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We study the ground-state phase diagram of two-dimensional two-component (or pseudospin- 1
2 ) Bose gases in

a high synthetic magnetic field in the space of the total filling factor and the ratio of the intercomponent coupling
g↑↓ to the intracomponent one g > 0. Using exact diagonalization, we find that when the intercomponent coupling
is attractive (g↑↓ < 0), the product states of a pair of nearly uncorrelated quantum Hall states are remarkably
robust and persist even when |g↑↓| is close to g. This contrasts with the case of an intercomponent repulsion,
where a variety of spin-singlet quantum Hall states with high intercomponent entanglement emerge for g↑↓ ≈ g.
We interpret this marked dependence on the sign of g↑↓ in light of pseudopotentials on a sphere, and also
explain recent numerical results in two-component Bose gases in mutually antiparallel magnetic fields where a
qualitatively opposite dependence on the sign of g↑↓ is found. Our results thus unveil an intriguing connection
between multicomponent quantum Hall systems and quantum spin Hall systems in minimal setups.
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I. INTRODUCTION

Engineering synthetic gauge fields in ultracold atomic
systems has been a subject of active interest recently [1–3].
While a real magnetic field does not produce a Lorentz force
for neutral atoms, different methods of creating synthetic
magnetic fields that do produce such a force have been de-
veloped. Such methods include mechanical rotation [4–8] and
optical dressing [9] of atoms in continuum and laser-induced
tunneling in optical lattices in real [10–12] and synthetic
[13–15] spaces. For two-component (or pseudospin- 1

2 ) gases,
which are populated in two hyperfine spin states of the same
atomic species, a richer variety of gauge fields have been
created, such as a uniform magnetic field by rotation [16,17],
and spin-orbit couplings [18–23] and pseudospin-dependent
antiparallel magnetic fields [24] by optical dressing tech-
niques. By using these techniques, we can expect to emulate
quantum Hall (QH) states and other topological states of matter
in highly controlled atomic systems and to explore many-body
phenomena beyond the scope of other condensed matter
systems [25,26]. The capability to prepare bosonic particles
in gauge fields is particularly unique to atomic systems. For
moderate synthetic magnetic fields, a scalar Bose-Einstein
condensate exhibits Abrikosov’s triangular vortex lattice, as
observed experimentally [5,6]. For high synthetic fields, theory
predicts that the vortex lattice melts and that incompressible
QH states appear at various integer and fractional values of the
filling factor ν = N/Nφ , where N is the number of atoms and
Nφ is the number of flux quanta piercing the system [7]. Such
QH states of two-dimensional (2D) scalar Bose gases include
a bosonic Laughlin state at ν = 1/2 [27,28], Jain’s composite
fermion (CF) states at ν = p/(p + 1) (p = 2,3, . . . ) [29–31],
and a non-Abelian Moore-Read state at ν = 1 [32,33]. The
Laughlin and Moore-Read states are two members of the
Read-Rezayi series of states with an SU(2)k symmetry at
ν = k/2 (k = 1,2, . . . ) [34].

A large number of theoretical studies have recently been
conducted for 2D pseudospin- 1

2 Bose gases in a uniform
synthetic magnetic field, where richer physics than the scalar

case is naturally expected. We introduce the total filling factor
ν = (N↑ + N↓)/Nφ , where N↑ and N↓ are the numbers of
pseudospin-↑ and ↓ bosons, respectively. Within the Gross-
Pitaevskii mean-field theory, which is valid for ν � 1, several
different types of vortex lattices have been shown to appear as
the ratio of the intercomponent contact interaction g↑↓ to the in-
tracomponent one g > 0 is varied [35,36]. Meanwhile, studies
on a high-magnetic-field regime with ν = O(1) have revealed
that various spin-singlet QH states with a finite excitation
gap emerge for pseudospin-independent [SU(2)-symmetric]
interactions with g↑↓ = g > 0. Among those states, relatively
large gaps are found for the Halperin (221) state with an
SU(3)1 symmetry at ν = 2/3 [37,38] and a bosonic integer
QH (BIQH) state protected by a U(1) symmetry at ν = 2
[39–45]. (Similar states have also been shown to appear in
interacting scalar bosons in topological flatbands with Chern
number 2 [46–53], a correlated honeycomb lattice model [54],
and two-component bosons in topological flatbands [55].)
At ν = 4/3, two types of spin-singlet QH states compete in
finite-size systems: a non-Abelian SU(3)2 state [56–59] and
a CF spin-singlet (CFSS) state [41], with the latter selected
in the thermodynamic limit [45]. Furthermore, a gapless
spin-singlet composite Fermi liquid (CFL) has been shown
to appear at ν = 1 [45,60] (with an emergent particle-hole
symmetry around this filling factor [45,61,62]). In all these
spin-singlet states, the two components are highly entangled.
For small |g↑↓|/g, in contrast, the system can be viewed as
two weakly coupled scalar Bose gases, and the product states
of nearly independent QH states (referred to as doubled QH
states hereafter) are expected to appear. It is thus interesting to
investigate the phase diagram with varying g↑↓/g and analyze
the competition among various QH states.

In this paper, we determine the ground-state (GS) phase
diagram of pseudospin- 1

2 Bose gases in a uniform synthetic
magnetic field in the space of the total filling factor ν and
the coupling ratio g↑↓/g. To this end, we have performed an
extensive exact diagonalization analysis in the lowest-Landau-
level (LLL) basis on spherical and torus geometries. Our main
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FIG. 1. Ground-state phase diagram in the space of the total filling
factor ν and the ratio g↑↓/g = tan γ of the intercomponent coupling
constant to the intracomponent one. We assume an intracomponent
repulsion g > 0. For an intercomponent attraction g↑↓ < 0, the
product states of a pair of nearly uncorrelated QH states (Laughlin,
composite fermion, and Moore-Read states) are found to appear
over wide ranges of g↑↓/g. For g↑↓ ≈ g, in contrast, a variety
of spin-singlet QH states with high intercomponent entanglement
appear, such as the Halperin (221) state at ν = 2/3 [37,38], a
CFSS state at ν = 4/3 [41,45], and a BIQH state at ν = 2 [39–45].
Furthermore, a gapless spin-singlet CFL appears at ν = 1 [45,60]. For
larger g↑↓/g, a phase separation (PS) occurs. The ranges of different
phases indicated by shaded bars are determined in Sec. II, and may
contain errors due to finite-size effects or ambiguity in setting the
condition for detecting the phase boundaries.

