
in Fig. 2(c) the critical tilt angle saturates for fz � 900 Hz,
becoming independent of the confinement along the z axis.
Next, we measure the critical angle for varying magnetic
field amplitude approaching the Feshbach resonance. The trap
is cylindrical with frequencies fz = 950(10) Hz (red) and
300(10) Hz (green) as well as fx = fy = 50(5) and 48(5)
Hz, respectively. According to as(B)/abg = 1 + 	/(B0 −
B) [24], the scattering length as is expected to vary between
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1.01 abg and 1.25 abg in the measured range B = 692(4)–
1294(4) mG.

Both measurements demonstrate that the effective dipolar
interaction �dip can be tuned by means of a tilted magnetic
field. Our experimental procedure thus offers a way to prepare
the system in a given geometry, strongly confined in the
z direction as is necessary to observe the ground states
predicted earlier, and then drive a transition with a continuous
magnetic field tilt.

The second set of experiments aims at determining whether
density-modulated ground states can be observed experimen-
tally. In order to do so we also reshape the trap in the
xy plane prior to tilting the magnetic field. We vary the
transversal trap aspect ratio λxy = fx/fy such that the mean
trap frequency f̄ = (fxfyfz)1/3 is kept constant. For the range
λxy = 0.19–2.36, the trap frequencies are varied in the ranges
fx = 25(1)–75(2) Hz and fy = 128(2)–32(1) Hz with fz =
945(5) Hz and the magnetic field amplitude B = 906(5) mG
being fixed. The atom numbers in the droplets are in the range
1000–3000 with an additional ≈6000 thermal atoms. While we
obtain a single droplet for λxy � 1, we find striped states of
multiple droplets for λxy � 1. The in situ images presented in
Fig. 3(a) are examples of single realizations of these states. For
a quantitative analysis we vary the tilt angle β for different λxy

values [see Fig. 3(b)]. While we observe a negligible change in
the critical tilt angle βc (red dots) within error bars, the mean
number of droplets varies. For λxy > 1 the trap is elongated
along ŷ, the direction of the magnetic field tilt. In such a
configuration with weaker confinement along the tilt axis we
obtain a single droplet. In the opposite case where λxy < 1 the
confinement along the tilt axis is stronger, leading to a mean
droplet number of up to 3.4. In contrast to prior observations
of quantum droplets [3,12] we gain control over the number
of created droplets here.

As shown in our theoretical analysis the number of droplets
increases with increasing confinement fy (decreasing λxy)
along the in-plane magnetic field component By , as summa-
rized in Fig. 1(a). In addition, dynamic simulations presented
in Fig. 3(c) show excellent agreement with the experiment in
both the critical angle and the dependence of droplet number
on λxy . The parameters for the simulation are N = 5000 atoms,
scattering length as = 70 a0, trapping potential as in the
experiment, and finite three-body losses (see Appendix A).
In contrast, the ground state we obtain via imaginary-time
evolution is a single droplet for the full range of λxy values.
Within the assumptions of our theoretical analysis and its
comparison with the experiment, we conclude that, although
in a more controlled environment, the condensate undergoes a
modulational instability similar to the one observed in Ref. [3].
This instability stems from the joint effect of the trapping
potential and the dipole-dipole interaction. It is related, in the
case of large, confined BECs, to the instability due to roton
softening recently observed in Ref. [25]. For the first time we
induce such a modulational instability by controlling the DDI
rather than the scattering length [26].

