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Stabilizing vortex solitons with high values of the topological charge S is a challenging issue in optics,
studies of Bose-Einstein condensates (BECs), and other fields. To develop an approach to the solution of this
problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic
lattice potential, V (r) ∼ cos(2r + δ), with dipole moments polarized perpendicular to the system’s plane, which
gives rise to isotropic repulsive dipole-dipole interactions. Two radial lattices are considered, with δ = 0 and π ,
i.e., a potential maximum or minimum at r = 0, respectively. Families of vortex gap soliton (GSs) with S = 1
and S � 2, the latter ones often being unstable in other settings, are completely stable in the present system (at
least up to S = 11), being trapped in different annular troughs of the radial potential. The vortex solitons with
different S may stably coexist in sufficiently far separated troughs. Fundamental GSs, with S = 0, are found too.
In the case of δ = 0, the fundamental solitons are ring-shaped modes, with a local minimum at r = 0. At δ = π ,
they place a density peak at the center.
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I. INTRODUCTION

Nonlinear optical and matter waves carrying angular mo-
mentum readily self-trap into vortex modes, which may be
considered as two-dimensional dark solitons supported by a
modulationally stable flat background, or bright solitons with
embedded vortices. Experimental and theoretical studies of
vortices is a vast research area in nonlinear optics, studies
of Bose-Einstein condensates (BECs), quantum fluids, and in
other fields. The formation, stability, and dynamics of dark
[1–13] and bright [14–49] vortices have been explored in a
great variety of settings, including conservative and dissipative
ones, continuous and discrete media, local and nonlocal
interactions, and different types of the nonlinearity—cubic
(self-focusing and defocusing), cubic-quintic, saturable, and
quadratic (second-harmonic generating). A recent develop-
ment has produced unexpected predictions in the form of bright
semivortices (bound states of components with vorticities
S = 0 and S = 1) in spinor BECs with the spin-orbit coupling
and contact attractive interactions, which are stable in free
space [50–55], as well as stable gap solitons of the semivor-
tex type in the free space with dipole-dipole interactions
(DDIs) [56].

In many cases, bright vortex solitons are stable solely
with the unitary topological charge, S = 1. In particular,
the spin-orbit coupling supports solitons with vorticities
S = 1 and S = 2 in its two components, which are com-
pletely unstable [50,56]. Vortices in the self-attractive BEC
trapped in a harmonic-oscillator potential also have a stability
area solely for S = 1 [14,19,32,34]. Vortex solitons in the
free space with the cubic-quintic nonlinearity [15] feature
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stability regions for S > 1, but they are very narrow, starting
from S = 3 [17]. Typically, the vortex solitons with S > 1
are subject to azimuthal perturbations which break them
into S fragments [19,34,57,58]. This instability has been
demonstrated experimentally for vortex beams propagating in
saturable self-focusing media [59–61], as well as in quadratic
ones [62].

Sufficiently large stability regions in the parametric space
for vortex solitons with S > 1 were found in axisymmetric
potential lattices with the Bessel functional profile in the radial
direction, combined with the self-defocusing nonlinearity [63].
In that case, a deeper lattice is required to stabilize solitary
vortices with higher values of S. Because the Bessel potential
vanishes at r → ∞, the total norm of modes trapped in it
under the action of self-defocusing, strictly speaking, diverges
in the infinite space. Truly confined gap solitons (GSs), i.e.,
solitons whose chemical potential falls in one of the band gaps
generated by the underlying potential lattice, were constructed
considering the combination of the self-defocusing cubic
nonlinearity and a radially periodic potential, ∼ cos (2kr),
where r is the radial coordinate [64]. However, only radial
GSs with S = 0 were found to be completely stable in the latter
model, while all confined vortices featured a weak azimuthal
instability. Self-trapped vortices, which remain stable, at least,
up to S = 5, were recently found in a model of a polariton
type, which combines the self-repulsive contact nonlinearity
of a two-component BEC and effective nonlocal self-attraction
mediated by the microwave field generated by transitions
between two components resonantly coupled by the field [48].
Nonlocal interactions, considered in Ref. [48] or in the present
work (see below), introducing their own radial scale, provide
more options in the interplay with the radially periodic lattice,
which helps, in particular, to stabilize vortex GS modes against
the azimuthal instability.
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FIG. 1. Radial potentials (3) with V0 = 1, for δ = 0 (a) and
δ = π (b).

