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We investigate the magnetic properties of a repulsive fermionic SU(3) Hubbard model on the Lieb lattice from
weak to strong interaction by means of the mean-field approximation. To validate the method we employed, we
first discuss the SU(2) Hubbard model at the mean-field level, and find that our results are consistent with known
rigorous theorems. We then extend the calculation to the case of SU(3) symmetry. We find that, at 4/9 filling,
the SU(3) symmetry spontaneously breaks into the SU(2) x U(1) symmetry in the ground state, leading to a
staggered ferromagnetic state for any repulsive U at zero temperature. We then investigate the stability of the
ferromagnetic state by relaxing the filling away from 4/9, and conclude that the ferromagnetic state is sensitive
but robust to fillings, as it can persist within a certain filling regime. We also apply the mean-field approximation
to finite temperature to calculate the critical temperature and the critical entropy of the ferromagnetic state. As
the resulting critical entropy per particle is significantly greater than what can be realized in experiments, we
expect some quasi-long-range-ordered features of such a ferromagnetic state can be realized and observed with
fermionic alkaline-earth-metal(-like) atoms loaded into optical lattices.
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I. INTRODUCTION

The investigation of itinerant ferromagnetism is one of
the fundamental and central topics in theoretical condensed-
matter physics [1-11]. Although itinerant ferromagnetism is
generally considered as a result of strong electron-electron
interaction since paramagnetism is an inevitable consequence
of the Pauli exclusion principle in noninteracting many-
electron systems, strong interaction does not necessarily lead
to ferromagnetism. For instance, Lieb and Mattis proved that
ferromagnetism never happens in one-dimensional systems
with only nearest-neighbor hopping, no matter how strong
the interaction is [1]. To date, the stability of ferromag-
netism in itinerant fermions remains a challenging problem
in condensed-matter physics, mainly because of the subtle
interplay between the kinetic energy and the interaction energy.

Due to the subtle sign problem, rigorous proofs for
ferromagnetism of the fermionic Hubbard model are very
rare [2-8]. The existing few hence play important roles as
benchmarks for the magnetic properties of the ground state.
One of the earliest rigorous proofs of itinerant ferromagnetism
is attributed to Thouless [12] and Nagaoka [2]. It is shown
that, with infinite on-site repulsion and a single hole away from
half filling, the ground state of the Hubbard model defined on
a lattice satisfying the connectivity condition is unique with
saturated ferromagnetism (with maximal total spin S = N, /2,
where N, is the number of electrons). In 1989, Lieb proved
that on a general bipartite lattice where the two consisting
sublattices have different numbers of sites, the ground state of
the Hubbard model at half filling with any finite repulsion is
an unsaturated ferromagnetic state, which is also referred to
as a ferrimagnetic state with total spin being proportional to
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systemsize, S = ||Aa| — |Agll/2. Here, | A sl is the number
of sites on sublattice A (B) [7]. In such a setting, a consequence
of the bipartite condition is the existence of a nondispersive
or, equivalently, flat band within the single-electron spectrum.
Such a nondispersive band implies the existence of localized
single-particle eigenstates in spatial space and the degeneracy
of eigenstates in the single-particle spectrum. This type of
ferromagnetism is then referred to as flat-band ferromagnetism
and is further proved by Mielke and Tasaki [3-6]. The role of
the flat band can be understood in the following argument.
In a noninteracting system, the ferromagnetic state is one
of the many degenerate ground states when particles fill
into the flat band. As one turns on the interaction between
electrons, such degeneracy is lifted by perturbation and the
ferromagnetic ground state may be singled out to be the only
ground state. Although such an argument only holds in the non-
and weak-interacting limits and completely breaks down in
strongly interacting many-electron systems, a lattice featuring
a flat band may still be beneficial to realize ferromagnetism as
it effectively reduces kinetic energy.

These two seemingly different approaches to realize ferro-
magnetism, Nagaoka ferromagnetism [2] and flat-band ferro-
magnetism [3-7], can be understood in a unified way in the
context of the Stoner criterion for ferromagnetism: p(Er)U >
1. Here, p(Er) is the density of states (DOS) at the Fermi
level and U is the interparticle Coulomb interaction. Although
this argument is obtained from a mean-field calculation, it
provides us the picture that there may be an instability towards
ferromagnetism when the DOS at the Fermi level and/or
the Coulomb interaction become sufficiently large. The two
theorems mentioned above could be thought of as satisfying
the condition of the Stoner criterion: either through infinite
interaction or through infinite DOS at the Fermi level.

As the discussion above focuses on fermionic systems
possessing the SU(2) spin-rotational symmetry, one would
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wonder what the ground state of the Hubbard model is
which acquires a higher SU(N) spin-rotational symmetry.
The SU(N) symmetry was introduced in condensed-matter
physics as a mathematical extension or theoretical tool for
strongly correlated SU(2) systems [13-16]. However, the
degrees of freedom offered by the nuclear spin of cold atoms
offer a fascinating playground to investigate the strongly
correlated particles with a higher symmetry. The simulation
of the SU(N) Hubbard model in cold atoms has been not
only theoretically proposed [17-21] but also experimentally
realized by loading ultracold alkaline-earth-metal(-like) atoms
in various types of optical lattices [22-26]. Because of the
decoupling of electronic and nuclear spin degrees of freedom,
the alkaline-earth-metal(-like) atoms with different nuclear
spin magnetic quantum numbers have an SU(N) symmetry,
where N = 27 + 1 is the number of Zeeman states and [ is
the nuclear spin. The number N can be as large as 10 for ¥’Sr
with I = 9/2, or 6 for 'Yb with I = 5/2.