As a consequence, the striped states we observe are likely
not the ground state predicted from our study of the Gross-
Pitaevskii equation, but rather an excited metastable state.
We further emphasize that the “roton” modes driving the
instability of the initial BEC in general do not lead to the
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FIG. 3. Striped states observed in an anisotropic trap. (a) Example
single-shot in situ images for varying transversal trap aspect ratio
λxy = fx/fy . (b) Critical tilt angle βc (red circles) and average number
of droplets over λxy . We observe multiple droplets for λxy � 1 and
single ones for λxy � 1. Data are taken for B = 905(5) mG at a
trap frequency of fz = 945(5) Hz and averaged over 11 realizations.
(c) Dynamic simulations of the eGPE confirm the creation of multiple
droplets for conditions where a single droplet is the ground state.
Simulation parameters are similar to those of the experiment; see
main text and Appendix A.

ground state of the system. Instead, the excited state observed
in the experiment is prevented from dissipating its energy and
reaching the ground state [11]. This can be understood as
the consequence of a strong energy barrier existing between
two droplets [see Fig. 6(a)]. This barrier also prevents the
preparation of the ground state by first preparing a single
droplet and then compressing it.

III. PHASE COHERENCE

Although not the ground state, a metastable striped state
might still feature phase coherence between the droplets and
thus make it a candidate for a metastable supersolid state of
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FIG. 4. Interference patterns after 8 ms of expansion. (a) Two
example realizations with absorption image (top panels) and in-
tegrated density (bottom panels) showing fringes. We extract the
phase θ with respect to the center of mass of the distribution. (b)
Histograms and polar plot of relative phase θ and visibility v for 650
atom distributions. There is no preferred phase visible, indicating that
there is no phase coherence between the droplets.

matter. To explore this possibility experimentally we conduct
interference experiments. In prior experiments [4] fringe
patterns have been observed, indicating local superfluidity
of the quantum droplets. Here, we focus on the phase
relation between the droplets. As known from the physics of
condensates in double-well potentials [27], the expansion of
two wave packets with phases θ1 and θ2 results in interference
peaks with the phase θ = θ1 − θ2 relative to the envelope.
Figure 4(a) shows example realizations of such fringe patterns
in our experiment obtained via absorption imaging after 8 ms of
expansion with the magnetic field B = 1245(5) mG ramped to
B = 1313(5) mG during the first 2 ms. After integration along
the y direction we extract the relative phase θ and the fringe
visibility v with a cosine-modulated Gaussian function (see
Appendix A). The extracted values (v,θ ) for 650 realizations
in a λxy = 1/4 trap (3 or 4 trapped droplets initially) with sub-
sequent expansion are plotted in Fig. 4(b). For a phase-coherent
sample a fixed phase relation with a single predominant value
of θ is expected. Yet the experiment shows a random phase
distribution and thus no phase-coherence between the droplets.
We note that experiments with different starting conditions,
especially varying the initial droplet number including pairs
of droplets, show the same behavior.

The mentioned finite-wavelength instability causing the
initial BEC to split up into multiple droplets [3] is stochastic

FIG. 5. Tuning the coherence properties. On-site interaction EC

(red) and hopping term EJ (green line) as defined in Appendix A for
varying confinement fx perpendicular to the magnetic field. This way
the distance between droplets is varied and thus EJ can be tuned over
several orders of magnitude. The shape of the droplet wave function
is not altered, keeping EC almost constant. The values are computed
with the variational ansatz for a confinement where the double-droplet
solution is the ground state (fy = 300 Hz). The temperature T = 30–
70 nK reflects the temperature range in the experiment.

in nature. This induces inevitable atom number fluctuations
in the droplets and additional phase noise. An atom number
difference between interfering droplets leads to a difference in
chemical potential, which is known to cause a random relative
dephasing of the droplets during the preparation time.

While our experiments show no sign of phase coherence, we
present a mechanism that could establish phase coherence in
future experiments. Therefore we resort to the well-developed
framework of bosonic Josephson junctions [27,28]. Using our
double-droplet variational ansatz we can develop a two-state
model in direct analogy to Ref. [28], which was also studied
in Ref. [29] for self-induced bosonic Josephson junctions in
dipolar BECs. This yields the on-site interaction term EC in
first approximation, which contains the contact and dipolar
mean-field on-site values as well as the dipolar intersite mean-
field term and a beyond-mean-field on-site term. In addition
we can calculate the usual tunneling term EJ , as detailed in
Appendix A. This model is by no means an analysis of quantum
and thermal fluctuations in this system, but it provides an
estimate of the parameter range where the phase links between
droplets should be robust against these effects. The criteria for
robustness against phase fluctuations due to quantum noise in
a bosonic Josephson junction [27] are given by |EJ /EC | > 1,
while against thermal fluctuations this is EJ /kBT > 1.