results are summarized in Fig. 1. Here we parametrize the two
coupling constants as

(g,g↑↓) = G�2(cos γ, sin γ ) (1)

with G > 0, and change γ in the range −π/2 � γ � π/2. As
can be seen in this diagram, when the intercomponent coupling
is attractive (g↑↓ < 0), doubled QH states are remarkably ro-
bust and persist even when |g↑↓| is comparable to the intracom-
ponent coupling g > 0. This sharply contrasts with the case
of an intercomponent repulsion (g↑↓ > 0), where a variety of
spin-singlet QH states with high intercomponent entanglement
emerge for g↑↓ ≈ g. We interpret this remarkable dependence
on the sign of g↑↓ in light of Haldane’s pseudopotentials
on a sphere [63,64]. More specifically, the stability of the
doubled QH states for g↑↓ < 0 can be understood from the
“ferromagnetic” nature of the intercomponent interaction in
terms of (modified) angular momenta of particles. We note
that some previous numerical works have also investigated
the phase diagram in the space of the coupling ratio g↑↓/g

for ν = 1 [65], ν = 4/3 [59], and ν = 2 [42]. However, since
these works set different conditions in determining the phase
boundaries and might involve finite-size effects in different
manners, it is worthwhile to reexamine the phase diagrams at
these filling factors in a comparative manner along the same
line of analyses. Furthermore, the case of g↑↓ < 0 was not
analyzed in these works.

It is interesting to compare Fig. 1 with the phase diagram
of the two-component Bose gases in antiparallel magnetic
fields studied previously [66] (see also Refs. [67] and [68]
for earlier studies on the same and related systems). In the
latter case, the pseudospin-↑ (↓) component is subject to

the magnetic field +B (−B) in the direction perpendicular
to the 2D gas, and the system possesses the time-reversal
symmetry. Within the Gross-Pitaevskii mean-field theory,
which is valid for ν � 1, one can show that the system
in antiparallel fields shows the same vortex structures as
the system in parallel fields studied in Refs. [35] and [36].
However, a remarkable distinction emerges in a high-field
regime with ν = O(1): in the case of antiparallel fields,
(fractional) quantum spin Hall states [69] composed of a
pair of QH states with opposite chiralities are robust for an
intercomponent repulsion g↑↓ > 0 and persist for g↑↓ as large
as g. Similar results have also been found in the stability of
two coupled bosonic Laughlin states in lattice models [70].
These results suggest that the case of g↑↓ > 0 for antiparallel
fields essentially corresponds to the case of g↑↓ < 0 for parallel
fields. As discussed later, the pseudopotential approach also
provides an insight into this intriguing correspondence.

The rest of the paper is organized as follows. In Sec. II,
we present our exact diagonalization results. In particular, we
perform an extensive search for incompressible states in the
present system and determine the ranges of different QH states
shown in Fig. 1. In Sec. III, we discuss the stability of coupled
QH states in light of pseudopotentials on a sphere. In Sec. IV,
we present a summary and an outlook for future studies. In
Appendix A, we summarize QH wave functions discussed in
the paper. In Appendix B, we describe some details on the
calculation of pseudopotentials for two-component gases in
antiparallel fields.

II. EXACT DIAGONALIZATION ANALYSIS

In this section, we present our exact diagonalization
analysis that has led to the phase diagram in Fig. 1. We consider
a system of a 2D pseudospin- 1

2 Bose gas (in the xy plane)
having two hyperfine spin states (labeled by α = ↑,↓) and
subject to a synthetic magnetic field B along the z axis. In the
case of a rotating gas, an effective magnetic field B = 2M�/q

is induced in the rotating frame of reference, where M and q

are the mass and the fictitious charge, respectively, of a neutral
atom and � is the rotation frequency. We denote the strengths
of the intracomponent and intercomponent contact interactions
by g and g↑↓, respectively. In the second-quantized form, the
interaction Hamiltonian is written as

Hint =
∑

α,β=↑,↓

gαβ

2

∫
d2r
̂†

α(r)
̂†
β(r)
̂β(r)
̂α(r), (2)

where 
̂α(r) is the bosonic field operator for the spin state α.
We set g↑↑ = g↓↓ ≡ g > 0 and g↑↓ = g↓↑. For a 2D system
of area A, the number of magnetic flux quanta piercing the
system is given by Nφ = A/(2π�2), where � = √

h̄/|qB| is
the magnetic length. Strongly correlated physics is expected
to emerge when Nφ becomes comparable with or larger than
the total number of particles, N = N↑ + N↓. For such high
B, it is useful to restrict ourselves to the low-energy subspace
spanned by the LLL states. Within this restricted subspace,
we have performed an exact diagonalization analysis of the
interaction Hamiltonian (2). Our analysis presented here is
analogous to that performed for the systems in antiparallel
fields in Ref. [66].
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A. Spherical and torus geometries

To study bulk properties, it is useful to work on closed
uniform manifolds having no edge. In our analysis, we
employ spherical [63,64] and torus [71,72] geometries as was
done in previous studies on the same and related systems
[40–42,44,45,57–60,65,73,74]. These geometries can describe
the central region of a trapped gas, where the particle density
is approximately uniform. Here we briefly describe the basic
features of these geometries.

For a spherical geometry, a magnetic monopole of charge
−Nφ(2πh̄/q) with integer Nφ ≡ 2S is placed at the origin. It
produces a uniform magnetic field −B on the sphere of radius
R = �

√
S. The LLL on a sphere corresponds to the subspace

in which a certain modified angular momentum [see Eq. (B1)
in Appendix B] has the magnitude S and is thus (2S + 1)-fold
degenerate. Introducing the spherical coordinates (θ,φ) and
the spinor coordinates

u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2, (3)

single-particle orbitals in the LLL are given by ψm ∝
uS+mvS−m, where m ∈ {−S, − S + 1, . . . ,S} is the z com-
ponent of the angular momentum. On a sphere, the interaction
Hamiltonian (2) in the LLL subspace can conveniently be
represented in terms of pseudopotentials [63,64], as explained
in Sec. III. Because of the spherical symmetry, many-body
eigenstates can be classified by the total angular momentum
L.