The SU(N > 2) generalization of the itinerant ferromag-
netism has been previously studied with an SU(N) Hubbard
model [27,28]. In Ref. [27], a sufficient condition is provided
for an extension of the Nagaoka state by a rigorous proof.
In Ref. [28], the authors determine the transition from
paramagnetic to itinerant ferromagnetic states with increasing
scattering length and derive the SU(N) generalization of
the Stoner criterion for ferromagnetism at the mean-field
level, finding that it is the same as the SU(2) case. As the
Nagaoka ferromagnetism [2] and the flat-band ferromagnetism
[3-7] in SU(2) systems could be regarded as satisfying the
SU(2) Stoner criterion, we expect that the generalized SU(N)
ferromagnetism could be stabilized in systems satisfying the
SU(N) Stoner criterion, for example, a system with a partially
filled flat band, where the DOS diverges at the Fermi level.

In this paper, we investigate the magnetic properties of the
ground state of the SU(3) Hubbard model with finite repulsion
on the Lieb lattice, by means of a mean-field calculation. The
Lieb lattice has many advantages to investigate this problem.
First, with only nearest-neighbor hoppings, the Lieb lattice is
bipartite and features a flat band in the middle of a single-
electron spectrum. The system acquires a diverging DOS as
the Fermi level is filled into the flat band. Second, the Lieb
lattice is a special lattice structure described by Lieb theorem,
so we can compare our calculation of the SU(2) Hubbard
model with a rigorous theorem. Last but not least, the Lieb
lattice has been successfully realized for 173Yb atoms [29],
paving the way for the experimental investigation of flat-band
ferromagnetism with SU(N) symmetry. Although the mean-
field theory is not as reliable as rigorous theorems, it does
provide us insights about the possible ferromagnetic ground
state, the effect of interaction, and the temperature regime
where the quasi-long-range magnetic order persists.

The remainder of the paper is organized as follows. We first
briefly review the band structure of the tight-binding model
on the Lieb lattice in Sec. II. In Sec. III, we introduce the
model with the SU(N) symmetry and discuss the symmetries
implied by the Hamiltonian. In Sec. IV, we decouple the
interaction in the spin (or flavor) channel and develop a general
mean-field approach for the SU(N) Hubbard model. Then we
discuss the simplifications and implications of the model if the
ground state supports collinear magnetic orders. In Sec. V, we
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FIG. 1. (a) Lattice structure of the Lieb lattice. The dotted square
shows one unit cell, containing three lattice sites with indices A, B,
and C. (b) The band structure of the tight-binding model on the Lieb
lattice. (c) The band structure along high symmetric lines in the first
Brillouin zone (BZ), where the inset shows the first BZ and high
symmetric points.

present the results of the mean-field calculation for the SU(2)
Hubbard model where the ferromagnetic ground state is found
and compare our results with known rigorous theorems. In
Sec. VI, we present the results for the SU(3) Hubbard model at
4/9 filling. We find that the ground state is ferromagnetic, as a
consequence of the spontaneous symmetry broken from SU(3)
to SU(2) x U(1). We then extend the discussion to other filling
factors and find that the ferromagnetic state can persist within
a certain filling regime. Furthermore, within the mean-field
approximation, we find the ferromagnetic state is stable up
to a finite temperature. In Sec. VII, we present the conclusions
and discussions. The generators of the SU(3) group, i.e., the
Gell-Mann matrices, and the technical part of the mean-field
calculation involved herein are presented in the Appendixes.

II. TIGHT-BINDING MODEL ON THE LIEB LATTICE

The two-dimensional Lieb lattice is an important building
block of layered perovskite material, e.g., the CuO; plane in
high-T, cuprate superconductors. It consists of two sublattices
as shown in Fig. 1(a): one has lattice spacing a (depicted in
blue), while the other one has spacing a/+/2 and is tilted by
45° (purple). The dotted square in Fig. 1(a) shows one unit cell,
which contains three sites labeled by A, B, and C. Notice that
sites B and C may have different magnetization orders when
the C,4 rotational symmetry is broken. This can be realized
either by explicitly imposing a chemical potential imbalance
between sites B and C such that the threefold degeneracy at the
(7r, ) point in momentum space is lifted, or by the interaction
effect which leads to a nematic phase with spontaneously
broken C4 symmetry [30,31]. The basis vectors of the unit
cell can be chosen as a; = (a,0) and a, = (0,a).
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The tight-binding model for spinless fermions reads

Ho=— Y (tjclc; +He), (1)

(i,jleA

where (i,j) runs over all pairs of nearest-neighbor sites
on lattice A, cl'-r (c;) is the creation (annihilation) operator
for fermions on site i, satisfying anticommutation relations
{c:r,cj} = §;; and {c;,c;} =0, and H.c. stands for Hermitian
conjugate. For simplicity, we take the uniform real hopping
amplitudes #;; = ¢. With only nearest-neighbor hoppings, the
Lieb lattice is bipartite and consequently features a flat band.
The band structure is easily obtaiqed by transforming Hy,
into momentum space, Hy, = ) CDIT(Hlb(k)CDk, where &y is a
three-component spinor (ca(K),cp(K),cc(k))? with sublattice
indices A, B, and C. The vector k = (k,k,) belongs to the first
Brillouin zone (BZ), which is shown in the inset of Fig. 1(c).
Hi,(K) takes the form

