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Detection of applied and ambient forces with a matter-wave magnetic gradiometer
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An atom interferometer using a Bose–Einstein condensate of 87Rb atoms is utilized for the measurement of
magnetic-field gradients. Composite optical pulses are used to construct a spatially symmetric Mach–Zehnder
geometry. By using a biased interferometer we demonstrate the ability to measure small residual forces in
our system and discriminate between magnetic and inertial effects. These are a residual ambient magnetic-
field gradient of 15 ± 2 mG/cm and an inertial acceleration of 0.08 ± 0.02 m/s2. Our method has important
applications in the calibration of precision measurement devices and the reduction of systematic errors.
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I. INTRODUCTION

Matter-wave interferometry is performed by splitting the
atomic wave function into two or more distinct parts, then
allowing these to evolve before recombining them and per-
forming a readout operation [1]. Alkali atoms offer an attrac-
tive medium due to the relatively simple internal structure,
and the ability to readily prepare, manipulate, and interrogate
them with lasers [1,2]. Atom interferometry in general offers
the ability to perform precision measurements in the form
of magnetic and gravitational metrology [3–10] and inertial
sensing [2,10–15] as well as to test fundamental physics by
making measurements of the fine-structure constant [16–19],
the Newtonian gravitational constant [20], atomic polarizabil-
ities [21], tests of the equivalence principle [22], and recent
proposals for gravitational wave detection [23]. The use of
Bose–Einstein condensates over thermal atoms in interferom-
etry can be favorable due to the low atomic speed and therefore
low dispersion, and increased phase coherence offering a high-
contrast signal and an increased signal-to-noise ratio [9,24,25].

In this paper we present an application of atom interfer-
ometry to the measurement of magnetic- and inertial-field
gradients. In the first instance we use measurements of the
varying momentum-state populations at the interferometer
output to measure an applied magnetic-field gradient along
the interferometer axis [26]. Our apparatus is operated in
two modes by using either pulsed or continuous magnetic-
field gradients. We model the corresponding interferometer
phases and demonstrate the effect of varying the magnitude
of the gradient field as well as varying the duration of the
interferometer sequence.

Through the application of bias magnetic-field gradients
we further demonstrate the ability to clearly distinguish the
effects of both applied and ambient magnetic and ambient
inertial gradient fields. This result enables the characterization
of otherwise small residual accelerating fields, both magnetic
and inertial, within the complete system that would otherwise
be unresolvable in an interferometer with a cosine-dependent
phase sensitivity.

II. PREPARATION OF BOSE–EINSTEIN CONDENSATE

We load a three-dimensional (3D) magneto-optical trap
(MOT) of ≈109 87Rb atoms from a two-dimensional (2D)

MOT in 15 s. After optical molasses and optical pumping into
the |F = 2,mF = 2〉 ground state we magnetically transport
our atoms horizontally to the interferometry region, 6 cm
from the 3D MOT, and compress the cloud by ramping the
quadrupole (QP) trap to an axial gradient of 206 G/cm.
Starting with an initial phase-space density of 10−6, we per-
form radio frequency (rf) evaporative cooling by exponentially
ramping a rf field from 16 to 3.4 MHz over 3 s. After this stage,
5 × 107 atoms remain with a temperature of 32 μK. We then
adiabatically transfer the atoms into a crossed optical dipole
trap over 200 ms while the rf field is ramped exponentially from
3.4 to 0.6 MHz and the QP field is ramped linearly from 206
to 15 G/cm, where the final value counteracts the acceleration
due to gravity [27]. Our crossed optical dipole trap comprises
two intersecting 1070 nm beams, each of 2.5 W and focused
to a waist of w0 = 86 μm positioned ∼100 μm below the QP
center. At this point we have an optical-magnetic hybrid trap
containing ≈4 × 106 atoms.

