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Spin-orbit-driven transitions between Mott insulators and finite-momentum superfluids of bosons in
optical lattices
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Synthetic spin-orbit coupling in ultracold atomic gases can be taken to extremes rarely found in solids. We study
a two-dimensional Hubbard model of bosons in an optical lattice in the presence of spin-orbit coupling strong
enough to drive direct transitions from Mott insulators to superfluids. Here we find phase-modulated superfluids
with finite momentum that are generated entirely by spin-orbit coupling. We investigate the rich phase patterns
of the superfluids, which may be directly probed using time-of-flight imaging of the spin-dependent momentum
distribution.
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I. INTRODUCTION

The Rashba effect [1] in solids derives from the motion of
an electron in a strong electric field. As the electron moves
in the presence of a potential gradient, ∇V , it experiences an
effective magnetic field in its frame of reference. The Rashba
energy [1]

( �∇V × �p) · �σ , (1)

captures the energetics of electron spin reorientation due to the
effective magnetic field, where �p is the particle momentum
and �σ are the Pauli matrices. The Rashba spin-orbit coupling
(SOC) energy is well known to be particularly strong at
metallic surfaces [2,3] [e.g., on Ag(111) or Au(111)] because
here we find extremely strong potential gradients. As a result,
studies of the impact of Rashba SOC on two-dimensional (2D)
conductors have a long history [4]. But the impact of Rashba
SOC on the surface states of Mott insulators has come under
more careful scrutiny recently because of possible connections
to topological insulators [5,6].

Mott insulators localize as a result of strong interaction
and would therefore appear to exclude the possibility of SOC
effects, but one can argue that this is not always the case.
Small momentum in Eq. (1) (the case for localized states)
does not necessarily imply low Rashba energies. In an extreme
limit, Mott insulating surfaces can, in principle, experience
very large potential gradients that can compensate the small
momentum, i.e., 〈p〉 → 0 with 〈 �∇V × �p〉 ∼ EF , where EF

is the Fermi energy. If, in this limit, the energetics of Rashba
SOC compete with the Mott gap, one could observe a transition
between a Mott insulator and a conducting state driven entirely
by Rashba SOC in spite of the small average momentum of
particles in Mott insulators. Unfortunately, the limit where
Rashba SOC competes with the Mott gap is rare in solids
because it would typically be precluded by other effects, such
as charge transfer between bands. But this limit can be explored
in another context: using synthetic SOC in optical lattices.

*chuanwei.zhang@utdallas.edu

Recent experimental progress [7–13] demonstrates engi-
neering of synthetic SOC for ultracold atomic gases [14].
These experiments show that Raman beams can be used to
dress atoms with a spin-dependent momentum. Rashba (and/or
Dresselhaus) SOCs governing these dressed states [15,16] are
tunable to extremes not possible in solids (see Fig. 1). Recent
work shows, for example, that synthetic SOC can generate
flatbands [17–20], exotic superfluidity [21], and intriguing
vortex structures [16,22,23].

Recent theory work has also explored the impact of SOC
on the spin structure of Mott insulators in optical lattices [24–
28]. Here superexchange coupling between sites was shown
to combine with Rashba SOC to lead to rich spin structures
within the Mott state [24–28]. But in these studies parameters
were chosen to explore the impact of Rashba SOC on the spin
physics of Mott insulators while leaving the charge structure
intact.

In this work we explore Rashba SOC that is strong enough
to cause the breakdown of charge ordering in Mott insulators.
This extreme limit is of direct relevance to optical lattice
experiments with synthetic SOC. We study, in particular, a
2D lattice model of two-component interacting bosons in the
presence of tunable Rashba coupling. We find that strong
Rashba SOC can cause the breakdown of the Mott insulating
state and drive a direct transition between the Mott insulator
and a superfluid state, even in the absence of single-particle
tunneling between sites of the lattice [27]. This limit is the
lattice version of the limit discussed above, 〈p〉 → 0 with
〈 �∇V × �p〉 ∼ EF , where vanishing kinetics leaves Rashba
SOC to generate its own conducting state. For the case of lattice
bosons studied here, we find that Rashba SOC generates finite
momentum superfluids. We show that these superfluids are
characterized by staggered phase patterns. We also find distinct
superfluid states with striped phase patterns that are separated
by transitions on finite lattices with periodic boundaries. We
predict that finite momentum superfluids should be observable
in time-of-flight measurements of the momentum distribution.