A torus geometry is formed by a periodic rectangle of sides
Lx and Ly . The degeneracy in the LLL manifold is given
by Nφ = LxLy/(2π�2). In our analysis, we set Lx = Ly .
The representation of the interaction Hamiltonian (2) in the
LLL basis on this geometry can be found in, e.g., Ref. [44].
The many-body eigenstates can be classified by the to-
tal pseudomomentum K = (Kx,Ky) = 2πh̄(mx/Lx,my/Ly).
When (Nφ,N ) = (q,p)N̄ , with N̄ being the largest common
divisor of Nφ and N , the two integers mx and my can take
mx ∈ {0,1, . . . ,qN̄ − 1} and my ∈ {0,1, . . . ,N̄ − 1}. Since
eigenstates with mx and mx + N̄ are related by a translation
in the y direction, all the eigenenergies are q-fold degenerate
[72].

On both the sphere and the torus, the filling factor in the
thermodynamic limit is given by ν = N/Nφ . For incompress-
ible states on finite spheres, however, the relation between N

and Nφ involves a characteristic shift δ as follows:

N = ν(Nφ + δ), (4)

where δ depends on individual candidate wave functions.
Therefore, on a sphere, competing incompressible states
leading to the same ν in the thermodynamic limit can be studied
separately with different (Nφ,N ) if they have different shifts.
On a torus, there is no shift, and all candidates for the same ν

compete in the same finite-size calculation.

B. Numerical search for incompressible states

Through exact diagonalization calculations on a spherical
geometry, we have carried out an extensive search for
incompressible GSs in the (Nφ,N ) plane for different values
of γ = arctan(g↑↓/g), as shown in Fig. 2. Incompressible

states, in general, appear as the unique GSs with L = 0,
which are indicated by filled circles. The area of each filled
circle is proportional to the neutral gap �n [in units of G

in Eq. (1)], which is defined as the excitation gap for fixed
(Nφ,N↑,N↓). Five types of lines indicate the relation (4) for
different candidate QH states; see Appendix A for the wave
functions of these states.

For small γ , doubled QH states are expected to appear.
In Fig. 2, solid lines correspond to the doubled Read-Rezayi
SU(2)k states at ν = k (k = 1,2,3,4), which include the dou-
bled Laughlin (k = 1) and Moore-Read (k = 2) states. (We
note that these states appear only for even Nφ .) Dashed dotted
lines correspond to doubled CF states at ν = 2p

p+1 (p = 2,3).
For (a) γ = −0.1π and (b) γ = 0.05π , we find that L = 0
GSs appear on these lines with relatively large excitation
gaps �n/G for ν = 1, 4/3, and 2. For −π/2 � γ � 0 (i.e.,
−1 � g↑↓/g � 0), we find that L = 0 GSs continue to appear
on these lines, although the gaps �n/G gradually shrink with
increasing |γ |. In contrast, as we increase γ in 0 � γ < π/4,
some of the GSs on these lines are replaced by L > 0 states, as
seen for (c) γ = 0.2π . These results suggest that the doubled
QH states are more stable for γ < 0.

At γ = π/4 (i.e., g↑↓ = g), the system possesses the SU(2)
spin rotational symmetry, and a variety of spin-singlet QH
states appear as revealed in previous studies. Such spin-singlet
QH states include the SU(3)k states at ν = 2k/3 (k = 1,2, . . . )
[37,38,56–59], a BIQH state at ν = 2 [39–42] (with possible
generalizations to ν = 4,6, . . . [40]), and CFSS states at
ν = 4/5 and 4/3 [41]. Since these states have finite excitation
gaps, they are expected to be stable over some ranges around
the SU(2) case. For (c) γ = 0.2π and (d) γ = 0.3π in Fig. 2,
L = 0 GSs are indeed found on the lines corresponding to
these states. (For a similar plot in the SU(2) case γ = π/4,
see Ref. [40].) In particular, relatively large gaps are found
for the SU(3)1 state at ν = 2/3 and the BIQH state at
ν = 2. At ν = 2/3, the SU(3)1 state [Halperin (221) state]
is known to be the exact zero-energy GS for repulsive contact
interactions g,g↑↓ > 0 [38]. Although the BIQH and SU(3)3

states compete at ν = 2, the gap for the former is (by a factor
of about 1.5) larger than that for the latter, indicating that
the BIQH state is likely to survive the competition [40]. At
ν = 4/3, the SU(3)2 and CFSS states compete; although the
gap values for these states are close for the system sizes
investigated in Fig. 2, a recent large-scale simulation based on
the infinite density matrix renormalization group (iDMRG) has
provided pieces of evidence that the CFSS state is stabilized
in the thermodynamic limit [45].

This section has focused on a global picture of the types
and the ranges of incompressible QH states present in the
system. More precise estimation of the range of each QH
phase requires a more detailed analysis, which we present
in the next section. Before closing the section, we note that
the appearance of the L = 0 GS as examined here is not a
sufficient condition for incompressibility—incompressibility
is guaranteed by further showing the robustness of the
excitation gap in the thermodynamic limit. However, since
only a few system sizes are available for each candidate QH
state in exact diagonalization, one cannot make a reliable
extrapolation of the excitation gap to the thermodynamic limit.
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ν=2/3

ν=4/3
ν=2

ν=8/3
ν=6/3

ν=4
ν=6

ν=4/5
ν=4/3

N

Nφ = 2S

BIQH
SU(3)k
CFSS

FIG. 2. Candidates for incompressible GSs in the (Nφ,N ) plane, calculated on a spherical geometry for different values of γ =
arctan(g↑↓/g). Filled circles indicate GSs with the total angular momentum L = 0, where incompressible states can appear; the area of
each filled circle is proportional to the neutral gap �n/G. Open circles indicate the GSs with L > 0. Five types of lines indicate the relation
(4) for different QH states: the doubled Read-Rezayi SU(2)k states [(ν,δ) = (k,2); black solid], the doubled CF states [(ν,δ) = ( 2p

p+1 ,p + 1);

green dashed dotted], the SU(3)k states [(ν,δ) = ( 2k

3 ,2); red dashed], the BIQH state (with its possible generalizations) [(ν,δ) = (2k,0); blue
dotted], and the CFSS states [(ν,δ) = ( 4

5 ,3),( 4
3 , − 1); purple double dotted]. Data points are missing for large Nφ or N due to an exponentially

increasing computation time.