In our system, owing to the attractive dipolar interaction
within the droplet, EC is negative with values of |EC | � 1 nK.
For the experimental parameters shown here the hopping term
is EJ � 1 nK as well. Yet, since the hopping term is a measure
of the droplet wave function overlap it scales exponentially
with the distance between the droplets. Therefore, the hopping
energy can be tuned over several orders of magnitude by
varying fx , the confinement perpendicular to the droplet axis
(see Fig. 5). This primarily changes the droplet distance,
preserving the droplet sizes and thus EC . For the largest
confinement considered, we obtain values of EJ > 200 nK that
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are distinctively larger than the temperature range T ≈ 30–
70 nK observed in the experiment. In a setting with stronger
confinement we thus expect to drive the multiple droplet
states to the regime EJ /kBT > 1, where thermal fluctuations
do not prohibit phase coherence [30]. However, the role of
the dephasing mechanisms needs to be investigated first. This
includes a systematic study of the atom number fluctuations
in samples of multiple droplets, which is the topic of future
work.

IV. CONCLUSION

To summarize, we predict a striped ground state for a dipolar
Bose gas in a harmonic trap. A variational ansatz for two
dipolar quantum droplets shows a transition from a single-
to a double-droplet state for increasing confinement along the
droplet’s long axis. Numerical simulations of the eGPE support
this observation and reveal transitions to states with higher
droplet numbers for larger confinement. Within the Gross-
Pitaevskii theory this is a supersolid state at zero temperature.

In the experiment, we induce the transition from the BEC
to the self-organized phase by tilting the magnetic field in an
anisotropic trap. The z confinement and the scattering length
influence the value of the respective critical tilt angle βc,
since they alter the dipolar mean-field interaction potential.
By reshaping the trap we further observe striped states
with multiple droplets in situ. Because of the modulational
instability causing the fragmentation of the initial BEC, we
observe higher droplet numbers in the experiment compared
to the single-droplet ground state expected from theory. These
states are thus metastable density-modulated states, which
cannot decay to the expected ground state since there is an
energy barrier. However, the observed striped states are long-
lived and could share the coherence properties of the ground
state. As such these states are accessible in experiments, but
have not yet been investigated theoretically.

The stochastic nature of the droplet creation leads to number
fluctuations and thus the loss of a common phase relation.
Although we do not observe signs of mutual phase coherence
between the droplets in interference experiments, we point out
a mechanism that might establish phase coherence throughout
the sample.

In this work we have established the framework and
necessary tools to characterize a supersolid phase of a dipolar
Bose gas. Future work will be directed towards understanding
the dephasing mechanism to finally realize a dipolar supersolid
state of matter.
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APPENDIX A: THEORY

1. Variational ansatz

We extend the ansatz for a single droplet [7,8] with a
Gaussian trial wave function,

ψ0(x,y,z) =
√

Nd

π3/2σxσyσz

e
− 1

2

(
x2

σ2
x

+ y2

σ2
y

+ z2

σ2
z

)
, (A1)

to the case of two droplets at position x = ±d/2. Curves
in Fig. 1(a) are obtained by minimizing the energy func-
tional Etot[|ψ0(x − d/2,y,z)|2 + |ψ0(x + d/2,y,z)|2] corre-
sponding to the eGPE of Eq. (1) with respect to the sizes σk and
the droplet distance d. We calculate the energy along the lines
of Refs. [31,32] and obtain the following single contributions,

Ekin

Nh̄ω̄
= ā2

4

(
σ−2

x + σ−2
y + σ−2

z

)
,

Epot

Nh̄ω̄
= 1

4ā2

[
ω2

x

(
σ 2

x + 1

2
d2

)
+ ω2

yσ
2
y + ω2

zσ
2
z

]
,

Econ

Nh̄ω̄
= ā2

2
√

2πσ̄ 3
Nas

(
1 + e− 1

2 u2)
, (A2)

