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Enhancing quantum order with fermions by increasing species degeneracy
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One of the challenges for fermionic cold-atom experiments in optical lattices is to cool the systems to
low enough temperature so that they can form quantum degenerate ordered phases. In particular, there has been
significant work in trying to find the antiferromagnetic phase transition of the Hubbard model in three dimensions,
without success. Here, we attack this problem from a different angle by enhancing the ordering temperature via
an increase in the degeneracy of the atomic species trapped in the optical lattice. In addition to developing
the general theory, we also discuss some potential systems where one might be able to achieve these results
experimentally.
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I. INTRODUCTION

While the off-diagonal long-range order in cold bosonic
atomic gases has been observed many years ago, quantum
magnetism in fermionic gases is still a challenge for exper-
imentalists. Despite the possibility to control the interaction
between spin states of atoms in an optical lattice [1], the tem-
peratures required to obtain magnetic ordering remain lower
than those achievable with current techniques. Therefore, it
is easier to demonstrate the presence of magnetic correlations
before the true long-range magnetic order is established. Using
the spin-sensitive Bragg scattering of light, antiferromagnetic
correlations in a two-spin-component Fermi gas, magnetic
correlations have been observed at a temperature 40% higher
than the putative temperature for the transition to the antifer-
romagnetic state in three dimensions [2]. In this experiment,
the two lowest hyperfine ground states of fermionic 6Li atoms
in a simple cubic optical lattice were labeled as spin-up and
spin-down states. The repulsive interaction between atoms in
these states was controlled by a magnetic Feshbach resonance.
Since the magnetic superexchange interaction is given by
J = 4t2/U , the experiment controlled the value of J , and in a
particular regime, it measured antiferromagnetic correlations
as extracted from the spin structure factor. Very recently,
it was demonstrated that spin (and charge) correlations can
be detected also with the help of site-resolved imaging. In
Refs. [3–5], quantum gas microscopy was used to determine
spatial correlations for fermionic atoms in a two-dimensional
(2D) optical lattice. While there is no phase transition in 2D, the
measurements have shown an increase of the correlation length
as the temperature was lowered. Similar antiferromagnetic
correlations extending up to three lattice sites have also been
observed in a 1D system [6].

In this paper, we study the simplest many-body model that
has a nonzero phase transition in two dimensions. This would
be the Ising model [7] for a spin system. But we examine
instead its fermionic analog, the Falicov-Kimball (FK) model
[8], which also displays a nonzero transition temperature in
two dimensions and behaves Ising-like when the interaction
strength becomes large. This system can be easily simulated
with mixtures of cold atoms on optical lattices, because it

involves mobile fermions interacting with localized fermions
[9]. One simply needs to have the hopping of the two atomic
species to be drastically different. The simplest case of one
trapped atomic state for each of the fermionic species maps
onto the spinless version of the FK model. This model has been
solved exactly in infinite dimensions via dynamical mean-field
theory (DMFT) [10,11] and numerically in two dimensions
with Monte Carlo (MC) [12].

The atomic lithium-ytterbium mixture is an example of a
system with an extreme mass imbalance and a controllable
interspecies interaction [13]. When confined in an optical
lattice, it can be well described by the FK model. References
[14–20] present other such atomic mixture systems. But mass
imbalance is not the only way to realize the FK model.
Recently, a versatile method for creating widely tunable
state-dependent lattices was demonstrated by the Esslinger
group [21]. If the renormalized hopping amplitude of one of
the spin states is tuned to be close to zero, such a system can
also be described by the FK model. Independent control of
lattice depths has also been demonstrated in a bosonic mixture
of rubidium and potassium up to the localization transition for
rubidium in Ref. [22].

The remainder of the paper is organized as follows. In
Sec. II, we provide the formalism for our calculations, followed
by the results in Sec. III. Conclusions follow in Sec. IV.

II. FORMALISM

Our motivation for this work stems from the DMFT solution
to the problem. There, one can derive a condition for the
transition to an ordered phase with a checkerboard pattern
[10,11], which takes the form 1 = ∑

n γ (n), with the sum
running over all integers [which label fermionic Matsubara
frequencies iωn = πi(2n + 1)T , with T the temperature]. The
function γ (n) is a complicated function that is constructed
from the mobile fermion Green’s function, its self-energy,
the on-site interaction between the localized and mobile
fermions U , and the density of the localized fermions w1. The
important point to note is that if we increase the degeneracy
of the mobile fermions (while enforcing that they do not
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interact with themselves), then the Tc equation is modified by
γ (n) → Nγ (n), where N is the number of degenerate states
for the mobile fermions [11]. Since one can immediately show
that

∑
n γ (n) → C/T for T → 0 and

∑
n γ (n) → C ′/T 4 for

T → ∞ [10], we expect that the transition temperature for
the degenerate system will initially grow linearly in N and
then turn over to a slower increase, proportional to N1/4 for
larger N . It is the rapid growth with degeneracy for small N

which makes these effects so spectacular. (These ideas are
further supported by the observation that increasing species
degeneracy lowers the final temperature after the optical lattice
is ramped up in alkaline-earth-metal systems [23].)