In the next section, we use different quantities (mainly, the
overlap of the GS with a representative wave function) and the
knowledge gained from a related system in antiparallel fields
[66] to estimate the range of each QH phase.

C. Ranges of quantum Hall states

Hereafter we focus on the filling factors ν = 2/3, 1, 4/3,
and 2, where the QH states have relatively large excitation
gaps. We determine the range of γ over which each QH state
identified in Sec. II B is stabilized.

Similar to Ref. [66], we examine two kinds of quantities
for this purpose: the fidelity susceptibility and the squared
overlap of the GS with representative wave functions. The
fidelity susceptibility χF measures how fast the GS changes
as a function of γ , and is defined as [75]

χF (γ ) = −2 lim
δγ→0

ln F (γ,γ + δγ )

(δγ )2
, (5)

where F (γ,γ + δγ ) = |〈
(γ )|
(γ + δγ )〉| is the overlap
between the GSs at two close points γ and γ + δγ . A peak

in this quantity, in general, signals a phase transition. This
quantity has proven to be quite useful for detecting phase
transitions in the case of antiparallel fields [66]. In the present
case of parallel fields, however, χF does not show a clear
peak structure or a smooth dependence on the system size;
this may be attributed to severer finite-size effects due to more
complicated competition among various phases. Nonetheless,
exact diagonalization is still useful in a regime where a certain
QH state clearly wins for given (Nφ,N ). The squared overlap
of the GS with a representative wave function can be used to
identify such a regime.

In Fig. 3, we analyze the ranges of the doubled QH states. In
the decoupled case (γ = 0), the GS for (ν,δ) = (1,2) is given
exactly by the doubled Laughlin wave functions [28]. At the
same point, the GSs for (ν,δ) = (4/3,3) and (2,2) have large
overlaps with the doubled CF wave functions and the doubled
Moore-Read wave functions, respectively; indeed, the squared
overlaps with these wave functions are 0.982 and 0.966 872

for (Nφ,N ) = (9,16) and (6,16), respectively [31], where the
square is due to the presence of two components. In Figs. 3(b),
3(d) and 3(f), we plot the squared overlap |F (0,γ )|2 of the
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FIG. 3. (a), (c), (e) The fidelity susceptibility χF (γ ) and (b), (d),
(f) the squared overlap |F (0,γ )|2 with the decoupled case as functions
of γ . Calculations are performed on a spherical geometry for ν =
1, 4/3, and 2. Curves are shown in the regions where the GS belongs
to the same sector. Vertical dotted lines correspond to γ = 0, ± π/4.

GS with the decoupled case (γ = 0) to analyze the stability
of these doubled QH states. We find that |F (0,γ )|2 decreases
more slowly for γ < 0 than for γ > 0 as we move away from
the decoupled case; this indicates that the doubled QH states
are more robust for an intercomponent attraction g↑↓ < 0. In
general, the squared overlap can only show a smooth behavior
across a phase transition point in finite-size systems (unless the
GS moves to another sector of the Hilbert space); furthermore,
it tends to decrease exponentially with the system size owing
to an exponentially increasing Hilbert space dimension. To
estimate the ranges of the doubled QH states from the present
data, useful guidance can be gained from Ref. [66]: in the
case of antiparallel fields, a peak in the fidelity susceptibility
χF is found when the squared overlap |F (0,γ )|2 is around
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FIG. 4. (a), (c) The fidelity susceptibility χF (γ ), (b) the squared
overlap with the SU(3)2 wave function, and (d) the squared overlap
|F (π/4,γ )|2 with the SU(2) case as functions of γ around γ = π/4
(the vertical dotted lines). Calculations are performed on a spherical
geometry. Curves are shown in the regions where the GS belongs to
the same sector.

0.5 for the largest system size treated in each of Figs. 3(b),
3(d) and 3(f). Using the data for such system sizes and finding
the points where |F (0,γ )|2 becomes 0.5 or the GS moves to
another total-angular-momentum sector, we can estimate the
ranges of the doubled QH states as follows:

(Laughlin)2 : − 0.25π < γ � 0.22π ;

(Composite fermion)2 : − 0.23π � γ � 0.13π ;

(Moore-Read)2 : − 0.25π � γ � 0.18π.

(6)

Around the boundaries of these ranges, χF shows peaks or
takes relatively large values as seen in Figs. 3(a), 3(c) and
3(e). We note that the above estimates can contain errors due
to finite-size effects or ambiguity in setting the condition for
|F (0,γ )|2. A more precise determination of phase boundaries
requires a simulation for larger systems by using, e.g., the
DMRG [45,76–78].

We have performed a similar analysis to estimate the
ranges of the spin-singlet QH states as shown in Fig. 4. In
Fig. 4(b), we examine the squared overlap |F (π/4,γ )|2 with
the SU(2) case (γ = π/4) for (ν,δ) = (4/3, − 1) to analyze
the range of the CFSS state. We note that the squared overlap
between our reference state |
(π/4)〉 and the CFSS wave
function is 0.9711, a value close to unity, for (Nφ,N ) =
(10,12) [45]. Finding the points where |F (π/4,γ )|2 = 0.5
for (Nφ,N ) = (10,12), we estimate the range of the CFSS
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FIG. 5. Energy spectra versus γ for ν = 2/3, 1, 4/3, and 2 with Nφ = 6 on a torus geometry. The eigenstates are classified by the
magnetization (or population imbalance) Sz = (N↑ − N↓)/2 and the pseudomomentum K . Upward () and downward (�) triangles indicate
the two lowest-energy states in the sector with K = 0 and ρπ = p↑↓ = +1 in the equal-population case Sz = 0, where ρπ and p↑↓ are the
quantum numbers associated with the π spatial rotation and the interchange of the two components, respectively. The lowest energy in this
sector is subtracted from the entire spectrum in (b, c, d). Diamonds (�) and squares (�) indicate the two lowest-energy states in the sector
with K = 0 and ρπ = p↑↓ = −1. Circles (©) indicate other eigenstates in the equal-population case. Greek (+) and diagonal (×) crosses
indicate eigenstates in the fully (Sz = ±N/2) and partially (0 < |Sz| < N/2) imbalanced cases, respectively. Only the two lowest energies are
displayed in each sector. For ν = p/q (with p and q being coprime), each eigenenergy is q-fold degenerate.