We continue the forced evaporative cooling by exponen-
tially ramping the power of the dipole beams from 2.5 W to 300
mW over 4 s, and ramping the QP field from 15 to 7.5 G/cm
over the first 100 ms [27]. Halfway through this stage we apply
a large (20 G) bias field in the vertical direction to move the
QP center up by ≈2.7 cm; this allows for a magnetic gradient
with reduced curvature for use as a levitation field, in addition
to a magnetic launch during a later stage of the experiment.
At the end of the power ramp we hold the power constant for
≈300 ms. We now have a BEC of ≈1 × 105 atoms and >80%
purity at a temperature of ≈100 nK in the |F = 2,mF = 2〉
state with which we can perform interferometry. Further details
on the creation of our BEC can be found in Ref. [26].

III. INTERFEROMETER SEQUENCE

We operate our matter-wave interferometer by using
Kapitza–Dirac-type beam-splitter pulses, operating in the
so-called Raman–Nath regime [1,28,29], populating atoms
symmetrically in both the negative and positive momentum
modes of |p = ±2h̄k〉. In contrast to the widely used resonant-
Bragg scheme, in this regime the optical pulses are provided
by two laser beams of identical frequency and, hence, they
provide off-resonant coupling between two-photon-coupled
momentum states. However, a result of the detuned interaction
is that 100% transfer to a target momentum state is not possible
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FIG. 1. (a) The interferometer beams of wavelength 780 nm cross
at a half angle of θ = 26◦, creating an optical lattice of period 434 nm
along the x axis. We define this as our interferometer axis. The
magnetic gradient coil is positioned in the y-z plane and on axis with
the interferometer. (b) Interferometer pulse sequence. (c). Breakdown
of composite splitting and recombination pulses.

by single square pulses. To circumvent this, multipulse
techniques have been proposed [30,31] and implemented [4]
that show near-perfect fidelity of the beam-splitter process.
These works made use of two short Kapitza–Dirac optical
grating pulses, separated by a free-evolution period to allow
the relative phase of the atomic momentum modes to shift by
π , creating destructive interference in the stationary |p = 0〉
mode. In our work we optimize the pulse parameters by
numerical modeling of the Raman–Nath equations [30], with
additional control over the coupling Rabi frequencies during
the rephasing stage [32].

We perform interferometry by the interaction of the BEC
with two laser beams of wavelength 780 nm, crossing at
a half angle of 26◦ as shown in Fig. 1, and focused to
a waist (e−2 radius) of w0 ≈ 95 μm. The laser is locked
to the 85Rb |F = 1〉 → |F ′ = 1,2〉 crossover transition for
convenience, which is ≈4 GHz blue detuned from the closest
optical resonance of our BEC. The laser intensity is controlled
via an acousto-optic modulator, to which we send arbitrary
pulse sequences via a Stanford Research Systems DS345
arbitrary function generator. The beam is then split into two
beams, A and B, and overlapped with the two arms of the
crossed dipole trap as shown in Fig. 1(a). To ensure symmetric
splitting, these beams are mode matched to locate the beam
waist at the intersection. Both interferometer beams are
vertically polarized and, as such, they drive the linear atomic
Raman transitions and the atoms remain in the same internal
state after each interferometer pulse. This ensures that all atoms
contribute to the interferometer and avoids the blow-away
pulses required in other interferometer schemes to remove
untargeted states (see, e.g., Refs. [15,18]). Additionally, since
the atoms in both arms are in the same internal state, the
interferometer is insensitive to spatially uniform magnetic
fields.

After we create our BEC we release it from the hybrid
trap and allow 6 ms of mean-field expansion to reduce
self-interactions [33]. Gravitational acceleration during this
expansion would give a downward velocity of 59 mm/s,
causing the atoms to fall out of the interferometer beams.
We therefore apply a magnetic launch sequence during this
time in which we ramp the levitating magnetic field from 15 to
21.8 G/cm in the first 4 ms, followed by an exponential switch-
off over 2 ms. This weak positive acceleration that the atoms
start above the beam center with a low downward velocity of
2 mm/s, maximizing the interferometer interrogation time. At
the end of the 6 ms expansion the only field remaining is a
bias field of 1.02 G in the z axis, which is used to maintain a
quantization axis.