The argument that Tc grows linearly with the degeneracy
at low temperature can be made more general. We start with
the Hamiltonian for the FK model on a lattice � that has |�|
lattice sites. The Hamiltonian for a given configuration of the
heavy atoms {w} is

H({w}) = −t
∑
〈ij〉

N∑
σ=1

c
†
iσ ciσ + U

∑
i

N∑
σ=1

niσwi

=
N∑

σ=1

Hσ ({w}), (1)

where σ denotes the N different “flavors” of the mobile
fermions, and wi = 1 or 0 denotes whether or not site i has
a localized fermion on it, respectively (the localized fermions
continue to be spinless). The hopping matrix is chosen to
be nonzero only for nearest neighbors, and we set t = 1 as
our energy unit (we also set kB = 1). We define Ei ≡ εi − μ,
with μ the chemical potential and {εi} the set of (degenerate)
eigenvalues of Hσ ({w}), which is independent of the specific
value of σ because the mobile fermions are noninteracting
among themselves, and they share the same interaction with the
localized fermions. Here, the index i runs over i = 1, . . . ,|�|
(we will be working on a square lattice of edge L which then
has |�| = L × L).

The corresponding grand partition function is given by

Z =
∑
{w}

|�|∏
i=1

[1 + e−βEi ({w})]N, (2)

with β = 1/T the inverse temperature. Introducing the free
energy F , Eq. (2) can be rewritten as

Z =
∑
{w}

e−βF({w}), (3)

where

F({w}) = −N

β

∑
i

ln[1 + e−βEi ({w})]

= N
∑

i

Eiθ [−Ei({w})]

−N

β

∑
i

ln[1 + e−β|Ei ({w})|], (4)

and θ (· · · ) is the Heaviside unit step function. In the low-
temperature limit the second term on the right-hand side (RHS)

vanishes. Inserting the limiting form of F into Eq. (3) yields

Z =
∑
{w}

e−βN
∑

i Eiθ[−Ei ({w})]. (5)

Note that this result can be recognized to be the condition
for the filling of mobile fermions into the Fermi sea deter-
mined by the band structure corresponding to the particular
configuration of the localized fermions, as given by the
configuration {w}. Since in the low-temperature limit F does
not depend on temperature, the partition function depends
on temperature only through the term βN . This means that
the thermodynamics of the system depends only on the ratio
T/N , with initial corrections expected to be small as T

rises (because they will be proportional to T/TF with some
suitably large Fermi temperature TF ). As a result, the critical
temperature Tc in the low-temperature limit will necessarily
increase linearly with increasing degeneracy N . This is an
exact result, independent of the details of the lattice or the
dimensionality—it only requires there to be a phase transition.

There are two assumptions that went into this analysis,
which turn out not to hold when we actually calculate the
maximal Tc as a function of N . First, the lowest Tc values
are not so low, so the linear regime fairly rapidly crosses over
to a slower increasing behavior, and, second, the interaction
value Umax(N ), where the maximal Tc,max(N ) occurs, actually
changes with N (see the inset in Fig. 2), so the arguments about
the precise functional dependence of the Tc,max(N ) on N turn
out not to hold in the actual data; our arguments assumed we
compared systems with the same U . The first effect is to reduce
how Tc increases with N , while the second enhances how Tc

increases with N .
Corrections to the linear dependence of Tc on N come

mostly from states close to the Fermi level [Ei ≈ 0; see the
second term on the RHS of Eq. (4)]. Therefore, we can expect
that the linear section of the Tc(N ) curve can be longer for
bipartite lattices for which the density of states is reduced
close to the Fermi energy, e.g., for a hexagonal lattice. Also in
3D, where there is no van Hove singularity (the singularity for
the square lattice is reduced by the interaction with the heavy
atoms) the linear part can persist to even higher temperatures.

III. RESULTS

In Fig. 1, we plot the transition temperature to the checker-
board density wave on a square lattice with N = 1. The top
curve is for the DMFT approximation, while the bottom curve
is for the exact MC results. Note that the interaction strength
for the peak of the curve lies in the range of U ≈ 4–5 with
the maximal U value slightly higher for DMFT vs MC. The
DMFT results are semiquantitative, and clearly overestimate
the Tc, but the overall error is not that large.