state to be 0.19π � γ � 0.38π [79]. In Fig. 4(d), we examine
|F (π/4,γ )|2 for (ν,δ) = (2,0) to analyze the range of the
BIQH state. Here, the squared overlap between our reference
state |
(π/4)〉 and the BIQH wave function is 0.8197
for (Nφ,N ) = (8,16) [45]. The condition |F (π/4,γ )|2 = 0.5
leads to the range 0.13π � γ � 0.37π , which overlaps with
the estimated range of the doubled Moore-Read states in
Eq. (6). Since the overlap between |
(π/4)〉 and the BIQH
wave function is not very close to unity, we need a stricter
condition. With the condition |F (π/4,γ )|2 = 0.8, for exam-
ple, we can estimate the range of the BIQH state to be
0.18π � γ � 0.32π . An even stricter condition was used in
Ref. [42].

Finally, we examine energy spectra on a torus geometry
in Fig. 5. A torus geometry can provide less biased results
since there is no shift and different candidates of QH states
can compete in the same finite-size calculation. However, the
presence of topological degeneracy can make the analysis more
complex. For ν = 2/3 in Fig. 5(a), we can clearly see the
presence of a gap above the zero-energy SU(3)1 state (with
threefold degeneracy) for 0 < γ < π/2. For ν = 1 in Fig. 5(b),
there appear fourfold-degenerate zero-energy GSs at γ = 0,
which are given by the products of Laughlin states; a large gap
opens above these GSs, and it decreases more slowly for γ < 0

than for γ > 0 with increasing |γ |. Although the behaviors of
the spectra are more complex for ν = 4/3 and 2 as shown in
Figs. 5(c) and 5(d), we can see the emergence of energy gaps
above the doubled CF states [around γ = 0 in (c)] and the
BIQH state [around γ = 1 in (d)]. In Figs. 5(b)–5(d), we can
further find the occurrence of a phase separation for large γ

through the replacement of the GS with an imbalanced state
with N↑ �= N↓. The boundaries of phase-separated regions in
Fig. 1 are estimated in this way from Figs. 5(b)–5(d).

D. Collapse of the gas for γ < −π/4

Similar to the case of antiparallel fields [66], a col-
lapse of the gas occurs for γ < −π/4 owing to the dom-
inance of an intercomponent attraction. As seen in Fig. 6,
the GS energy EGS(N ) as a function of N is convex
for γ > −π/4 and is concave for γ < −π/4. This indi-
cates that the compressibility κ , which is inversely propor-
tional to d2EGS

dN2 , changes its sign across γ = −π/4 (with
a divergence κ → ±∞ at the transition point). The state
with κ < 0 for γ < −π/4 is thermodynamically unstable
and spontaneously contracts, leading to a collapse of the
gas [80].
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FIG. 6. Ground-state energy as a function of N for different
values of γ around −π/4. We use a spherical geometry and set
Nφ = 6.

III. INTERCOMPONENT ENTANGLEMENT
AND PSEUDOPOTENTIALS

The phase diagram in Fig. 1, which is determined in the
preceding section, shows a remarkable dependence on the sign
of the intercomponent coupling g↑↓. While doubled QH states
are robust for g↑↓ < 0, they are destabilized for moderate
g↑↓/g > 0, and a variety of spin-singlet QH states with
high intercomponent entanglement emerge for g↑↓/g ≈ 1.
Interestingly, a qualitatively opposite dependence on the sign
of g↑↓ has been found in two-component Bose gases in
antiparallel fields [66]; in this case, the products of a pair
of QH states are more stable for g↑↓ > 0 than for g↑↓ < 0.
In this section, we present an interpretation of these results in
light of pseudopotentials on a spherical geometry.

The pseudopotential representation of interactions is intro-
duced in the following way [63,64]. In a scattering process
of two particles on a sphere, their total angular momentum is
conserved because of the spherical spatial symmetry. The two-
body interaction Hamiltonian (2) can therefore be decomposed
as

Hint = 1

2

∑
α,β=↑,↓

2S∑
J=0

V
αβ

J

J∑
M=−J

A
αβ†
JMA

αβ

JM. (7)

Here, we have introduced the pair creation operator

A
αβ†
JM =

∑
m1+m2=M

b†m1α
b
†
m2β

〈S,m1; S,m2|J,M〉, (8)

where b
†
mα is the bosonic creation operator for the pseudospin

state α and the mth orbital in the LLL, and 〈S,m1; S,m2|J,M〉
is the Clebsch-Gordan coefficient. We note that Aαα

JM = 0 when
S − J is odd, owing to the bosonic statistics. The coefficient
V

αβ

J describes the interaction energy of two particles with
pseudospin states α and β in the total angular momentum J and
is called the pseudopotential. The expansion (7) is analogous
to the decomposition of an interaction between spinor atoms
in terms of the total spin magnitude [81,82].

In the case of two-component gases in parallel fields, the
pseudopotentials are calculated to be

V
αβ

J = δJ,2S

gαβ

4π�2

(2S + 1)2

S(4S + 1)
. (9)
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 0.5

1

 1.5
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FIG. 7. Intercomponent pseudopotential (10) as a function of the
total angular momentum J of two particles in antiparallel fields on a
sphere.