The interferometer sequence is shown in Fig. 1(b). Both
interferometer beams have the same frequency and there-
fore produce a static optical lattice with lattice vector k =
2π cos(θ )/λ. We characterize the amplitude of the optical
pulses in terms of recoil energy Er = h̄2k2/(2m), where h̄ is
the reduced Planck constant, and m is the mass of the atom. By
using this metric the pulse parameters are easily transferable
between atom species. We first apply a composite splitting
pulse [see Fig. 1(c)] of τ1 = 26.6 μs, τ2 = 45.6 μs, A1 =
6.07Er, and A2 = 0.52Er, which separates the wave function
into the ±2h̄k momentum states with almost 100% efficiency,
where the pulse parameters are optimized, as outlined earlier.
After some time, T1, we reverse the momenta of the wave
packets by a mirror pulse with a continuous temporal profile.
A Blackman pulse, with intensity profile

y(t) = A

[
0.427 − 0.497 cos

(
2π (t − t0)

τ

)

+ 0.077 cos

(
4π (t − t0)

τ

)]
(1)

for t0 � t � t0 + τ , is used for the mirror sequence, because
this shape has suppressed side lobes in the frequency spectrum
when compared with the square pulses used in the beam
splitter. Optimal parameters of a duration of τ = 164 μs
and amplitude A = 12.2Er are found from both numerical
simulation and empirical optimization.

Finally, after an additional time T2, we repeat the initial
splitting pulse, which now acts to recombine the wave packets.
The output of the interferometer is observed by recording an
absorption image after 64 ms time of flight in a 15 G/cm
magnetic levitation field to spatially separate the momentum
states, and then determining the fractional populations of the
|0h̄k〉 and |±2h̄k〉 momentum states by fitting independent
Gaussians to the integrated image profiles. The population of
the |±4h̄k〉 is negligible and therefore is not included in the
normalization.

It is during the sequence of atom-optic pulses that we
apply a magnetic-field gradient by passing current through
a coil comprising five turns of 1-mm-diameter wire around a
2.4-cm-diameter former, positioned with the coil coaxial with
the interferometer splitting axis. The separation of the center
of the coil to the BEC was estimated to be 15 ± 1 mm, with
the uncertainty dominated by the difficulty of measuring the
distance between the in vacuo BEC and the ex vacuo coil.
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FIG. 2. Gradiometer coil model of magnetic-field gradient mag-
nitude, |∂B/∂x|, vs gradiometer coil current by application of the
Biot–Savart law, with (solid black line) and without (dashed red line)
applied bias field of 1.02 G along the z axis. Shaded area indicates a
coil position uncertainty of 1 mm.

IV. COIL MODEL

We create a model of the effect of our gradient coil by
application of the Biot–Savart law for an on-axis current loop.
We can also account for the bias field applied during the
experiment that is required to maintain an atomic quantization
axis, 1.02 G along the z axis, which leads to the curvature of
the solid black line in Fig. 2. Note that, in the high-current
regime, by which we refer to currents above 1.5 A, the effect
of the bias fields diminishes and the scaling between current I

and magnetic-field gradient, ∂B/∂x, becomes approximately
linear and we can write:

∂B

∂x
= β(I − 0.52). (2)

From our model we predict β = 0.85 ± 0.11 G/(A cm) where
the uncertainty is dominated by the uncertainty in estimating
the position of the coil relative to the atoms.

V. PULSED-MODE OPERATION

The applied magnetic-field gradient is varied by passing
a current through the gradient coil. Here we operate the
interferometer in pulsed mode in order to make an estimate
of β. While the application of the aforementioned bias fields
means this scaling will be slightly nonlinear at low current, as
shown in Fig. 2, here we operate in the larger-current regime
(I > 1.5 A) where the scaling maintains a linear relationship.