0 cos(kca/2) cos(kya/2)
Hy(K) = —2t | cos(kya/2) 0 0
cos(kya/2) 0 0
It has two dispersive bands, e+ (k) =

+t/4+2cos(k-a;) +2cos(k-a), and one flat band
in the middle of the spectrum, €p(k) = 0. The three bands
touch each other at the M point (;r,7) as shown in Figs. 1(b)
and 1(c).

The magnetic and topological properties of the Lieb
lattice have been comprehensively investigated [28-37]. In
experiment, the Lieb lattice can be realized by imposing three
types of optical lattices [29,32,38,39], leading to the following
potential profile: V(x,y) = Vy[sin*(wx/a) + sin*(wy/a)] +
Vi[sin®?(2x /a) + sin’(2wy/a)] + Va[cos?(mx/2a + my/
2a) + cosz(nx/Za — my/2a)], where Vo = V| = 2V, are the
depths of composing lattice potentials.

III. THE SU(N) HUBBARD MODEL ON
THE LIEB LATTICE

In the following, we consider the Hubbard model with
SU(N) spin-rotational symmetry, with a finite repulsive on-site
density-density interaction U > 0. In general, the Hamiltonian
can be written as

H=—t Z Z(cmcja—l—Hc)—l—Uan, ()

(i,j)eA a=1

where o« = 1, ...,N labels the flavor or color of a fermion.
In cold atomic systems, N is the number of populated

Zeeman states. The operator ¢; , and its adjoint cj_a satisfy

the fermionic anticommutation relations {cia,c .8} = 0ijdap
and {¢; «,cj g} = 0. The number operator for fermions at site
i is defined as n; = nyv=1 nio Withn; 4 = cjaci,a.

The symmetry of the Hamiltonian in Eq. (2) has been
discussed in detail in Ref. [27]. Besides the trivial conservation
of total particle number, the Hamiltonian exhibits a global
U(N) =U() x SU(N) symmetry. One can construct a total
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number operator and spin operators, which commute with the
Hamiltonian in Eq. (2):
V=" "n, 3)

ieA

N
§6= 3 clThes  @=1,....N*=1, @

o, =1

where T¢ = 7% /2 are the generators of the SU(N) Lie algebra.
To be specific, for fermions with the SU(2) symmetry, « = 1,2
(or equivalently « =1, |}) and ¢ = ¢ (@ = 1,2,3), where
0?’s are the Pauli matrices. For fermions with the SU(3)
symmetry, « = 1,2,3and t¢ = A (@ =1, ...,8), where A*’s
are the Gell-Mann matrices (shown in Appendix A).

For the case of the SU(2) symmetry, Lieb has proved rigor-
ously that at half filling, the ground state of Eq. (2) is unique
[apart from the trivial (2S + 1)-fold degeneracy] and has total
spin S = .4 /2, where ./ is the number of unit cells [7].
Strictly speaking, it is a ferrimagnetic state because the total
spin is not saturated. In Lieb’s terminology, ferromagnetism
means the total spin is nonzero and proportional to the system
size. In the following discussion, we adopt the same definition
and do not distinguish ferrimagnetism from ferromagnetism.

There is no general theorem for the ground state of the
Hamiltonian in Eq. (2) with SU(N > 2) symmetry with finite
interaction U, as far as we know. For the SU(3) Hubbard
model with attractive interaction U < 0, the spin-reflection
positivity [the method employed in Lieb’s proof for the SU(2)
Hubbard model] can be extended with the aid of Majorana
fermions [40,41]. However, for repulsive interaction U > 0,
such an extension becomes problematic. Therefore, we use the
Hartree-Fock mean-field approximation to study the magnetic
properties of the Hubbard model with SU(2) and SU(3)
symmetries, respectively.

IV. MEAN-FIELD APPROACH FOR
THE SU(N) HUBBARD MODEL

Before focusing on the specific cases of the SU(2) and
SU(3) symmetries, we present a general mean-field formalism
for the SU(N) Hubbard model, then discuss the simplifications
and implications of the general form in a special scenario, when
the magnetization vectors are found to be collinear.

With the completeness relation of the generators of the
SU(N) Lie algebra, the density-density interaction can be
decomposed in the spin channel (more details in Appendix B):

Ud nj=- 2NU ZS2+NUZn,, (5)

N+1
where the SU(N) “spin” operator is constructed in
Eq. (4). After performing the mean-field approximation
Si2 ~2(S;)-S; — (S;)%, and defining the magnetization
m; = (S;), the mean-field Hamiltonian is expressed as