As seen in this expression, V
αβ

J is nonzero only when J takes
the maximal value 2S. In the case of two-component gases in
antiparallel fields, the intracomponent pseudopotentials V αα

J

are given by the same form as Eq. (9) while the intercomponent
one is given by

V
↑↓
J = g↑↓

4π�2

[(2S + 1)!]2

S(2S − J )!(2S + J + 1)!
. (10)

See Appendix B for the derivation of Eqs. (9) and (10).
Equation (10) is plotted in Fig. 7. As seen in this figure, V ↑↓

J in
units of g↑↓/(4π�2) takes the maximum of about 2 for J = 0
and decreases monotonically with increasing J ; furthermore,
with increasing Nφ = 2S, the decrease of V

↑↓
J as a function of

J becomes slower.
Figure 8 summarizes the behaviors of the intercomponent

pseudopotential V
↑↓
J for parallel and antiparallel fields (right)

and presents their interpretations in terms of angular momenta
(left). In the case of (a) parallel fields, a particle is located
around the direction of its angular momentum 〈Lα〉 [63,64].
In this case, a repulsive (attractive) interaction between ↑
and ↓ particles can be viewed as an “antiferromagnetic
(AFM)” [“ferromagnetic (FM)”] interaction between their
angular momenta L↑,↓. This is consistent with the behavior
of V

↑↓
J in Eq. (9), which disfavors (favors) the maximal

total angular momentum J = 2S for g↑↓ > 0 (g↑↓ < 0). In
the case of (b) antiparallel fields, in contrast, a pseudospin-↑
particle is located around the direction of −〈L↑〉. Thus, a
repulsive (attractive) interaction between ↑ and ↓ particles
can be viewed as a “FM” (“AFM”) interaction between their
angular momenta L↑,↓. This is consistent with Eq. (10), which
disfavors (favors) states with small J for g↑↓ > 0 (g↑↓ < 0).

Now the phase diagrams in the cases of parallel and
antiparallel fields can be understood as follows. In the
absence of an intercomponent coupling g↑↓, the intracom-
ponent pseudopotential V αα

J having an “AFM” nature leads
to the formation of QH states in each component. Such
QH states reside in the singlet sector (L = 0) of the total
angular momentum and thus are highly entangled with respect
to angular momenta of particles in each component. In
the case of parallel (antiparallel) fields, an intercomponent
attraction g↑↓ < 0 (repulsion g↑↓ > 0) introduces a “FM”
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FIG. 8. Schematic pictures of modified angular momenta L↑,↓
(left) and the intercomponent pseudopotential V

↑↓
J (right) on a

spherical geometry. The sign at the center of a sphere indicates
the sign of the magnetic monopole charge in units of 2πh̄/q for
each component. See Eqs. (9) and (10) for the expressions of V

↑↓
J

and Fig. 7 for the plot of Eq. (10). In the case of (a) parallel
fields, a repulsive (attractive) coupling g↑↓ > 0 (g↑↓ < 0) between
↑ and ↓ particles can be viewed as an “AFM” (“FM”) interaction
between their angular momenta. In the case of (b) antiparallel fields,
in contrast, an intercomponent repulsion (attraction) can be viewed
as a “FM” (“AFM”) interaction between the angular momenta. The
intercomponent coupling of an “AFM” type is expected to produce
higher entanglement between the two components than the one of
a “FM” type. An intercomponent repulsion g↑↓ > 0 in (a) has a
particularly large flexibility in the way of forming entanglement
between the two components, which qualitatively explains why a
variety of spin-singlet QH states emerge for g↑↓ ≈ g.

interaction between angular momenta of particles in different
components. Since such an interaction favors the formation of
product states such as |J = 2S,M = 2S〉 = |S,S; S,S〉 for two
particles in different components, it is not likely to produce
high entanglement between the components. In contrast, an
intercomponent repulsion g↑↓ > 0 (attraction g↑↓ < 0) in the
case of parallel (antiparallel) fields has an “AFM” nature
and is expected to produce high entanglement between the
components. Because of the monogamy of entanglement [83],
the entanglement formation between the components leads
to the destruction of entanglement in each component. Thus,
the doubled QH states are less stable for such an interaction.
As shown in Fig. 8, an intercomponent repulsion g↑↓ > 0 in
the case of (a) parallel fields favors all the two-body states
with J �= 2S equally, and thus has a large flexibility in the
way of forming entanglement between the components. This
qualitatively explains why a rich variety of spin-singlet QH
states emerge for g↑↓ ≈ g. Meanwhile, an intercomponent
attraction g↑↓ < 0 in the case of (b) antiparallel fields favors
two-body states with small J rather selectively, and is likely to
lead to simpler physics. In particular, when g↑↓ = −g < 0, the
GS is given exactly by the singlet-pairing state (A↑↓†

00 )N/2|vac〉
for all even N [66]. We note that the formation of larger
entanglement for AFM intercomponent couplings than for FM
ones is also found in the quantum GSs of a binary mixture of
spinor Bose-Einstein condensates [84]. Generalization of the
present argument to other geometries such as a disk and a torus
remains as an important open problem.

IV. SUMMARY AND OUTLOOK

In this paper, we have determined the QH phase diagram
of two-component Bose gases in a synthetic magnetic field as
shown in Fig. 1. We have revealed a remarkable dependence on
the sign of the intercomponent coupling g↑↓: while the product
states of a pair of QH states are robust for g↑↓ < 0, they are
destabilized for moderate g↑↓/g and a variety of spin-singlet
QH states with high intercomponent entanglement emerge for
g↑↓ ≈ g. We interpret these results in light of pseudopotentials
on a sphere. The pseudopotential approach also explains recent
numerical results in two-component Bose gases in antiparallel
fields [66] where a qualitatively opposite dependence on the
sign of g↑↓ is found.

It is interesting to ask whether the relationship between
the cases of parallel and antiparallel fields revealed in the
present study and Ref. [66] applies to more general systems.
Repellin et al. [70] have found in lattice models that two
coupled bosonic Laughlin states with opposite chiralities (i.e.,
fractional quantum spin Hall states [69]) are more robust
than the ones with the same chiralities for an intercomponent
repulsion; the case of an intercomponent attraction has yet to be
analyzed. The stability of fractional quantum spin Hall states
against an intercomponent repulsion has also been studied in
time-reversal-invariant models of spin- 1

2 fermions in lattices
[85,86] and continuum [87], and in a model of strained
graphene [88]; it is intriguing to compare these systems
with their time-reversal-breaking counterparts. Further studies
in these directions would cross-fertilize two active research
fields, multicomponent QH systems [89] and a strongly
correlated regime of spin Hall systems [69].
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APPENDIX A: QUANTUM HALL WAVE FUNCTIONS

Here we summarize QH wave functions discussed in this
paper. Let us first review the case of scalar Bose gases. We
consider a disk geometry, where the LLL orbitals are given
by ψm(z) ∝ zm exp[−|z|2/(4�2)] (m = 0,1, . . . ,Nφ), with z =
x + iy being a complex coordinate. In this geometry, a general
many-body wave function has the form


({zi}) = 
̃({zi})e−∑
j |zj |2/(4�2), (A1)

where 
̃({zi}) is a symmetric polynomial of the coordinates
{zi} of N bosons. In the following, we use either 
 or 
̃ to
represent each QH wave function.