The paper is organized as follows: In Sec. II we construct
a Bose-Hubbard model of two-component atoms in the
presence of Rashba SOC. We also discuss two complimentary
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FIG. 1. Comparison of SOC strengths in solids and cold atoms.
h, α, and EF denote the Zeeman energy, SOC coefficient, and
Fermi energy, respectively. For GaAs, the effective mass is m∗ =
0.067m0 [29], where m0 is the electron mass, the Rashba SOC
strength is α = (0.04–0.06) × 10−11 eV m [30], and the g factor is
g∗ = −0.45 [31]. For InAs the parameters are m∗ = 0.026m0 [29],
α = (0.28–1.4) × 10−11 eV m [32], and g∗ = −15.1 [33]. For
InSb the parameters are m∗ = 0.0135 [29], αKF = (1.0–1.2) ×
10−11 eV m [34], and g∗ = −51 [33]. And for the metallic surfaces
m∗ ∼ 0.255m0 [2,3], where the g factor is assumed to be g∗ = 2. The
parameters for these four different examples are plotted at an external
magnetic field of 5 Tesla. A high carrier density, n = 1011 cm−2, is
used for the semiconductors. For SrTiO3/LaAlO3 oxide interfaces,
the data are taken from Ref. [35]. Additional feasible parameter
regimes are plotted as horizontal and vertical bars.

mean-field approaches that allow us to compute the phase
diagram, transition properties, and the momentum distribution.
In Sec. III we present results on finite lattice sizes. We use
Gutzwiller mean-field theory to show that Rashba SOC causes
the bosonic Mott insulator to give way to finite momentum
superfluids. We also explore inter-superfluid transitions. We
find that transitions separate distinct phase patterns of finite
momentum superfluids. We demonstrate in Sec. IV that these
different finite momentum phases can indeed be observed
in experiments with a trapping potential. In Sec. V we
present analytic arguments that transitions depend critically on
boundary effects, akin to effects found in Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superconductors [36–47]. We show that
analytic mean-field calculations in the infinite system size limit
do not show these transitions. We summarize in Sec. VI.

II. MODEL AND METHODS

We consider a 2D square optical lattice containing bosonic
atoms with two hyperfine levels. States with two hyperfine
levels act as a pseudospin-1/2 state. We also assume the
presence of Raman beams that couple the atomic momentum to
the spin to generate synthetic SOC [7–11,13]. The interaction
between alkali-metal atoms is governed by a short-range
(s-wave) repulsion. For a deep optical lattice, the problem
can be accurately described in the single-band, tight-binding
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FIG. 2. Schematic of spin-independent tunneling (a) and spin-
dependent tunneling induced by SOC (b). In the latter case, the
tunneling takes place between two neighboring sites accompanied by
both spin flipping and phase variations. The phase variation during
tunneling is responsible for the creation of the finite momentum
superfluids.

limit [48] where the s-wave interaction becomes an on-site
Hubbard interaction and the SOC is discretized.

To study this system we construct a Hubbard model of
two-component bosons in the presence of Rashba SOC on a
square lattice. We allow the on-site Hubbard interaction to
have a spin-dependent interaction:

H = −t
∑
〈ij〉

�
†
i �j + U

2

∑
iσ

niσ (niσ − 1)

+U↑↓
∑

i

ni↑ni↓ − μ
∑
iσ

niσ

+ iλ
∑
〈ij〉

�
†
i �ez · (�σ × �dij )�j + H.c., (2)

where �i = (bi↑,bi↓)T is a two-component bosonic annihi-
lation operator at the site i, niσ = b

†
iσ biσ , t is the spin-

independent nearest-neighbor tunneling, U (U↑↓) is the on-site
interaction between bosons of the same (different) spin σ , and
μ is the chemical potential. In the last term λ is the Rashba
SOC strength, �dij is the unit vector between the neighboring
sites i and j , and �ez is the unit vector along the z direction. In
the following we use U = 1 to set the energy scale.