The objective of the present work is to predict stable
GSs with S = 0 and S � 1 in a dipolar BECs trapped in a
radially periodic potential, with dipole moments polarized
perpendicular to the system’s plane, which gives rise to the
isotropic repulsive DDI. In earlier works, DDIs were used to
predict stable one-dimensional [65–68] and two-dimensional
[69–79] solitons in other settings. In addition, it was found
that quadrupole-quadrupole interactions are also able to create
stable two-dimensional solitons [80,81]. However, the free-
space DDI per se cannot stabilize vortex solitons with S > 1
[71]. In this work, we demonstrate that ring-shaped vortex GSs
with higher values of S (at least, up to S = 11) are readily made
stable by the combined effect of the radial lattice potential and
repulsive isotropic DDIs. Furthermore, double and multiple
sets of concentric vortex solitons, with different topological
charges, may stably coexist, if placed in different annular
potential troughs of the radial lattice. In that case, vorticity
jumps take place at zero-amplitude notches separating the
concentric vortices. The latter property was not reported in
previously considered two-dimensional models.

The paper is structured as follows. The model is introduced
in Sec. II, which is followed by presentation of numerical
results for the fundamental (S = 0) and vortex (S � 1) GSs
in Sec. III. The stability of the solitons is verified by means
of systematic direct simulations. The paper is concluded by
Sec. IV.

II. MODEL

According to what was said above, we consider an effec-
tively two-dimensional setting, modeled by Gross-Pitaevskii

equation, which is written in the scaled form:

i
∂

∂t
�(r,t) = −1

2
∇2�(r,t) + V (r)�(r,t)

+ κ�(r,t)
∫

R(r − r′)|�(r′,t)|2dr′, (1)

where r = {x,y} is the set of coordinates, ∇2 = ∂2
x + ∂2

y is the
respective Laplacian, �(r,t) is the mean-field wave function,
and κ > 0 is the strength of the DDI, with the isotropic kernel
corresponding to the particles’ dipolar moments polarized
perpendicular to the (x,y) plane:

R(r − r′) = 1

[ε2 + (r − r′)2]3/2
. (2)

Here, cutoff ε is the regularization parameter, which is deter-
mined by the confinement of the three-dimensional condensate
in the transverse direction [65,66]. Further, the axisymmetric
radially periodic lattice potential is taken as

V (r) = V0cos(2r + δ), (3)

where r =
√

x2 + y2, the depth of the lattice potential is
2V0 > 0, the radial period is fixed to be π by scaling, and
δ is a phase constant. Here, we focus on the consideration of
the two most essential cases, viz., δ = 0 and δ = π , which
correspond to a potential maximum or minimum at the center,
r = 0, respectively; see Fig. 1.

We look for stationary axisymmetric states with chemical
potential μ and integer vorticity S as solutions to Eq. (1) in the
form of

�(r,t) = ψ(r) exp (iSθ − iμt), (4)

where θ is the angular coordinate. Self-trapped GS solutions
are characterized by the total norm,

N = 2π

∫ ∞

0
ψ2(r)rdr, (5)

and the angular momentum, M = SN . Its energy is

E = EK + EV + EDDI, (6)

FIG. 2. A typical fundamental (S = 0,n = 1) ring-shaped gap soliton for δ = 0, other parameters being N = 1.3 and V0 = 1. (a) The
density of stationary wave function in the (x,y) plane. (b) Its cross section, |ψ(x,0)|2, along y = 0. (c) The cross section of the real-time
simulation, which demonstrates stability of the soliton.
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FIG. 3. Two typical examples of stable gap-vortex solitons for δ = 0. (a), (b) Density and phase profiles of the vortex soliton for S = 1,n = 1
[n is defined as per Eq. (11)]. (c) The cross section of the real-time evolution, corroborating the stability of the vortex soliton. (d)–(f) The same
as in (a)–(c), respectively, but for S = 4, n = 3. The norm of both vortex solitons is N = 1.3, and the strength of the radial potential is V0 = 1.

where EK, EV, and EDDI are the kinetic, potential, and DDI
terms, respectively:

EK =
∫

|∇ψ |2dr

≡ π

∫ ∞

0

[(
dψ

dr

)2

+ S2

r2
ψ2(r)

]
rdr, (7)

EV = 2π

∫
V (r)ψ2(r)rdr, (8)

EDDI = κ

2

∫∫
R(r − r′)|ψ(r)|2|ψ(r′)|2drdr′. (9)

Two-dimensional bright GSs can be supported by the
interplay of the radially periodic potential and repulsive

interaction [64]. In this work, we focus on the DDI, which was
not previously considered in the present setting, neglecting
contact interactions, which can be effectively suppressed by
means of the Feshbach resonance [82]. In fact, effects of
adding moderately strong contact interactions to the DDI were
checked too (not shown in detail in this paper, as no dramatic
changes in the results were observed in that case).