Edip

Nh̄ω̄
= ā2

2
√

2πσ̄ 3
Nadd (−f (κx,κy) − Idip(κx,κy,u)),

Eqf

Nh̄ω̄
= 512

√
2ā2

75
√

5π7/4σ̄ 9/2
N3/2a5/2

s

(
1 + 3

2

a2
dd

a2
s

)
Iqf(u),

to the total energy Etot with aspect ratios κk = σk/σz, rescaled
distance u = d/σx , and mean size σ̄ = (σxσyσz)1/3 and mean
harmonic oscillator length ā = √

h̄m/(ωxωyωz)1/3 introduced
here. The integrals

Idip(κx,κy,u) = e− 1
2 u2 − 3

κxκy(
1 − κ2

x

)3/2

×
∫ √

1−κ2
x

0
dξ

ξ 2 exp

(
− u2

2
κ2

x ξ 2(
1−κ2

x

)
(1−ξ 2)

)
√

1 − ξ 2

√
1 − ξ 2 1−κ2

y

1−κ2
x

,

(A3)

with f (κx,κy) = Idip(κx,κy,0), for the dipolar interaction and

Iqf(u) = 2√
π

e− 5
8 u2

∫ ∞

0
dve−v2

cosh

(√
2

5
uv

)5/2

(A4)

for the quantum fluctuations stem from the overlap of the two
wave functions. The solution for a single droplet is recovered
for d = 0. For the parameter range discussed in the main text
we find local minima of the energy functional at both d = 0
and d > σx > 0 corresponding to the solutions for a single-
and a double-droplet state [see black dots in Fig. 6(a)]. By
definition the variational ansatz overestimates the energy.

2. Coherence properties

We estimate the on-site interaction energy EC and the
hopping term EJ within the framework of BECs in double-well
potentials [27–29]. Within the two-state model we use the
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FIG. 6. Calculations with the variational ansatz. (a) Energy per
particle Etot/N over distance d acquired with the variational ansatz.
Curves represent calculations for different trap frequencies fy = 50–
500 Hz. The solutions for a single-droplet state (d = 0) and for
a double-droplet state with distance d > 0 are marked. (b) Phase
diagram of atom number N over confinement fx along the droplet
axis. Solid lines mark the transition between the single-droplet ground
state (left) and the double-droplet ground state (right) for different
values of the scattering length as . See main text for parameters.

single-droplet wave function

φ1,2 = 1

π3/4σ̄ 3/2
exp

(
− (x ± d/2)2

2σ 2
x

− y2

2σ 2
y

− z2

2σ 2
z

)
(A5)

normalized to
∫
d3r|φ1,2|2 = 1 and extend the on-site interac-

tion

EC =
∫

d3r

[
g|φ1|4 + gqf

√
N

2
|φ1|5

+ (|φ1|2 + |φ2|2)
∫

d3r ′Vd |φ′
1|2

]

= g
1

(2π )3/2σ̄ 3
+ gqf

2N1/2

53/2π9/4σ̄ 9/2

− gdd

f (κx,κy) + Idip(κx,κy,u)

(2π )3/2σ̄ 3
(A6)

by quantum fluctuations as well as the interdroplet repulsion of
the dipolar interaction. We note that EC can become negative
because of the attractive dipolar interaction in a stable quantum

droplet. The hopping term

EJ = N

∫
d3r φ1

(
− h̄2∇2

2m
+ Vext

)
φ2

= − h̄2

4m
e− u2

4

⎡
⎣ ∑

k=x,y,z

(
σ−2

k + m2ω2
k

h̄2 σ 2
k

)
− u2

2σ 2
x

⎤
⎦ (A7)

only depends on quantum pressure and the external potential.
As a measure for the wave-function overlap it scales exponen-
tially with the rescaled distance u between droplets. Thus EJ

can be tuned over a wide range, as demonstrated in Fig. 5.