The Laughlin wave function [27] at the filling factor ν =
1/2 is given by


̃Laughlin =
∏
i<j

(zi − zj )2. (A2)
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This is an exact zero-energy GS for a repulsive contact
interaction as the amplitude of this wave function vanishes
when any two particles come to the same point [28]. Using
this wave function, one can construct the Read-Rezayi series
of states [34] at ν = k/2 (k = 1,2, . . . ), which has an SU(2)k
symmetry. Their wave functions can be represented as [90]


̃SU(2)k = Sgroup

∏
group


̃Laughlin. (A3)

Here, the N bosons are first partitioned into k groups with
equal populations. For each group we write a Laughlin factor

̃Laughlin, and then such factors are multiplied together. Finally,
we apply the symmetrization operation Sgroup over all different
ways of dividing the particles into k groups. For k = 1,
Eq. (A3) clearly gives the Laughlin wave function (A2); for
k = 2, Eq. (A3) is equivalent to the Moore-Read (“Pfaffian”)
wave function [32]


̃MR = Pf

(
1

zi − zj

) ∏
i<j

(zi − zj ). (A4)

The SU(2)k states with k � 2 exhibit excitations obeying
non-Abelian statistics. The wave function (A3) is a unique
zero-energy GS of a Hamiltonian consisting of a (k + 1)-body
interaction

Hk =
∑

i1<···<ik+1

δ
(
zi1 − zi2

) · · · δ(zik − zik+1

)
. (A5)

For scalar bosons interacting via a repulsive contact inter-
action, the SU(2)k wave functions (A3) have been found to
give good approximations to the GSs for small k [30,33,91].
On a sphere, the candidate wave functions can be obtained
through the replacement zi − zj → uivj − viuj in the above
wave functions; since the largest power of z1 in Eq. (A3) is
given by Nφ = 2(N/k − 1), these wave functions have the
shift δ = 2. On a torus, the SU(2)k state exhibits topological
GS degeneracy of k + 1.

Another important series of QH states are Jain’s CF states
[29,30] at ν = p

p+1 (p = 1,2, . . . ); at these filling factors,
binding of a unit flux to each boson leads to the integer
QH states of CFs at the effective filling factors ν∗ = p. The
corresponding wave functions are given by [29,31,92]


CF
p

p+1
({zi}) = PLLLJ ({zi})�p({zi}), (A6)

where J ({zi}) = ∏
i<j (zi − zj ) is the Jastrow factor, �p({zi})

is the Slater determinant obtained by filling exactly p Landau
levels, and PLLL is the projection onto the LLL manifold.
For p = 1, this wave function reproduces the Laughlin wave
function (A2). For p = 2 and 3, the wave function (A6) (with a
slight modification of the projection for technical convenience)
has been confirmed to give good approximations to the GSs
for a two-body contact interaction in numerical analyses of
finite-size systems [31].

Let us now turn to the case of two-component Bose gases
studied in this paper. Since the QH states for small g↑↓/g are
simply the products of two QH states in the scalar case, we
here focus on the spin-singlet QH states appearing for g↑↓ ≈ g.
The Halperin (221) wave function [37] at the total filling factor

ν = 1/3 + 1/3 is given by


̃221 =
∏
i<j

(z↑
i − z

↑
j )2

∏
i<j

(z↓
i − z

↓
j )2

∏
i,j

(z↑
i − z

↓
j ). (A7)

The contact interactions in Eq. (2) vanish for this wave
function, and therefore Eq. (A7) is an exact zero-energy
GS for arbitrary g↑↓ � 0 and g � 0 [38]. Using this wave
function, one can construct a series of non-Abelian spin-singlet
states at ν = k/3 + k/3 with integer k [56], which have an
SU(3)k symmetry. (More generally, the SU(n + 1)k states at
ν = nk/(n + 1) can be constructed for n-component Bose
gases [93].) On a disk, their wave functions are written as


̃SU(3)k = Sgroup

∏
group


̃221. (A8)

Here, as in the Read-Rezayi wave functions (A3), N bosons
are first partitioned into k groups, each with N/(2k) particles
in each spin state ↑,↓, a Halperin 
̃221 factor is constructed in
each group, and then the symmetrization Sgroup is carried out.
The SU(3)k states with k � 2 exhibit excitations obeying non-
Abelian statistics. The wave function (A8) is again a unique
zero-energy GS for a (k + 1)-body interaction (A5) for two
components on a disk. Since the largest power of z

↑
1 in Eq. (A8)

is given by Nφ = 2( N
2k

− 1) + N
2k

, these wave functions have
the shift δ = 2 on a sphere. On a torus, the SU(3)k state
exhibits topological GS degeneracy of (k + 1)(k + 2)/2. For
two-body contact interactions (2) with g↑↓ ≈ g, an indication
of sixfold GS degeneracy corresponding to the SU(2)2 state
has been obtained numerically for small numbers of particles
[58,59]; however, the SU(2)2 state competes with a CFSS state
explained below, and a recent large-scale simulation based on
the iDMRG has provided pieces of evidence that the CFSS
state is stabilized in the thermodynamic limit [45].

A series of CFSS states can be introduced at ν = p

2p±1 +
p

2p±1 (p = 1,2, . . . ) [41,94]; here, binding of a unit flux with
each boson leads to the integer QH states of CFs at ν∗ =
±(p + p). The corresponding wave functions are given by


CFSS
2p

2p±1
({zi}) = PLLLJ ({zi})�±p({z↑

i })�±p({z↓
i }), (A9)

where J ({zi}) is the Jastrow factor for all the particles, and
�−p({zα

i }) = �∗
p({zα

i }). For ν = 2/(2 + 1) = 2/3, this wave
function reproduces the Halperin (221) wave function. For ν =
2/(2 − 1) = 2, the wave function (A9) gives the BIQH wave
function [39], which is a good approximation to the GS for two-
body contact interactions (2) with g↑↓ = g [41]. The BIQH
state is particularly intriguing, as it is a symmetry-protected
topological state of bosons in two dimensions [95,96] and
exhibits counterpropagating charge and spin modes at the
edge [39], as numerically demonstrated [40,41,45]. Pieces of
evidence for the appearance of the ν = 4/(4 − 1) = 4/3 CFSS
state in the thermodynamic limit have been obtained through
the calculations of the shift and the entanglement spectrum
in a recent iDMRG simulation [45]. An indication of the
ν = 4/(4 + 1) = 4/5 CFSS states has also been found [41].