Numerical simulations have been carried out by dint of
an algorithm of PCSOM [83], fixing κ ≡ 1 by means of
scaling, and, typically, taking ε = 0.5, which is small enough
in comparison with the potential’s period π , making it possible
to produce generic results. It was additionally checked that
taking still smaller ε (e.g., 0.25) does not produce any
conspicuous change in the results. The stability of stationary
soliton solutions was tested by means of real-time propagation,
which was implemented with the help of the standard split-
step–fast-Fourier-transform algorithm.

FIG. 4. (a) The cross section |ψ(x,0)| of profiles of the gap solitons trapped in different annular potential troughs (here we display the
absolute value of the field, rather than the density, to display the profiles in a clearer form). (a) The solitons with S = 0 and 1 in the first trough,
which corresponds to n = 1 in Eq. (11). (b) S = 2 and 3, in the trough with n = 2. (c) S = 4 and 5, in the trough with n = 3. The norm of all
the gap solitons displayed here is N = 1.3, and the half-depth of the periodic potential is V0 = 1.
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FIG. 5. (a) The energy, defined by Eqs. (6)–(10), of the gap
solitons with different vorticities S, and the radial location of
their main density peaks. Yellow stripes denote the respective
potential troughs. The norm of all the solitons presented in this
panel is N = 1.3. (b) Chemical potential μ for the gap-soliton
families with different values of S vs the norm N at V0 = 1. This
panel demonstrates that all the families satisfy the anti-Vakhitov-
Kolokolov criterion, dμ/dN > 0, which is a necessary condition
for the stability of solitons supported by a repulsive nonlinearity
(see the main text).

III. NUMERICAL RESULTS

A. Radial lattice with δ = 0 (potential maximum at the center)

When radial potential (3) has a maximum at the center,
Eq. (1), naturally, cannot produce a fundamental soliton (S =
0) with a density peak at r = 0. Instead, the model readily
produces stable GSs with S = 0,1,2,3,4, . . . which feature a
density minimum at the center, and the main radial density
peak trapped in a trough with the bottom at one of potential
minima,

rmin = π
(
n − 1

2

)
, n = 1,2,3,4, . . . , (10)

where n is the number of the radial minimum. Typical
examples of such ring-shaped solitons are displayed in Fig. 2
for S = 0, and in Fig. 3 for S = 1 and S = 4. The GSs with
S = 0 and 1 place their density maxima close to n = 1, while
the vortex with S = 4 chooses n = 3. It is worthy to note that
the latter vortex mode, with a high value of the topological
charge, S = 4, displayed in Figs. 3(d)–3(f), is definitely stable,
contrary to a majority of models where it would be unstable. In
fact, we have obtained stable vortex solitons with topological
charges up to S = 11, as indicated below in Figs. 5(a)
and 9(d).

Systematic numerical results, collected in Figs. 4 and 5(a),
demonstrate that the GSs with S = 0 and 1 are trapped in the
trough with n = 1, GSs with S = 2 and 3 choose n = 2, with
S = 4 and 5 choose n = 3, and so on, obeying an empiric
relation

nmainpeak = 1 + [S/2], (11)

where [] stands for the integer part. Figure 5(a) also shows
that the vortex modes with odd S have their energy decreasing
with the growth of S, while the energy of ones with even S

exhibit a very slow increase of energy, starting from S = 2.
Further, the mode with odd S has its energy always higher
than its counterpart with even vorticity, S − 1, sharing the
same position of the density maximum.

The linear dependence in Eq. (12) for large S can be
explained in a qualitative form. Indeed, the strongest depen-
dence of the energy of ring-shaped solitons on the ring’s
radius, R ≈ πn for large n [see Eq. (11)], is provided by
the second term in Eq. (8), ES ≈ (S/R)2N [for comparison,
the DDI energy, defined as per Eq. (10), can be estimated as
∼ κN2/R]. On the other hand, the energy term which provides
for the trapping of the ring-shaped mode in the annular trap is
estimated as Etrap ≈ 2V0N . Then, the balance of the two terms
predicts R ∼ S/

√
V0.