As N increases, we find that the maximum Tc increases,
as does the value of the interaction strength where the Tc(U )
curve is maximized. The full curve out to N = 100 is plotted
in Fig. 2. The DMFT results are calculated for each N by
first finding the interaction strength at the maximum of the Tc

curve. For the MC results, we work with fixed U , varying N ,
and then constructing the “maximal hull” of the data. It turns
out that these MC results are nearly perfectly fit to the DMFT
results when the latter are renormalized by a factor of 0.75.
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FIG. 1. Comparison of the 2D DMFT (solid red line) and MC
(blue dots, connected with a solid line as a guide to the eye) critical
temperatures to the checkerboard density wave at half filling for
both species on a square lattice with N = 1. The lines marked as
“Ising mean-field” (green) and “Ising exact” (black) show the critical
temperatures for the corresponding Ising model, which become exact
for the respective theories when U → ∞.

The DMFT curve initially grows linearly with N , but then
settles into an increase that grows proportional to

√
N − 1.7,

which is in between our linear and 0.25 power results, as we
expected, due to the fact that Umax increases with N .

We find the enhancement of the maximal Tc for higher N vs
N = 1, given by Tc,max(N )/Tc,max(1), satisfies the following:
1.98 (MC, N = 2), 1.899 (DMFT, N = 2); 2.84 (MC, N = 3),
2.651 (DMFT, N = 3); and 3.60 (MC, N = 4), 3.287 (DMFT,
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FIG. 2. The maximal critical temperature Tc plotted as a function
of mobile fermion degeneracy N (as calculated with MC). The
dashed line shows the corresponding DMFT Tc calculated at U =
Umax(DMFT). The solid lines show MC Tc’s for different values of
U . The black dotted line shows Tc(DMFT) × 0.75, which agrees well
with nearly all the MC results. In the inset, Umax(DMFT) is plotted
as a function of degeneracy N , indicating it changes significantly
with N .
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FIG. 3. The entropy of the mobile fermions Smob(Tc)/N per
mobile fermion at the critical temperature Tc calculated in DMFT
as a function of the mobile fermion degeneracy N .

N = 4). Since the maximal Tc(DMFT) for the FK model is
about one half the maximal Tc(DMFT) for the corresponding
Hubbard model, we need to be able to have a degeneracy of
N � 3 before this effect will have a high enough Tc so that it
can reach current experimentally accessible values for the 3D
case.

In the above, we have demonstrated that by increasing
degeneracy one can increase the critical temperature. The ques-
tion remains as to whether this increased Tc also corresponds
to an increased entropy per particle at the transition point. In
MC, it is quite difficult to calculate the entropy in a reliable
way because it requires integrating from infinite temperature
down to the temperature of interest. Since we have already
shown good agreement between the MC and DMFT results
(up to a numerical factor), we calculate the entropy S only
within DMFT. This should be a good estimate of whether the
entropy is increasing or decreasing with the number of mobile
fermions N . The entropy for the FK model is given by [11]

Stot(T ) = −N

∫
dε{f (ε) ln f (ε)

+ [1 − f (ε)] ln [1 − f (ε)]}ρ(ε)

− w1 ln w1 − (1 − w1) ln(1 − w1)

= Smob(T ) + Sloc(T ), (6)

where f (ε) = 1/[1 + exp(ε/T )] is the Fermi-Dirac distribu-
tion function and ρ(ε) is the local density of states of the
mobile fermions. The third line in Eq. (6) is the entropy
of the localized particles Sloc(T ) and since it depends only
on their concentration w1, and that concentration is fixed
in the disordered state, it provides a constant shift to the
overall entropy, which is independent of N [and given by
Sloc(T ) = ln 2]. Hence, it is the integral, which is the entropy
per mobile fermion at Tc, which will determine whether the
transition temperature is easier to reach for higher degeneracy.
As shown in Fig. 3, this is clearly the case. We have Smob(Tc)/N
initially increasing linearly with N and then tailing off as N

increases.
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We focus the remainder of this paper on discussing possible
experimental realizations for such higher degeneracy mixtures.
The FK model has zero interaction between the mobile
fermions. One can argue, on rather general grounds, that the
modification of Tc due to a nonzero intraspecies interaction u

will have corrections to Tc of order u2. Hence, if u is small, the
effect we discuss here should continue to hold, with only slight
reductions. This allows us to formulate our search criterion for
physical systems that will show this degenerate species effect.

In searching for appropriate mixtures, we want to find
systems that (i) can have a degeneracy of three or more for
the light fermionic species, (ii) have a similar interspecies
interaction U between the mobile and localized fermions,
which will be tuned either via an interspecies Feshbach
resonance, or via the depth of the trapping potential for the
light species, and (iii) have a small intraspecies interaction u

between the mobile fermions. We also note that as long as
the localized particle is nondegenerate, then it can actually
be either Bose or Fermi, since its statistics does not enter the
analysis because it does not move. (However, if the heavy
particle is a boson, we do need its intraspecies interaction to
be large and positive, so it generically forms a Mott insulator
with at most one particle per site and it does not Bose condense
on the lattice.)