The tunneling and Rashba terms induce two different types
of superfluidity. To see this we plot the spin-independent
tunneling and spin-dependent tunneling in Fig. 2. The left
panel shows that the spin-independent tunneling favors phase
uniformity since t is real. But in the right panel we see
that SOC has two effects: It induces tunneling between
neighboring sites with two different spin states and it imposes
phase variation. The phase variation depends strongly on
the direction of the neighboring sites. SOC therefore favors
highly anisotropic superfluid states. Without SOC the system
has at least a U(1) ⊗ U(1) symmetry, which means that the
total number of each species is conserved; however, SOC
introduces spin flips between two neighboring sites, thus the
system only respects U(1) symmetry and, as a result, the phase
difference between the neighboring sites cannot be gauged
out. The competition between spin-independent tunneling and
spin-dependent tunneling tunes the transition between these
different superfluids.
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In the weakly interacting limit the model exhibits three dif-
ferent superfluid phases: In the regime when spin-independent
tunneling dominates (t � λ), the uniform superfluid is pre-
ferred and the total momentum of the superfluid is zero. In
the opposite regime, a staggered superfluid phase is preferred;
and in the intermediate regime, t ∼ λ, the strong competition
between the two tunnelings gives rise to superfluids with phase
patterns that depend strongly on boundary effects.

Strong interactions add competing Mott insulating phases
and complicates estimates of the phase diagram. To study the
competition between all ground states we use two complimen-
tary mean-field approaches. We apply the Gutzwiller mean-
field method to finite system sizes (relevant to experiments)
and compare with an otherwise equivalent mean-field method
applied to infinite system sizes.

We now discuss the Gutzwiller mean-field method [48,49].
The method assumes a product ground state of the form
|G〉 = ∏

i,σ (
∑

n f (i,σ )
n |n〉i,σ ). This form for the wave function

has been extensively applied to bosons in optical lattices [48],
even in the presence of complex hopping amplitudes [50]. It
generally gives quantitatively reliable results in 2D and 3D
(for comparisons, see, e.g., Ref. [51]), and is a particularly
excellent approximation when computing local correlation
functions (see, e.g., Ref. [52]). The variational parameters f

are obtained by minimizing the total energy:

E = 〈G|H |G〉
〈G|G〉 . (3)

We minimize the total ground-state energy with the conjugate
gradient algorithm [53,54]. The ground-state energy is reached
when the energy variation is less than 10−5U , which is suf-
ficient to distinguish the energy difference between different
phases.

We supplement the finite system size Gutzwiller method
with an equivalent mean-field limit applied to infinite system
sizes. We assume 〈biσ 〉 = ψeiθiσ , where ψ is a real number.
This assumption is equivalent to the assumed form for |G〉
but works best on infinite system sizes. The total energy then
becomes

Eψ = (U + U↑↓)ψ4 − (U + 2μ + tA + λB)ψ2, (4)

where the coefficients are

A ≡ N−1
∑
〈ij〉

[ei(θj↑−θi↑) + ei(θj↓−θi↓) + H.c.], (5)

and

B ≡ N−1
∑
〈ij〉

[Z∗
ij e

i(θj↓−θi↑) − Zij e
i(θj↑−θi↓) + H.c.], (6)

with Zij ≡ dx
ij + id

y

ij and N is the number of sites. An
important point here is that the total energy depends not only
on the magnitude of the order parameter ψ , but also on the
phase difference between neighboring sites. We see that the
minimal energy Eψ corresponds to a maximal value of A and B

when U , U↑↓, λ, and t assume positive values (the case studied
in this paper). Here A depends only on the phase difference
between the same spin states, while B depends strongly on
the phase difference between spin-up and spin-down states
in the neighboring sites. The competition between A and B

governs competition between superfluids with distinct phase
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� � � �
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FIG. 3. Phase diagrams of of Eq. (2) obtained from Gutzwiller
variational simulations for an 8 × 8 lattice with periodic boundary
condition at (a) U↑↓ = 0, λ = 0, (b) U↑↓ = 0, λ = 0.04U , (c) U↑↓ =
0.5U, λ = 0, and (d) U↑↓ = 0.5U, λ = 0.04U . The phase diagrams
are determined by the amplitude of the spin-up superfluid order
parameter. The spin-down superfluid order parameter produces
similar results.

patterns. When λ = 0, A takes its maximum value when all
of the sites have the same phase, which corresponds to the
uniform superfluid phase.