The dependence of the chemical potential μ on norm N ,
which is displayed in Fig. 5(b) for the GS families with
S = 0,1,2,3, demonstrates that they obey the anti-Vakhitov-
Kolokolov criterion, dμ/dN > 0, which is a necessary condi-
tion for stability of solitons supported by any kind of repulsive
nonlinearity [84,85]. The same is true for still larger values
of S, up to S = 11 (largest S considered in the present
work).

B. Radial lattice with δ = π (potential minimum at the center)

1. Fundamental gap solitons (S = 0)

Radial potential (3) with δ = π gives rise to a set of potential
minima

rmin = πn, n = 0,1,2,3, . . . , (12)

cf. Eq. (11). In this case, is natural to expect the existence of
stable fundamental GSs with a density peak at r = 0, which
corresponds to the zeroth minimum, in terms of Eq. (13). This

FIG. 6. A fundamental (S = 0) gap soliton trapped in the center of the radial lattice potential (3) with δ = π . (a) The density profile of the
soliton |ψ(x,y)|2. (b) Its cross section, |ψ(x,0)|2. (c) The cross section of the simulated evolution of |ψ(x,0)|2, which demonstrates stability
of the soliton. Its norm is N = 0.5, and the strength of the potential is V0 = 2 in this case.
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FIG. 7. (a), (b) Aeff for the fundamental gap soliton (S = 0), trapped in the central well of radial potential with δ = π [n = 0 in Eq. (13)],
vs N and V0, respectively. In (a) V0 = 2, and in (b) N = 0.5. (c) μ vs N with V0 = 2. (d) μ vs V0 with N = 0.5. Other parameters are κ = 1
and ε = 0.5.

expectation is borne out by numerical results; see a typical
example in Fig. 6.

To characterize the family of the fundamental GSs, we
define its effective area as

Aeff =
[∫ |ψ(x,y)|2dxdy

]2∫ |ψ(x,y)|4dxdy
. (13)

Along with the chemical potential μ it is shown, as a function
of the norm N and the potential depth V0, in Fig. 7. In
particular, Figs. 7(a) and 7(b) show that, quite naturally, the
size of the fundamental GS increases when the self-repulsive
DDI becomes stronger, but decreases with the growth of
the trapping potential. Further, Fig. 7(c) corroborates that
these solitons satisfy the anti-Vakhitov-Kolokolov criterion.
In agreement with this finding, the family of the fundamental
GSs is entirely stable.

Finally, the transition from dμ/dV0 > 0 in the relatively
shallow radial lattice, at V0 < 2.3, to dμ/dV0 < 0 at V0 > 2.3
implies that properties of the soliton family are dominated by
the nonlinear interaction in the former case, and by the linear
trapping potential in the latter one. Indeed, direct simulations
demonstrate that the trapped mode with S = 0 “almost exists”
in the deep potential with V0 > 2.3 in the absence of the
nonlinear interaction (κ = 0), exhibiting very slow decay.

2. Ring-shaped and vortex solitons

Besides the fundamental GSs trapped in the central po-
tential well, the radial lattice with δ = π supports stable

ring-shaped GSs, trapped in an annular potential trough, also
with S = 0, as well as ring-shaped vortex GSs. A typical
example of the stable ring mode with S = 0, placed in the
trough with n = 1, is displayed in Fig. 8. Further, Fig. 9 shows
an example of a stable soliton with high vorticity, S = 5, which
is trapped in the trough with n = 3 [see Eq. (13)].

Numerical results produce the same relation between the
location of the ring-shaped solitons and their vorticity which is
identified above for the radial potential with δ = 0; see Eq. (12)
(the same explanation for the linear dependence on large values
of S, as that outlined above, is relevant in the present case too).
Namely, the GSs with S = 0 and 1 are trapped in the trough
with n = 1 in Eq. (13), ones with S = 2 and 3 are placed at
n = 2, the solitons with S = 4 and 5 are trapped in the trough
with n = 3, etc. These results are summarized in Fig. 9(d).
Similar to the case of δ = 0 [cf. Fig. 5(a)], the energy of the
trapped states with odd S is higher than the energy of their
counterparts with even vorticity, S − 1, with the same position
of the density maximum. A difference from the case of δ = 0
is that the modes with even S feature increase of their energy
with the growth of S, starting from S = 2, while the energy of
the modes with odd S remain virtually constant.