Hmr = —t Z Z(cmcm+Hc)+—Z

(i,j)eA a=1 ieA
4ANU
WO Y e ©
tertﬁl
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Assuming the translational symmetry is not broken so that

the magnetization order is uniform, we can perform a Fourier

transformation oK) = (1/\/7) DR e”'k‘Rcu’a(R),

where R is the position of a unit cell, © = A,B,C labels the

sublattices, and ./ is the total number of unit cells. As aresult,

we obtain the mean-field Hamiltonian in the momentum space,
2NU 2

Hmr = Z CDI(HII(VIFQ)I( + N—-i-] m;, @)
k i

where @k = (ca.q(K),cp.o(K),cco(K)? is a 3N-component
spinor withe =1, ...,N, and

MNUmy -1 tcos(’%“)]l tcos(ké—'a)]l
tcos(’%)]l NUmg - 1 0 . (8)

t cos(k’z—’“)ll 0 INU

MF __
H™ =—

The magnetization m,, is an (N 2 — 1)-dimensional vector
in the spin (flavor) space, which transforms according to the
adjoint representation of the SU(N) Lie algebra. The stan-
dard mean-field self-consistent calculation goes as follows:
start with an arbitrary combination of 3(N? — 1) parameters
of m,, numerically calculate the ground state, obtain the
expectation value of the spin operators (S,) (more details
in Appendix B), and iterate until the magnetization m,, at
each site converges. Note that this algorithm is equivalent
to minimizing the ground-state energy functional E(m,,) =
(V(m,)|Hvr|W(m,))/(¥(m,)|¥(m,)) variationally.

Next, we consider a special case of “collinear” mag-
netic state where the magnetization vectors on the three
sublattices are “parallel” or “antiparallel” to each other. By
defining the angle between the two vectors m, and m,
in the (N? — 1)-dimensional spin (flavor) space O, .m,) =

m,-m .
Imullmvl’ where the inner product and the norm are
o lIm,

defined in (N? — 1)-dimensional generalized Euclidean space:
my, -m, = Zflv:zl_l mimg, and |m,| = /m, m,. We note
that the two vectors m, and m, are collinear if cos O, m,) =
+I1.

In such a special case, we can perform a global SU(N ) uni-
tary transformation on Eq. (6) to make some simplifications,

arccos

N-1
Um,, - 7U" =) " m"“H", )
a=1

where H* are the diagonal and commuting generators in the
SU(N) algebra and constitute the Cartan subalgebra of the
SU(N) Lie algebra [42]: {H*,a = 1,2, ...,N — 1}. Note that
the Cartan subalgebra for the SU(2) algebra is {H' = 73}, and
that for the SU(3) algebrais {H' = 73 ,H? = T®}. Equation (9)
can be understood by noting that the N-dimensional Hermitian
matrix m,, - T canbe diagonalized by an SU(V) transformation
U. Since m,, - T is traceless and this property is not changed
by unitary transformations, the diagonalized matrix is also
traceless. As a result, there are only N — 1 degrees of freedom
in the diagonalized matrix and it can be expanded by the N — 1
elements in Cartan subalgebra.

This important observation cannot only significantly reduce
the computational time; it also implies that there should
be N degenerate equivalent mean-field ground states if the
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ground state supports collinear magnetic orders. These N
equivalent mean-field states are determined by the N common
eigenstates of the N — 1 commuting generators in the Cartan
subalgebra. As these mean-field states are related to each
other through an SU(N) rotation, one can arbitrarily choose
one to study the magnetic properties. These equivalent states
can be understood with the aid of a weights diagram in the
{H",a =1,2,...,N — 1} plane (see detailed discussions in
Sec. VI). Take our familiar SU(2) models as an example: with
SU(2) spontaneous symmetry breaking, the two equivalent
ground states with collinear magnetic orders can be chosen
as the two eigenstates of o, i.e., either spin-up polarized
or spin-down polarized. It is easy to see that Eq. (9) is an
application of the frequently used convention in SU(2) systems
to the SU(N) case. We emphasize that, for a system with
noncollinear (e.g., chiral or spiral) magnetization orders, we
could not do this simplification because one cannot find a
global transformation that satisfies Eq. (9).

V. MEAN-FIELD CALCULATION FOR THE SU(2)
HUBBARD MODEL

It is straightforward to perform the mean-field calculation
for the SU(2) Hubbard model, based on the general formalism
derived for the SU(/N) Hubbard model. We simply need to take
N =2 and T = ¢ in Eq. (8) and perform the self-consistent
iterations as specified in the previous section.

To verify how well the mean-field calculation works, we
first investigate the magnetization order m,, at half filling
[filling fraction v = 1/2, which is defined as v = N,/(2Ny)
for the SU(2) system with N, the number of particles and N
the number of sites]. By minimizing the ground-state energy
functional, we find that the ground state always has a collinear
magnetic order with mg being parallel to mc, and antiparallel
tom,. Besides, mp = mc holds for any value of U /¢, implying
the C4 symmetry is preserved. Since the magnetic order is
collinear, we can perform a global SU(2) transformation, such
that only the m*® component is nonzero in the new axes in spin
space.

In Fig. 2(a), we plot m3, mfg(c), and the total magnetization
in one unit cell, m{,,, with increasing U /. Here, the total mag-
netization in one unit cell is defined as my = Y u=AB.C My
Note that m, = 1/2 for all interaction strengths, showing
the ground state is ferromagnetic with a total magnetization
A /2, where 4 is the number of unit cells. These findings are
consistent with Lieb’s rigorous results [7]. Another degenerate
ground state with magnetization —1/2 per unit cell is also
found as expected, which is physically equivalent to the one
with positive magnetization shown in Fig. 2(a). Therefore, it
suffices to focus on the one with positive magnetization in the
following discussion.