Following the interferometer beam splitter, see Fig. 3(a),
we apply a gradient field of duration τ = 260 μs by passing
a current through the gradient coil immediately preceding or
following the reflection pulse, as indicated by the solid blue
and dashed blue rectangle in Fig. 3(a), respectively. For a
given interferometer duration the current through the coil is
varied and the resultant fractional populations in the |0h̄k〉 and
|±2h̄k〉 momentum states at the output of the interferometer
determined. We label the 0h̄k fractional population as P0h̄k

and we plot an example of this as a function of coil current
in Fig. 3, where T1 = T2 = 500 μs with the gradient applied
before the reflection pulse.

The differential phase shift resulting from the temporally
varying spatial separation, δx(t), of the two momentum states
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FIG. 3. (a) A gradient pulse of varying amplitude is applied before
or after the reflection and an interference fringe is observed. An
example fringe for T1 = T2 = 500 μs with the gradient pulse applied
after the reflection is shown in panel (b). Error bars indicate standard
deviation.

in a magnetic-field gradient can be written as [4]

	φmag =
∫

μ
∂|B|
∂x

δx(t)

h̄
dt, (3)

with the magnetic moment of the test atom μ = mFgFμB where
mF is the magnetic Zeeman level of the atom, gF is the Landé
g factor of the hyperfine atomic state, and μB is the Bohr
magneton. We use a simulation of the atomic trajectories to
calculate the spatial separation δx(t), then we numerically
integrate Eq. (3) with the scaling factor β included in the
calculation of ∂B/∂x. This model then returns a phase, 	φmag,
and we fit the following equation to the data:

P0h̄k = A cos(	φmag + φ0)G(I ) + P0, (4)

where A is the signal amplitude and P0 is an amplitude
offset. In our system the duration of the atom-optic pulses
is significant with respect to the interferometer duration. As a
result, the trajectories, and therefore the phase accumulation
of the wave packets during the atom-optic pulses can be
significant and nontrivial [32,34]. To account for this we
include a phase offset φ0 in Eq. (4). Because these pulses have
occurred in the absence of a gradient field, this phase offset
is the same for all gradient coil currents. We also observe
a decay in the visibility of the signal for increased current
and, to account for this, we include a Gaussian envelope G(I )
centered around 0 A and with the standard deviation as a fit
parameter. Loss of visibility at larger applied fields is attributed
to acceleration effects increasing the velocity of the atomic
wave packets and reducing the efficiency of the interferometer
recombination pulse.

By performing interferometers with T1 = T2 = 500 μs,
600 μs, and 700 μs, we determine β = 0.79 ± 0.01 G/(A cm)
and β = 0.81 ± 0.01 G/(A cm) when the gradient is applied
before and after the reflection pulse, respectively. Both
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FIG. 4. (a) Red solid line shows Mach–Zehnder interferometer
pulse sequence. Blue dashed line shows applied magnetic gradient.
(b) Simulation of atomic trajectory in the presence of 0 G/cm (dashed
lines) and 2 G/cm (solid lines) static-field gradient.

measured values of β are in near agreement with each other,
demonstrating the symmetry of the system, and are also
consistent with the predicted value.

VI. CONTINUOUS-MODE OPERATION

A. Theory

We now switch the interferometer to continuous-mode
operation where the field gradient is applied throughout the
entire interferometry sequence, as shown in Fig. 4(a). The
phase difference 	φ between arms A and B [Fig. 4(b)]
at the output of the interferometer can be calculated by
considering the classical action along each path SA

cl and SB
cl:

	φ = SA
cl − SB

cl

h̄
, (5)

where

SA
cl =

∫ T

0
LAdt and SB

cl =
∫ T

0
LBdt, (6)

with T being the total interferometer duration, and L being
the Lagrangian which is given by the kinetic energy minus
the potential energy (EK − EP) [35]. For a symmetrical
interferometer, such as the one reported here, 	φ = 0 because
the phase accumulation due to the kinetic energy is equal to
the phase accumulation due to the potential energy, i.e., SA

cl
and SB

cl are equal [35]. As a result the only phase detected in
such a system is from the phase of the optical lattice produced
by the splitting and recombination pulses. The positional shift
caused by the gradient field results in the atoms being in a
different optical potential at the point of recombination relative
to the optical potential of the splitting pulse, as indicated in
Fig. 4. It is therefore reasonable to consider the optical lattice
as a “ruler” against which the wave-packet center of mass is
measured.