We start by examining some prototypical systems which
have already been demonstrated to be trapped on optical
lattices. The first choice to examine is mixtures of 40K (mobile
fermion) and 87Rb (localized boson) [24]. If we could trap the
mF = −5/2, −7/2, and −9/2 states of K, we would have an
N = 3 mixture. This system is nice, in the sense that it has
a tunable interspecies interaction via a Feshbach resonance,
and the intraspecies interactions for K have a scattering length
on the order of 100a0 (in some cases one of the pairs can
be tuned to zero scattering length). The challenge is that the
Rb-Rb interaction is too small (on the order of 100a0), and
is not tunable, which would make it difficult to satisfy the
required conditions for this effect. If we instead try 133Cs
(localized boson) [25], we find that the Cs-Cs interaction is
large, with a scattering length near 2000a0 at B ≈ 260 G,
but the interspecies interaction is small (≈− 40a0) and not
simultaneously tunable for all three K species.

Moving on to other possibilities, if we use mixtures of 171Yb
or 173Yb (mobile fermion) [26,27] and 133Cs (localized boson)
[28,29], we only have a degeneracy of N = 2 for 171Yb, even
though its intraspecies scattering is small, while for 173Yb the
intraspecies scattering length is ≈200a0, which is still viable,
given the potentially large Cs-Cs scattering length, but it would
require a tunable Cs-Yb scattering length that is large, and
although this has not yet been measured, we do not anticipate
that there is any reason why it should be particularly large. If we
tried Rb as the localized boson [30], it suffers from the same is-
sues as with K-Rb—namely, the Rb-Rb scattering is too small.

Using 6Li as the mobile fermion appears attractive [31,32].
However, the interspecies scattering length is only small for
low fields, and when a mixture is formed from the N = 3
trappable states, at least one intraspecies interaction will be
large (although the other two can be close to zero). So, this
case is suboptimal.

Next, we consider mixtures of 87Sr (light fermion) which
has up to N = 10 and a Sr-Sr scattering length on the order of

100a0 [33,34]. If we use Cs as the (localized boson), then if the
Cs-Cs scattering length can be set to the order of a few 1000a0,
and the Sr-Cs scattering length is on the order of 500a0, then
this system might work to illustrate this degenerate species
effect, and it has the potential to be spectacularly large.

The remaining choices that might be workable seem to be
long shots, but cannot yet be ruled out because we do not have
enough information about their interspecies interactions. We
discuss some of these possibilities next.

43Ca is a fermion with a nuclear spin of 7/2 [35,36], 25Mg
is a fermion with a nuclear spin of 5/2 [37], Ba has two spin
3/2 fermionic species [38], and 201Hg is also spin 3/2 [39]. It
is unknown what the intraspecies interactions are among these
different spin states, how many can be trapped, and what their
interspecies interactions are with potential heavy particles. So
they all are possible, but at this stage quite difficult systems
to work with. Finally, there are all of the magnetic-dipole
systems, such as Er [40,41], Dy [42,43], and Cr [44–46].
These systems often have chaotic intraspecies interactions due
to a huge number of resonances, but they might show some
small interactions at low fields, and hence may also be viable
candidates for the light fermions.

IV. CONCLUSIONS

In summary, we have illustrated the idea that by enhancing
species degeneracy, one can enhance Tc for fermionic neutral
atoms trapped on optical lattices such that their Tc to an
ordered state can be raised high enough so that they would
be accessible to explore with current experimental technology
in cooling. This idea comes at this problem from a different
angle than the many different cooling strategies that have been
proposed, and could provide the ability to truly study spatially
ordered quantum phases. The challenge is to find the right
mixture of atoms where this effect can be fully exploited. We
have examined a number of possible experimental systems,
with Yb-Cs (N = 2) and Sr-Cs (N = 10) mixtures as the
most promising, but it is clear the experiments will be
challenging to carry out. Other experimental systems are more
speculative, because the interspecies interactions are not yet
known, but there are likely to be some additional experimental
systems that can be tried for this enhancement effect on the
ordering Tc.

We want to end by commenting that similar work has
examined SU(N ) symmetric Hubbard models. The repulsive
case actually sees a decrease in the antiferromagnetic Tc

with increasing N [47], while the attractive case sees an
enhancement similar to what we see for the density-wave
instability [48], but we do not know of any large N > 3 systems
with attractive interactions. Furthermore, there are challenges
with finding atomic systems with a small enough U value
(for large N ), since a maximal hopping is required to have an
accurate single-band description. So it will be more difficult to
attain the Hubbard-like system than the Falicov-Kimball-like
system that we propose.
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