Although the total magnetization remains a constant for
all U/t, the contributions from different sublattices vary with
interaction, as shown by the magnetizations in Fig. 2(a) and
the particle occupations (n, o) in Fig. 2(b). In the weakly
interacting limit, the contribution is mainly from sites B and
C. This can be understood by noting that in the noninteracting
case the flat band which is responsible for ferromagnetism
consists of localized states on sublattices B and C ¥ (k)
(0,— cos(k,), cos(ky))T. In the large-U limit, we find m3 =

053616-4
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FIG. 2. The properties of the magnetic order of the SU(2)
Hubbard model at half filling. (a) The magnetization orders on each
site m?, and total magnetization in one unit cell m{, as functions
of U/t, where u = A,B,C. The result of m,* =0 is not shown.
(b) The particle numbers of each spin component on each site (n,, o)
as functions of U/¢, where @ =1, |. (c) The correlation functions
m(0) and m(Q) as functions of U/t. (d) A schematic figure showing
the staggered ferromagnetic long-range order in the large-U limit.

—1/2, m% = mZC = 1/2, and (nA,¢) = (nB.T) = (”QT) = 1.
Namely, site A is occupied by one spin-down particle, while
sites B and C are both occupied by one spin-up particle,
as schematically depicted in Fig. 2(d). Such a staggered
ferromagnetic ordering resembles the Mott-insulator phase,
as one would naturally expect for large repulsive interaction.

Moreover, the ferromagnetic ground state can be identified
from spin-density mean fields, i.e., the number of particles
with spin « in one unit cell, defined as (n,) = ZuzA,B,C (Nya)-
Although (n,, ) varies with U/t in Fig. 2(b), the total number
of particles of each spin in one unit cell, (n,), is independent
of U/t. Furthermore, we find (ny) = 2(n) forany U/t > 0.
Namely, the number of spin-up particles is twice the number
of spin-down particles in every unit cell. This is another
implication of the ferromagnetic state.

We further analyze the correlation functions defined as [43]

-2

1
m(Q)=7<(Ze(i)S,»+) Y €Sy > (10)
i j

l

where the spin raising and lowering operators are defined as
Sl.+ = CI,TCM and §; = Ci 1 Cits respectively, €(i) = 1 when
site i belongs to sublattice A, and €(i) = —1 when site i
belongs to sublattices B and C. The results of m(0) and m(Q)
in the mean-field ground state as functions of U/t are shown in
Fig. 2(c), showing, respectively, the existence of ferromagnetic
long-range order and the staggered features therein. Notice that
the relation m(Q) > m(0) holds in our mean-field calculation,
which is consistent with the rigorous theorem [43].
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FIG. 3. The zero-temperature band structure of the SU(2) model
at half filling with different interactions: (a) U/t = 0.1, (b) U/t =
0.5, (c) U/t = 1.5, and (d) U/t = 5.0. The band filled by spin-up
(spin-down) particles is labeled by thick solid black (dashed red)
line. The remaining three bands labeled by thin dotted black lines are
empty.

In time-of-flight experiments, by tuning the laser power,
the optical lattice potential can be dynamically controlled
and adiabatically removed. During this adiabatic process,
each Bloch wave is mapped to a free-particle momentum
state [44]. Such a band-mapping technique can be used to
probe the particle’s quasimomentum distribution [44—46]. To
compare with the particle-absorbing image in time-of-flight
experiments, we plot in Fig. 3 the band structure for different
interacting strengths and highlight the lowest three bands
which are filled at zero temperature. We find that at half filling,
the first (solid black line), the second (dashed red line), and
the third (solid black line) bands are occupied by spin-up,
spin-down, and spin-up particles, respectively. The remaining
three empty bands are labeled by thin dotted black lines.

Next, we go beyond the half-filling case and investigate the
relation between magnetization and filling fraction v within
the regime 1/3 < v < 2/3, where Lieb’s theorem does not
hold any longer. In this range, the flat band is partially filled
in a noninteracting system. Because the flat band is crucial in
Lieb’s argument, we expect that the flat-band ferromagnetism
still holds at least in the weak-interacting limit, and the
magnetization should be proportional to the filling fraction
when 1/3 < v <2/3 and U/t <« 1. In Fig. 4, we show the
mean-field result for the magnetization with increasing filling
fraction, and indeed observe a linear dependence. Specifically,
we find that the magnetization becomes nonzero as long as
the flat band starts to get filled, leading to a magnetized
state throughout the entire regime of 1/3 < v < 2/3. Such an
observation seems to be qualitatively different from a previous
study [47], which takes Tasaki lattice [5,6] as an example,
maps the flat-band ferromagnetism to the Pauli-correlated
percolation problem, and shows that the ferromagnetism can
only exist when the flat band is filled to some extent. The Tasaki
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FIG. 4. The total magnetization in one unit cell, m, for the
SU(2) model with U/t = 0.0505. Similar to the half-filling case,
the magnetization orders are collinear: my is parallel with m¢ and
antiparallel with m,, where mg = mc. Therefore, we only plot total

magnetization in one unit cell, m%, (my; = 0 are not shown).

lattice can be regarded as the Lieb lattice with nearest-neighbor
hopping among sublattice A, in which case the bipartiteness
breaks down. As a result, the lowest band is tuned to be
flat. We emphasize that the method of mapping the flat-band
ferromagnetism to the Pauli-correlated percolation, which
requires that the number of particles per trapping cell is no
more than one [47], does not apply to the Lieb lattice problem
discussed here, as the number of particles per trapping cell is
more than two when the flat band is partially filled.