The center-of-mass displacement of the BEC can be written
as

s = 	φ

keff
, (7)

where φ is the phase of the interferometer output and keff =
4π cos(θ )/λ, where λ is the wavelength of the interferometry
laser and θ is the beam angle relative to the interferometry axis
(see Fig. 1). Assuming zero initial velocity, the displacement
can also be written as s = aT 2/2. We can therefore write

	φ = 1
2a keffT

2, (8)

with the acceleration given by

a = − μ

m

∂B

∂x
, (9)

where m is the atomic mass and T is the interferometer
duration.

A simulation of the atomic trajectory is shown in Fig. 4(b)
with ∂B/∂x = 2 G/cm. We also include the trajectories during
the atom-optic pulses, which are determined by considering the
average center-of-mass motion from simulations [32].

B. Experiment

Here we apply the gradient for the entire interferometer
duration where, due to the finite switching time of the gradient
coil, we turn it on 50 μs before the start of the splitting pulse,
which will result in an initial velocity. For long interferometer
durations such that T � t , the phase accumulation of the
interferometer output will be linear with T 2, as predicted by
Eq. (8). Therefore, we can write

P0h̄k = A cos
(
keff

1
2aT 2 + φ0

)
G(T ) + P0, (10)

where A is amplitude, and P0 is an arbitrary amplitude offset.
As above, we also observe decay in the visibility of the signal
with time, and in order to obtain a good fit to the data we
include a Gaussian envelope G(T ) centered around T = 0
with a standard deviation of 2 ms. A phase offset φ0 is also
included in the model to account for nontrivial phase evolution
during the atom-optic pulses [32,34].

To test this we perform a temporally symmetric interfer-
ometer sequence of varying duration while applying a fixed
gradient coil current and determine P0h̄k . We plot these data
as a function of interferometer-duration squared in Fig. 5(a)
and fit Eq. (10). The P0h̄k data are then converted to phase and
shown in Fig. 5(b), where the straight line is the linearized
version of Eq. (10).

C. Determination of residual forces

In any apparatus designed for precision measurement it
is important to characterize the system to determine any
residual or unintentional forces. Here, we present a method
of measuring such forces by using the atoms themselves. In
our system the residual forces, and therefore accelerations,
are small such that an unbiased interferometer would be
insensitive to them; the signal frequency would be too low
to accurately measure. Therefore, we bias our interferometer
such that we can determine the magnitude and direction of a
stray magnetic-field gradient as well as an inertial acceleration.
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FIG. 5. (a) Gradiometer operating in continuous mode while
applying a coil current of 1.9 A, with Eq. (8) fit to the data.
(b) We convert population P0h̄k to phase and fit with a linear model.
The error bars indicate standard error of each data point (where not
visible, these are included within the data point) while the shaded
area around the straight line represents the standard deviation of the
fit as a result of the uncertainty in the original fitted model. Note that
the uncertainty in the phase of the data is greatly increased where
the gradient of the fitted model is close to zero and for increased
interferometer durations.

It should be noted that the sign of the phase shift due
to magnetic fields, Eq. (3), is independent of the vector
component of the magnetic field. This can be understood by
recognizing that the atomic state used, |F = 2,mF = 2〉, is a
weak-field seeker, which will always be repelled from the coil,
irrespective of the direction of current flow. This is in contrast
to other inertial forces, such as gravity, that have an effect on
the sign of the phase shift

	φgrav =
∫

mgx δx(t)

h̄
dt, (11)

where the term gx is the projection of the local acceleration due
to gravity, g, onto the interferometry axis; i.e., gx = g cos(γ ),
where γ is the angle between the x axis and the gravitational
acceleration.