3. Dynamic simulations

As in the experiment, a BEC is prepared at a magnetic
field angle β � βc via imaginary-time evolution of the eGPE.
Subsequently, the angle is tilted at a constant speed of β̇ =
0.33 deg/ms in real-time evolution. At the critical angle βc we
observe the transition to one or multiple droplets depending
on the transversal trap aspect ratio λxy . A marker for this
transition is the combined two-body energy Econ+Edip that
becomes negative for β � βc. The overall droplet number in
the simulation is slightly higher compared to the experiment
and crucially depends on both the atom number and the
scattering length, where we chose values of N = 5000 and
as = 70a0 close to the experiment. Yet the former is subject
to experimental fluctuations and the latter is not known very
precisely. We also take into account three-body losses by an
additional term −i h̄

2 L3|ψ |4 in the eGPE with loss constant
L3 = 1.25 × 10−41 m6/s [6]. Due to atom loss of the single
droplets two of these can merge into a single one, lowering the
droplet atom number for β 
 βc.

APPENDIX B: EXPERIMENT

1. Setup

Our apparatus creates BECs of the isotope 164Dy in a
crossed optical dipole trap (along x̂ and ŷ axes, λ = 1064 nm)
with a microscope objective allowing for in situ imaging (1 μm
resolution) along the ẑ axis. The light sheet is implemented
diagonally in the imaging plane parallel to the (x̂ + ŷ) axis.
By reshaping a round Gaussian beam at λ = 532 nm with
cylindrical lenses we obtain a waist of wz ≈ 4 μm, leading to
measured trap frequencies of fz � 2.0 kHz for the strong axis.
In the experimental cycle we ramp up the light sheet power
in 50 ms after generating a BEC in the crossed infrared trap.
We use the infrared beams to simultaneously reshape the trap
in the xy plane. Afterwards we tilt the magnetic field with
constant rate β̇ and magnitude B. Then we typically wait for
10 ms and finally use phase-contrast imaging at a detuning of
10 � to measure the density distribution integrated along the
z axis in situ.

2. Fourier anisotropy

In order to quantify the transition from the condensate
to the droplet phase at the critical angle βc we analyze the
Fourier transform of the acquired images. For each image I

we compute the spectrum |F(I )|2 and sum it over an area
of width 	ky(x) = 4 μm−1 along the x (y) axis, respectively.
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FIG. 7. Measured critical angle βc over tilt speed β̇.

The difference of these sums normalized to the sum over the
combined area defines the Fourier anisotropy AFT. Relying
on the anisotropy of the cloud’s aspect ratio, this quantity
is independent of the observed droplet number. The AFT(β)
data are typically averaged over 4–10 realizations. In order to
extract the critical angle βc we use the empirical fit function
AFT(β) ∝ arctan[(β − βc)/w], as shown in Fig. 2(b). The error
is given by the quadratic mean of the fit error and the width w.

3. Tilt speed

We observe a larger critical angle when tilting the magnetic
field faster than β̇ � 0.4 deg/ms (see Fig. 7). This is due to

the finite time of the collapse dynamics. The creation time
of the droplets was measured to be ≈15 ms (comparable to
≈7 ms after a field quench in a different geometry [3]). Data
presented in this article are thus taken at a relatively slow
tilt speed of β̇ = 0.33 deg/ms, where the critical angle is not
overestimated.

4. Interference patterns

For the interference experiments we record the interference
patterns via absorption imaging after free expansion. We
integrate the images along y to obtain the integrated density
nint(x) [see Fig. 4(a)]. Fitting the cosine-modulated Gaussian
function

nint(x) ∝ e
− (x−x0)2

2σ2 {1 + v cos[k(x − x0) + θ ]} (B1)

to the data allows us to extract the phase θ with respect to
the center-of-mass position x0 of the distribution as well as
the visibility 0 � v � 1 of fringes. These two quantities are
shown in Fig. 4(b) in polar coordinates (v,θ ). We note that the
extracted Gaussian size σ and the wavelength λ = 2π/k have
the same magnitude and thus only a few fringes are visible.
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