Finally, we consider the residual symmetry of the fer-
romagnetic phase of the SU(2) Hubbard model. When the
SU(2) symmetry breaks, resulting in a twofold-degenerate
ferromagnetic ground state, the U(1) symmetry still remains,
where the charge of each spin component is conserved. The
symmetry breaking is thus SU(2) — U(1).

To conclude, we notice the mean-field calculation works
well to capture the magnetic properties of the ground state of
the SU(2) Hubbard model on the Lieb lattice. We find at half
filling that the SU(2) symmetry is spontaneously broken into
U(1) symmetry in the ground state, resulting in a ferromagnetic
state, in which the magnetization in one unit cell is 1/2. The
total magnetization is found to be independent of interaction.
Our mean-field calculation is qualitatively consistent with the
conclusions obtained by the Lieb theorem. Moreover, we find
the ground state supports a staggered ferromagnetic long-range
order, which is consistent with Ref. [43]. The picture wherein
particles filling into the flat band contribute to magnetization
works well, at least in the weak-interacting limit for the SU(2)
Hubbard model.

VI. FERROMAGNETIC GROUND STATE OF THE SU(3)
HUBBARD MODEL

For the Hubbard model with the SU(3) symmetry, there are
three species of particles; hence we take o = 1,2,3 to label the
flavors or colors of the particles. As the ferromagnetic state
may correspond to particles partially filled into the flat band in
the noninteracting case, here we consider a typical example of
4/9 or 5/9 filling, which are physically equivalent due to the
particle-hole symmetry. Note that the filling fraction now is
defined as v = N,/(3N;) for the SU(3) system. We then take
N =3 and T = A (A% is a Gell-Mann matrix in fundamental
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FIG. 5. The properties of the magnetic order for the SU(3)
Hubbard model at 4/9 filling. (a) Results of m§ -, and m, in one
unit cell as functions of U/¢. (b) The particle numbers on each site
with different flavors (n, ). (c) The correlation functions m(0); v,y
and m(Q),, vy as functions of U/t. (d) A schematic figure showing
the flavor-density distribution and the staggered ferromagnetic long-

range order in the large-U limit.

representation with a = 1, ...,8, as shown in Appendix A)
into Eq. (8) and solve the problem self-consistently.

The magnetization order m, now is an eight-dimensional
vector in the spin space, which transforms according to the
adjoint representation of the SU(3) Lie algebra. We find that
at 4/9 filling the ground state supports a collinear magnetic
order, because €080, mpc) = —1 is found numerically.
One way to investigate the collinear magnetization order
in eight-dimensional space is to consider the norm of total
magnetization in one unit cell, |m|. We find [my| = 1/ V3,
which implies the ground state is ferromagnetic. Another more
comprehensive way to analyze the collinear magnetization
order is to perform a global SU(3) transformation on the
mean-field Hamiltonian, so that the ferromagnetic ground
states are denoted by |m> ,m$ ) as explained at the end of
Sec. IV, where the other six components of m, are zero after
the SU(3) transformation. We indeed find the ferromagnetic
ground state has threefold degeneracy as expected, which
can be labeled by [0,—1/+/3) and |+1/2,1/2+/3). These
three degenerate states are physically equivalent and can be
transformed to each other by an SU(3) rotation as discussed
before. Therefore, it suffices to focus on any one of them.
Without loss of generality, we choose the one described by
|0,—1/ «/§) in the following, whose magnetization in one unit
cell is denoted by (m> = 0,m® = —1//3).

To see how magnetization is affected by interaction and
distributed on different sublattices, we plot mi’B(C) and m$
as functions of U/t in Fig. 5(a). The components associated
with miz ABc are zero in the ground state and are not
shown. The C4 symmetry is preserved for any finite U at
4/9 filling due to mé = m%. Similar to the SU(2) case, the
ground state of the SU(3) Hubbard model is ferromagnetic
with a collinear magnetic order for any finite U/¢ > 0 at

such filling. And the values of magnetization m_ and m$ are
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independent of U /¢. Namely, the ferromagnetic ground state in
the weak-interacting limit is adiabatically connected to the one
in the strong-interacting limit. The ferromagnetic state implies
the spontaneous SU(3) symmetry breaking in the presence of
finite U.

We plot the numbers of particles with different flavors at
each site (n, ) as functions of U/t in Fig. 5(b) to show
the contribution to magnetization from different sublattices.
We find the number of particles with flavor 1 is the same
as that with flavor 2 on each sublattice: (n, 1) = (n,2). It
is a consequence of residual symmetry created by SU(3)
symmetry breaking and is discussed later. Similar to the
SU(2) systems, in the weak-interacting limit, the contribution
to magnetization mainly comes from particles residing on
sublattices B and C. But in the large-U limit, we find mi =
«/3/3, mg(c) = —«/§/3, and na12 = 1, npe),3 = 1. Name]y,
site A is occupied by two particles with flavor 1 and flavor
2, while sites B and C are occupied by one flavor-3 particle,
respectively. A schematic figure to illustrate the flavor-density
distribution pattern of the SU(3) Hubbard model at 4/9 filling
on the Lieb lattice is shown in Fig. 5(d). In the intermediate
interaction range, the flavor-density pattern can be summarized
as follows: particles with two flavors (flavors 1 and 2) prefer
one sublattice (A) with equal density, while the particles with
the third flavor (flavor 3) prefer the other sublattice (B and C
actually belong to the same sublattice because C4 symmetry
is preserved here) with a larger density.