III. QUANTUM PHASES IN FINITE LATTICES WITH
PERIODIC BOUNDARIES

We now discuss results that demonstrate the competition
between various Mott and superfluid phases in the presence of
SOC. We first present our results on small system sizes with
periodic boundaries. These system sizes are consistent with
small states formed in the center of traps in experiments.

Figure 3 shows the phase diagram for four different limits
of the model, Eq. (2). Figure 3(a) plots the Bose-Hubbard
phase diagram [55] that results from setting the SOC term
and the interspin interaction term to zero in Eq. (2), i.e., λ =
U↑↓ = 0. The absence of interspin interactions allows two
identical copies of the Mott insulator. The lower and upper
Mott lobes in Fig. 3(a) correspond to 〈ni↑〉 = 〈ni↓〉 = 1 and
〈ni↑〉 = 〈ni↓〉 = 2, respectively.

Figure 3(c) shows the result of adding interspin repulsion,
U↑↓ > 0, but with no SOC, λ = 0. Here we see that that the
original low-energy Mott lobe is pushed up. The appearance
of the small Mott lobes (above and below the larger Mott lobe)
correspond to the formation of Mott insulators with Ising-type
spin ordering. To see this, we rewrite the interaction terms
in H using sum and difference operators, ni± ≡ ni↑ ± ni↓.
The large Mott lobe in Fig. 3(c) then corresponds to 〈ni+〉 =
2, 〈ni−〉 = 0. The upper and lower small Mott lobes exhibit
degeneracies (for t = 0) and correspond to 〈ni+〉 = 3,〈ni−〉 =
±1 and 〈ni+〉 = 1,〈ni−〉 = ±1, respectively. Here we exclude
superexchange effects, O(t2/U ), discussed in other work
[24–26,28].
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FIG. 4. Plot of the amplitude of spin-up superfluid order parame-
ter |〈b↑〉|, the filling factor 〈n↑〉, and the energy density e as a function
of the spin-independent tunneling at U↑↓ = 0.5U , λ = 0.04U , and
μ = 1.33U for periodic (left panel) and open (right panel) boundary
conditions.

We now discuss the phase diagram that results from adding
SOC. Figsures 3(b) and 3(d) plot the phase diagrams that result
from adding SOC to the states depicted in Figs. 3(a) and 3(c),
respectively. In both figures we see that the Mott insulators at
higher μ vanish. Increasing μ causes a direct transition from a
Mott insulator to a SOC-generated superfluid. At t = 0, SOC
alone drives the formation of a superfluid. We find that the
Mott insulators that normally persist at t = 0 for all μ are
actually supplanted by SOC-generated superfluids. The t = 0
superfluids found on this part of the phase diagram derive
kinetics purely from the spin-dependent tunneling in SOC.
We therefore find that even in the limit of vanishing kinetics,
the Rashba effect drives the Mott insulator into a conducting
state (in this case, a superfluid state). We have also checked the
phase diagrams of 4 × 4 and 6 × 6 lattices, and find no qualita-
tive difference with an 8 × 8 lattice shown in Fig. 3. Below we
show that the precise nature of the resulting superfluid depends
on the relative strengths of λ and t , as well as boundary effects.

Figure 4 shows the transitions of different superfluid phase
patterns. The left column shows the order parameters for the
8 × 8 lattice with periodic boundary conditions. Here SOC
dominates and the nonzero order parameters are unchanged for
t � 0.019U . For t > 0.019U , the order parameter gradually
increases with t , which indicates a transition between different
superfluids at t ∼ 0.019U . For the open boundary condition
case shown in the right column, there is no such transition
since the phase can vary smoothly over the lattice.

The superfluids with different phase patterns have different
momenta. To see this, we compute the spin-dependent mo-
mentum distribution at wave vector k:

〈ρ↑,↓(�k)〉 = N−2
∑
i,j

〈b†i↑bj↓〉ei�k·( �Ri− �Rj ), (7)
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FIG. 5. Spin-dependent momentum distribution, Eq. (7), for
different superfluids at U↑↓ = 0.5U , λ = 0.04U , μ = 1.33U , (a)
t = 0.005U , and (b) t = 0.05U .

where the lattice spacing is chosen as the unit of distance and
�Rj is the location of the lattice site j .