C. Stable coexistence of double and multiple solitons

The existence of stable ring-shaped GSs with different
topological charges, located in different annular potential
troughs, suggests that such modes with different values of
S may have a chance to coexist in the system as concentric

FIG. 8. A typical example of the fundamental ring soliton (S = 0) trapped in the radial potential (3) with δ = π . (a) The density profile of
this gap soliton, |ψ(x,y)|2. (b) Its cross section |ψ(x,0)|2, which clearly shows that it is trapped in the annular trough with n = 1; see Eq. (13).
(c) Cross section of the simulated evolution, which confirms the stability of the soliton. The norm of the soliton is N = 1.3, and the half depth
of the radial potential is V0 = 2.
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FIG. 9. An example of a stable vortex gap soliton with a high topological charge, S = 5, trapped in the third annular trough of the radial
potential (3) with δ = π . Parameters are N = 1.3 and V0 = 2. (a), (b) The density and phase profiles of the vortex soliton. (c) The cross section
of the simulated evolution, which corroborates the stability of the vortex. (d) The same as in Fig. 5(a), but for potential (3) with δ = π (the
energy of the soliton with S = 0 trapped at the center of the lattice, n = 0, is E0 = 1.943, which is not displayed in this panel, as it is much
larger than the values presented here). Other parameters are fixed as N = 1.3, V0 = 2.

modes, one embedded into the other. The coexistence of
adjacent layers with different topological charges implies
that they must be separated by zero-amplitude circular lines.
Numerical results, produced by direct simulations of inputs
built as superpositions of two ring vortices corroborate this
conjecture, if the radial separation between the concentric
rings is large enough (i.e., the interaction between them is
sufficiently weak), as shown in Figs. 10(a)–10(c). Due to
the relation between the radial location of the ring soliton
and S [as per Eq. (12)], the latter condition implies that the
concentric rings must pertain to sufficiently different values of
S. Moreover, Figs. 10(d) and 10(e) demonstrate a similar result
produced by the initial superposition of three concentric GSs,
under the same condition that they are separated well enough.
On the other hand, an input with conspicuous overlap between
the initial vortex rings gives rise to unstable evolution; see
Figs. 10(f) and 10(g).

IV. CONCLUSION

We have elaborated on a setting which makes it possible
to readily stabilize bright vortex solitons with arbitrarily high
values of the topological charge S. The setting is realized as
a two-dimensional dipolar BEC trapped in an axisymmetric
radially periodic potential, with dipole moments of particles
polarized perpendicular to the system’s plane, which gives
rise to the isotropic repulsive DDI (dipole-dipole interaction).
The radial potentials with both the maximum and minimum
at the center were considered. The interplay of the radial
lattice potential and repulsive interactions creates families
of stable annular GSs (gap solitons) with S = 0 and S � 1.
Unlike the similar setting with contact repulsive interactions
[64], where the annular vortex GSs are (weakly) unstable, the
present system gives rise to GS families which are completely
stable (at least, up to S = 11). The ring-shaped GSs have
their main density peak located in an annular potential trough

FIG. 10. (a) The absolute-value profile of the concentric superposition of ring vortices with S = 1 and S = 8 (inner and outer rings,
respectively), used as an input for direct simulations, with potential (3) that has a minimum at the center (δ = π ). (b) The output pattern of the
simulation initiated by the input in (a) at t = 2000. (c) The cross section along the x axis, illustrating the stable evolution of the concentric
complex in the direct simulations. (d) The same as in (a), but with the input formed by the concentric superposition of three rings, with S = 0
(placed at the the center), S = 4, and S = 10. (e) The stable output pattern produced by the evolution of the input from (d) at t = 2000. (f)
The same as in (a), but for the input taken as a superposition of ring vortices with S = 1 and S = 2; in this case, a conspicuous interference in
observed in the input. (h) The result of unstable evolution initiated by the input from (f). In all the cases, parameters are N = 0.5 and V0 = 2.
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whose number grows, for large S, as S/2 [see Eq. (12)].
The linear growth of the vortex’s radial location with S was
qualitatively explained on the basis of the energy considera-
tions. Further, sets of concentric annular GSs with sufficiently
large radial separation between them, i.e., with essentially
different values of S, stably coexist in the present system.
The optical angular momentum becoming an important factor
in modern information-processing technologies [86,87], the
setting analyzed in this work may find application to the storage
of data encoded in values of the vorticity.

A challenging extension of the work is to construct three-
dimensional bright GSs with embedded vorticity in the dipolar
BEC, which will make it necessary to combine the radial
potential with the a term which periodically varies along
the transverse coordinate z [such as cos (qz)], so as to build

an axially stacked version of the radial potential lattice,
that should feature a full three-dimensional band gap in its
spectrum.
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