The property that the ground state is ferromagnetic can also
be extracted by examining the imbalanced numbers of particles
with different flavors from the flavor-density mean fields (n,).
We find that (n;) = (n,) = 1 and (n3) = 2 in one unit cell.
And the expectation value of the particle number of each spin
component in the ground state is independent of U/¢. Such a
fact implies a ferromagnetic state, which exists at any finite U.

We also investigate the long-range correlations in the
ground state of the SU(3) Hamiltonian. Different from the
SU(2) system, we need to define three pairs of “spin-
raising” and “spin-lowering” operators [42]: [ =T'4+
iT*> =Es10, VE=T%iTl° =E, .3, and U*=
TC+iT" = E_\ ) 43, where T® = A% /2. Then we define
three pairs of correlation functions as

()52

1
m(Q)o = 7<<Ze<z’>0i)

1

> e(h)o; >
J
where O = I,V,U,€(i) = 1wheni € A,ande(i) = —1 when
i € B(C). The plots of m(0)p and m(Q)e in the mean-field
ground state as functions of U/t are shown in Fig. 5(c). We find
that in the ferromagnetic ground state denoted by |0,—1/+/3),
the correlation functions m(0)y y and m(Q)y y are nonzero,
indicating a ferromagnetic long-range order with staggered
features. Besides, we find that the relation m(Q)o = m(0)o
still holds in our mean-field calculation.

Now we discuss the residual symmetry in the ground
state. The ground state is a threefold-degenerate ferromagnetic
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FIG. 6. The equivalent ferromagnetic ground states can be shown
with the aid of a weights diagram of (a) the SU(2) Lie algebra and
(b) the SU(3) Lie algebra. The coordinates of the weights are labeled
in each diagram.

state in which the SU(3) symmetry spontaneously breaks to
a remaining SU(2) x U(1) symmetry. One could understand
this with the help of the weights diagram of the SU(3) Lie
algebra [see Fig. 6(b)]. For example, if |0,—1/+/3) is chosen
as the mean-field ferromagnetic ground state, one could see
that [42]

I*0.— %) =0, I~

0,——%)=0.
This relation shows that there is an SU(2) symmetry with
generators {T', T2 T3} which leaves the mean-field ground
state invariant. The extra U(l) symmetry is the usual
charge-conservation symmetry. In the general SU(N) case,
there would be N equivalent ferromagnetic states in which
the SU(N) symmetry could spontaneously break and the
symmetry-breaking pattern would be SU(N) — SU(N —
1) x U(l).

Furthermore, to compare with the absorbing image in the
time-of-flight experiment, we plot the band structure with
different interactions as shown in Figs. 7(a)-7(d): U/t = 0.1,
U/t =05, U/t =1.5, and U/t =5.0. We find the bands
occupied by flavors 1 and 2 are doubly degenerate, which
are labeled by dashed red lines. The two bands occupied by
flavor-3 particles are labeled by solid black lines, while the
other five empty bands are labeled by dotted black lines.
With weak interaction as shown in Figs. 7(a) and 7(b), the
first and fourth bands are occupied by flavor-3 particles; the
second and third bands (degenerate) are occupied by flavor-1
and flavor-2 particles, respectively. This observation indicates
that in this weak-interacting case one can still rely on the
particle-filling picture in which the particles residing on the
flat band contribute to the magnetization.

However, in the large-U limit as shown in Fig. 7(d), we
find the lowest two bands are occupied by flavor-3 particles,
and the particles with flavor 1 and flavor 2 occupy two higher
bands. This is because, in the large-U limit, particles with
flavors 1 and 2 residing on the same sublattice A as shown
in Fig. 5(d) obtain a much larger interaction energy compared
with kinetic energy. Therefore, the particles with flavors 1 and
2 can populate into higher bands due to the higher energy
gained by the interaction. We find the flavor distribution in
quasimomentum space is sensitive to interactions. This feature
can be observed in the time-of-flight expansion by an adiabatic
removal of the trapping potential [46].
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FIG. 7. The zero-temperature band structure of the SU(3) model
at 4/9 filling with different interactions (a) U/t = 0.1, (b) U/t = 0.5,
(¢) U/t =1.5, and (d) U/t = 5.0. The bands filled by flavor-1 or
flavor-2 particles are labeled by dashed red lines, while the bands
filled by flavor-3 particles are labeled by solid black lines. The empty
bands are labeled by thin dotted black lines.