We take random initial guess states and minimize the
total energy to compute the ground state |G〉, with which
the spin-dependent momentum distribution is computed as
〈G|ρ↑,↓(�k)|G〉/〈G|G〉. We get four degenerate ground states
with different momentum distributions, where the D4 sym-
metry of the lattice system is spontaneously broken. Similar
results have been discovered in the continuum model of a spin-
1/2 Bose-Einstein condensate with Rashaba SOC [56–58],
where the ground state is a single plane-wave state with finite
momentum, and the direction of plane wave is spontaneously
determined when the interspin interaction is smaller than the
intraspin interaction.

The two different states in Fig. 5 have qualitatively distinct
momentum distributions. We have also verified that in these
two phases, the magnitude of the order parameter is uniform
over the whole lattice, indicating that only the phase pattern
changes during the transition. Note that the peak in the momen-
tum distribution for the first two phases depends strongly on the
ratio between λ and t . In the noninteracting limit, the ground
-state energy of the system with SOC is E = −2t(cos kx +
cos ky) − 2λ

√
sin2 kx + sin2 ky. The energy minima are lo-

cated at k = [±arctan(λ/
√

2t), ±arctan(λ/
√

2t)]. On a finite
8 × 8 lattice, k can only take discrete values. In particular, for
λ/t = 0.8, the energy minima are located at (0,π/4), (0, −
π/4), (π/4,0), and (−π/4,0). In the presence of interactions,
D4 symmetry is spontaneously broken and the system chooses
one of the minima in Fig. 5(b). Similarly, for λ/t = 8, the
energy minima are k = (±π/2, ± π/2), which is consistent
with Fig. 5(a). It is therefore possible to directly infer their
ratio from the position of the peaks. We also note that the
results presented in Fig. 5 relate directly to the time-of-flight
imaging that can measure momentum distribution of distinct
hyperfine states.

IV. QUANTUM PHASES IN A TRAPPING POTENTIAL

We now consider the effects of realistic confinement on
the superfluid transitions. The finite momentum superfluids
considered here are akin to the FFLO phase discussed in
the context of trapped atomic Fermi gases. The FFLO state
depends strongly on lattice geometry. Finite-size effects are
normally not considered to be relevant in solids because system
sizes are typically much larger than correlation lengths. But
cold atomic gases can be put into regimes where the system
size is on the order of superfluid correlation lengths.
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FIG. 6. Correlation functions of finite momentum superfluids
on a 32 × 32 lattice with a confining potential [Eq. (8)] for μ =
0.8U , U↑↓ = 0, and λ = 0.04U . The left column shows results
for t = 0.01U , the middle column for t = 0.024U , and the right
column for t = 0.08U . The top three panels plot the phase φ↑ of the
spin-up superfluid order parameter. The middle three panels plot the
magnitude and the bottom three panels plot the density. The phase
patterns in the top two panels reveal a sudden change in superfluid
order.

Small magneto-optical trapping potentials can be created in
cold-atom systems. We add a spatially varying chemical po-
tential term to Eq. (2) to model confinement:

∑
i V ( �Ri)(ni,↑ +

ni,↓). The trapping potentials are well approximated by a
parabolic potential. We consider

V ( �Ri) = 0.008U

[(
Rx

i − Lx − 1

2

)2

+
(

R
y

i − Ly − 1

2

)2
]
,

(8)

where Rx
i (Ry

i ) is the x (y) coordinate of site i and Lx (Ly) is
the lattice size along the x (y) direction. The trap coefficient
is chosen to ensure that the trapped atom density vanishes
before the edge of the lattice is reached. Within the mean-field
theory, we can compute the local superfluid order parameter
in the trap〈bi,σ 〉 = ∑

n

√
nf

(i,σ )∗
n−1 f (i,σ )

n . The local density is
obtained as 〈ni,σ 〉 = ∑

n n|f (i,σ )
n |2.