Indications of gapped states at ν = 4 and 6 have been
found in Ref. [40] (see blue dotted lines in Fig. 2). While
we have not achieved appropriate characterizations of these
states, the real-space entanglement spectrum of the ν = 4 state
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reveals a counterpropagating nature of edge modes, suggesting
similarities to the BIQH state at ν = 2. Candidate wave
functions for this series of states may be obtained by applying
a “grouping and symmetrizing” procedure as in Eq. (A8) to
the BIQH wave function; however, the relevance of such wave
functions to the present system has yet to be clarified.

APPENDIX B: PSEUDOPOTENTIALS FOR
ANTIPARALLEL FIELDS

Here we describe the calculation of pseudopotentials
for pseudospin- 1

2 Bose gases in antiparallel magnetic fields
on a spherical geometry. Such systems have been studied
previously [66–68], and we basically take the same notations
as in Ref. [66]. A related calculation of pseudopotentials for
two-species Dirac fermions in antiparallel fields is presented
in Ref. [97].

We introduce the polar coordinates (r,θ,φ) and associated
unit vectors er ,eθ ,eφ . We place a pseudospin-dependent
magnetic monopole of charge εαNφ(2πh̄/q) with integer
Nφ ≡ 2S at the center of the sphere, where ε↑ = +1 and
ε↓ = −1. This monopole produces a magnetic field εαB on
the sphere of radius R = �

√
S. For this problem, it is useful to

introduce the modified angular momentum

Lα = r ×
(

p + εα

h̄S cot θ

r
eφ

)
− εαh̄Ser , (B1)

which obeys the standard algebra of an angular momentum.
The LLL for a pseudospin-α particle on the sphere corresponds
to the subspace in which Lα has the magnitude of S. The
single-particle orbitals in the LLL are given by [63,64,66]

ψm↑(r) = v̄S+m(−ū)S−m√
4πR2NS,−m

, ψm↓(r) = uS+mvS−m√
4πR2NSm

, (B2)

for the pseudospin states ↑ and ↓, respectively. Here, m ∈
{−S, − S + 1, . . . ,S} is the eigenvalue of Lz

α/h̄, r is con-
strained to the surface of the sphere (r = Rer ), and (u,v)
and (ū,v̄) are the spinor coordinates (3) and their complex
conjugates. The normalization factor NSm is given by

NSm =
∫

d2r
4πR2

|u|2(S+m)|v|2(S−m) = (S + m)!(S − m)!

(2S + 1)!
.

(B3)

It is worth noting that the orbital ψmα has the average location

〈ψmα| cos θ |ψmα〉 =
∫

d2r cos θ |ψmα(r)|2 = −εαm

S + 1
. (B4)

In particular, the m = S state for α =↑(↓) is localized around
the south (north) pole of a sphere. This suggests that a
pseudospin-α particle in the LLL is, in general, located around
the direction of −εα〈Lα〉, as schematically shown in Fig. 8(b).

The pseudopotentials are defined as the eigenenergies of
the interaction Hamiltonian (2) for two-body eigenstates. Such
two-body eigenstates can be calculated through the angular-
momentum coupling of Eq. (B2) as

�
αβ

JM (r1,r2) =
∑

m1+m2=M

ψm1α(r1)ψm2β(r2)

×〈S,m1; S,m2|J,M〉, (B5)

where α,β = ↑,↓. For a general interaction potential Vαβ(r),
the pseudopotentials are given by

V
αβ

J =
∫

d2r1d
2r2Vαβ(r1 − r2)|�αβ

JM (r1,r2)|2. (B6)

Since the right-hand side does not depend on M , it is sufficient
to consider the case of M = J . Furthermore, since V↑↑ = V↓↓
and V↑↓ = V↓↑ in the case of our interest, we can focus on
the cases of (α,β) = (↓,↓) and (↑,↓). In these cases, using the
expressions of the Clebsch-Gordan coefficients, the two-body
eigenstates (B5) are calculated to be [63,64,97]

�
↓↓
JJ (r1,r2) = (u1v2 − v1u2)2S−J (u1u2)J

4πR2M1/2
SJ

, (B7a)

�
↑↓
JJ (r1,r2) = (v̄1v2 + ū1u2)2S−J (v̄1u2)J

4πR2M1/2
SJ

, (B7b)

where we introduce the spinor coordinates (ui,vi) for r i (i =
1,2) as in Eq. (3), and the normalization factor MSJ is given
by

MSJ = NJ,0
(2S − J )!(2S + J + 1)!

[(2S + 1)!]2
. (B8)

We now focus on the case of contact interactions Vαβ(r) =
gαβδ(r) with g↑↑ = g↓↓ = g > 0. By substituting Eq. (B7a)
into Eq. (B6), the intracomponent pseudopotential is calcu-
lated as

V
↓↓
J = g

∫
d2r|�↓↓

JJ (r,r)|2 = V
↓↓

2S δJ,2S, (B9)

where

V
↓↓

2S = gN2S,2S

4πR2MS,2S

= g

4π�2

(2S + 1)2

S(4S + 1)
. (B10)

In the limit S → ∞, V2S converges to g/(4π�2), which
coincides with the pseudopotential for zero relative angular
momentum in a single-component gas on the disk geometry
[7]. Similarly, by substituting Eq. (B7b) into Eq. (B6), the
intercomponent pseudopotential is calculated as

V
↑↓
J = g↑↓NJ,0

4πR2MSJ

= g↑↓
4π�2

[(2S + 1)!]2

S(2S − J )!(2S + J + 1)!
,

(B11)

which gives Eq. (10).
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