In Sec. VI B we ignored the effect of the initial velocity
of the atoms as a result of applying the gradient field t =
50 μs before the start of the splitting pulse. The rise time
of the coil current has an exponential form of 1 − exp(−t/τ )
with τ = 5.7 μs, and therefore u = a t becomes u = a[t +
τ exp(−τ/t) − τ ]. This results in an effective shortening of t

from 50 to 44 μs. When we include this initial velocity, the
phase accumulation of the interferometer goes as keff(uT +
1
2aT 2), and P0h̄k will have the form

P0h̄k = A cos
[
keff

(
uT + 1

2aT 2
) + φ0

]
G(T ) + P0. (12)
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FIG. 6. Measured acceleration for varying gradient coil currents.
Error bars indicate standard deviation. The fitted curve is a model
of our gradient coil with coil-atom distance, acceleration offset, and
current offset as free parameters. We determine the effective coil-atom
distance to be 15.0 ± 0.2 mm.

For a range of gradiometer coil currents we probe our
system for varying interferometer durations T . To these data
we fit Eq. (12) and extract an acceleration and plot the data in
Fig. 6. We fit our coil model to these data with the coil distance,
acceleration offset, and current offset as the free parameters.
The coil distance is found to be 15.0 ± 0.2 mm from the fit, in
good agreement with the spatial measurement.

The residual magnetic-field gradient is determined entirely
by the current offset (0.17 ± 0.02 A) of the fitted curve in
Fig. 6, which is the current that cancels out the residual field.
From our coil model, along with the fitted coil-atom distance
we calculate the value of this field gradient to be 15 ± 2
mG/cm.

Residual forces that are nonmagnetic (gravitational, elec-
trostatic, etc.) can be determined entirely from the acceleration
offset of the fitted model, where a negative offset indicates a
force toward the coil and vice versa. From the acceleration
offset in the fitted model we determine a residual acceleration
of −0.08 ± 0.02 m/s2. If we attribute this to a tilt in the
interferometer axis with respect to gravity, it is equivalent
to an angle of γ = −0.5 ± 0.1◦. The negative sign indicates
that the angle of the interferometer axis with respect to gravity
is such that, in the absence of an applied field, the atoms
would accelerate towards the gradient coil. Without the use
of this method it would be not be possible to characterize the
residual forces with our interferometer in its current, horizontal
implementation; in order to make a direct measurement of our
residual nonmagnetic force we would require interferometer
durations of ∼6 ms to observe just one complete fringe, at
which time the atoms would have fallen out of the interrogation
region.

For these data we are also able to extract a β value, and we
find β = 0.81 ± 0.02 G/(A cm). This is consistent with our
initial estimate of β = 0.85 ± 0.11 G/(A cm) and agrees well
with our measured values of β = 0.79 ± 0.01 G/(A cm) and
β = 0.81 ± 0.01 G/(A cm) from operating the interferometer
in pulsed mode in Sec. V.

VII. CONCLUSIONS

In summary, we have constructed a matter-wave interferom-
eter and have demonstrated its ability to make measurements
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of magnetic-field gradients. Two modes of operation have
been demonstrated: pulsed mode and continuous mode. Both
methods show good agreement in measuring the scaling
factor β relating the gradient coil current to the magnetic-
field gradient, and these values are also consistent with our
initial estimate. In addition, we have created a method for
measuring low ambient fields that would be impossible to
measure by using an unbiased cosine-sensitive interferom-
eter because the required interferometer durations would
be too long. One can therefore envisage the measurement
of even smaller ambient fields by extending the available
interrogation time. In our case this would require the use
of interferometry beams with a larger waist, or the use of

a magnetic levitation field, which would potentially couple
noise into the system. The techniques presented provide ex-
cellent tools for the characterization of applied magnetic-field
gradients and residual accelerating fields, crucial in precision
measurement.
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