We now show that the phase change, discussed in the
periodic systems above, also manifests in trapped systems.
Figure 6 shows a typical example obtained from solving Eq. (2)
in the presence of parabolic trapping using the Gutzwiller
ansatz with 104 random initial guess states. Since a Mott
insulator is an incoherent state with random phases, phases
of up-arrow superfluid order parameter with |〈b↑〉| � 0.05 are
plotted with dark gray color in the top panel of Fig. 6. As
the hopping parameter increases, the phase reorients in the
trap from a nonuniform pattern to a uniform pattern due to
the SOC effect. The effects predicted here are observable

in measurements sensitive to the phase of the superfluid
order parameter (e.g., the momentum distribution function).
This calculation shows that realistic trapping potentials lead
to finite-sized systems that harbor the transitions found in
periodic systems discussed above.

V. QUANTUM PHASES IN INFINITE LATTICES

So far our study has been limited to finite-sized lattices.
Here boundary effects put a strong constraint on the superfluid
phase patterns that can be realized. But we can use Eq. (4)
to study infinite lattices. We find a general solution for
the lowest-energy state, θi↑ = α(Ry

i − Rx
i ) and θi↓ = π

4 +
α(Ry

i − Rx
i ), where α = arctan(λ

√
2/2t). The corresponding

energy for just the kinetic terms is

Ek = −(tA + λB)ψ2. (9)

The competing superfluids arise from the competition between
A and B coefficients.

Before studying the infinite system case, we first test that
Eq. (9) gives the same results as the Gutzwiller mean-field the-
ory. We find that this is the case by comparing results obtained
from maximizing tA + λB in Eq. (9) on a finite lattice with
the Gutzwiller mean-field theory. We find precisely the same
phase patterns given in Fig. 5. This confirms that the Gutzwiller
mean-field theory is equivalent to Eq. (9) on finite lattices.

We now study infinite lattice sizes. In the infinite system size
limit we find Ek → −4

√
2λ sin(α) − 8t cos(α). This implies

that the energy will change smoothly as the period of the finite
momentum superfluids changes dramatically. Figure 7 shows
that the energy computed on the infinite system size is in
fact smooth. We therefore conclude that infinite lattice sizes
will eliminate transitions observed in finite-sized systems. A
similar result was found in studies of FFLO superfluids where
periodic boundaries also constrain the FFLO momentum
to select certain values [59,60]. But we note that realistic
experiments are actually trapped finite-sized systems with
N ∼ 102–105. We therefore conclude that transitions between
distinct superfluids found here should be observable in the
small system limit defined by the trap center.

0 0.02 0.04 0.06 0.08
t/U

-0.6

-0.5

-0.4

-0.3

-0.2

E
k/U

Infinity
6 x 6
5 x 5
4 x 4

FIG. 7. Plot of the kinetic-energy terms, Eq. (9), as a function
of the spin-independent tunneling at λ = 0.04U , for a 4 × 4, 5 × 5,
6 × 6 lattice and an infinite-size lattice.
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VI. SUMMARY

We have studied the interplay of strong interaction and
Rashba SOC in a model motivated by optical lattice ex-
periments: a 2D Hubbard model of two-component bosons.
We used mean-field theory to map out the phase diagram
and study transitions. We find that strong Rashba SOC can
completely destroy the Mott insulator state, even in the absence
of spin-independent tunneling in the lattice. The Rashba SOC
leads to superfluids with complex phase patterns and finite
momentum. We identified transitions between superfluids
with two different staggered phase patterns, that can be
identified in the spin-dependent momentum distribution. The
spin-dependent momentum could be accessed in time-of-flight
measurements on optical lattices. We expect these transitions
to occur in finite-sized systems but the phase patterns and
precise momenta depend strongly on the boundaries. We
checked that these transitions in phase patterns become smooth
in infinite system sizes.

Our work relates to the nature of Mott insulator states in
solids. Our study of a 2D lattice finds that it is in principle
possible for strong Rashba SOC to convert a Mott insulator
into a conducting state even in the limit of vanishing kinetics
(t → 0 with λ ∼ 1 in the lattice model or 〈p〉 → 0 with 〈 �∇V ×
�p〉 ∼ EF in the continuum). This limit could have bearing on
the nature of 3D Mott insulator surface states that experience
very weak kinetics but strong electric fields.
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