In addition, we find that the system is an insulator with a
finite gap in the ground state. The presence of such a gap is
allowed by generalized Lieb-Schultz-Mattis (LSM) theorem
[48]. The original LSM theorem proved the excitation gap in
an antiferromagnetic spin chain [49]. It was later extended to
a quantum many-particle system (bosons or fermions) with
translational symmetry and conserved particle number, where
a finite excitation gap is proved to be possible only if the
number of particles per unit cell is an integer in the ground
state [48]. In our settings, the particle number per unit cell is
an integer, and we find the particle number of each flavor
component in the ground state (n,) is an integer as well.
Therefore, the gap found in our SU(3) system is consistent
with the generalized LSM theorem.

Moreover, we investigate the finite-temperature effect
on the magnetization orders with the mean-field approach.
Although the Mermin-Wagner theorem forbids the existence
of any long-range order with short-range interaction in two-
dimensional systems at finite temperatures [50,51], quasi-
long-range features such as magnetic domains can still be
realized and observed in experiments for temperatures well
below the mean-field critical temperature. In Fig. 8, we plot
the magnetization as a function of temperature with different
values of interaction. One can easily find that the critical
temperature 7, increases with interaction. For example, T, /¢
is around 0.0192 when U/t = 0.11, as shown in Fig. 8(a),
while 7./t increases up to 1.8 when U/t is 5.01, as shown in
Fig. 8(d). The critical temperature would increase further with
even stronger interactions.

To make connections with experiments on cold atoms
loaded in optical lattices, where the atoms are not in contact
with a bath and the temperature is not a conserved quantity,
we also calculate the critical entropy per particle for the
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FIG. 8. The magnetization for the SU(3) model at finite tem-
perature with different interactions. (a) The critical temperature
T./t = 0.0192 and the critical entropy per particle, S, = 0.457, when
U/t =0.11; (b) T./t =0.31 and S, =0.818 when U/t =1.11;
(¢) T./t = 1.08 and S, = 1.406 when U/t = 3.01; and (d) 7./t =
1.80 and S, = 1.452 when U/t = 5.01.

ferromagnetic state as it remains unchanged when going to
different interactions. The entropy is given by

S=—kp Y [f(e)In f(e)+ (1= f&)In(l — f())],

(1)

where f(¢;) is the occupation number for a Fermi gas: f(¢;) =
[exp ((6; — )/ kgT) + 1]7'. We find the critical entropy per
particle needed is S, = 0.457 when U/t =0.11, and S, =
1.452 when U/t = 5.01. Both values are significantly larger
than the lowest entropy per particle that can be achieved in ex-
periment (~0.2). Therefore, in experiment the ferromagnetic
ground state could be observed in cold atomic systems loaded
into an optical lattice with increasing density-density on-site
interaction.

The discussion above focuses on a fixed filling factor of 4 /9,
which corresponds to the case that the flat band is one-third
filled. Next, we extend our calculation to other filling fractions
v within the regime 1/3 < v < 2/3, which corresponds to the
case that the flat band is partially filled. In Fig. 9(a), we show
the total magnetization within one unit cell, |my|, by varying
the filling fraction for a weak interaction with U/t = 0.0505.
Note that the magnetization reaches a maximum at v = 4/9
and 5/9, as one would naturally expect in the weak-interacting
limit. Furthermore, we find |my| increases almost linearly
with filling fraction v when 1/3 < v < 4/9, and decreases
with an opposite trend with v when5/9 < v < 2/3, asrequired
by the particle-hole symmetry. In these two filling regimes,
the magnetization vectors on sublattices B and C, mp and m,
remain antiparallel with that on sublattice A, m 5. However, in
the filling regime 4/9 < v < 5/9, the magnetization vectors
myp and mc are neither parallel nor antiparallel with ma,
resulting in a noncollinear magnetic order. Besides, we also
find that the magnetization orders on sublattices B and C are
not equivalent as v deviates from 4/9 and 5/9, as shown
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FIG. 9. (a) The norm of the total magnetization in one unit cell,
|m |, for the SU(3) model; (b) the norms of magnetization on each
sublattice site, |m,|, for the SU(3) model, where u = A,B,C. The
interaction strength used in this plot is within the weak-interacting
limit with U/t = 0.0505.

in Fig. 9(b). Such a spontaneous breaking of C4 rotational
symmetry thus implies a nematic ferromagnetic state [30,31].
To make connections to experiments where an inhomoge-
neous global trapping potential Vi (r) is usually present, we
further consider the case of the grand canonical ensemble

H = Hy— Zni,l - M2Zni,2 — U3 an, (12)

where (y—1 23 are chemical potentials of atoms of spin «.
Within the local density approximation, the phase one would
encounter by traversing the global trap is then determined by
the position-dependent chemical potentials py(r) = e (r =
0) — Vexe(r). As a typical example, we show in Fig. 10 the total
magnetization within a unit cell by varying po = (u; + 13)/2
and h = (u; — u3)/2, with the condition u; = w,. Notice
that the ferromagnetic state appears in a wide nonpurple
regime in this phase diagram, which would facilitate the
realization and observation of such a state in experiments.
Besides, we find |[m| = 0.57735 = +/3/3 atthe point (h/t =
0,0/t = 0), which is consistent with our calculation for
Eq. (2). Meanwhile, by increasing |h/t| with fixed o = 0, the
magnetization |m.| increases with |i/¢| and finally saturates
to 1.73205 = +/3 around |k/¢| = 1.5. This is a natural result
as the chemical potential difference 7 = (| — pu3)/2 # 0 is

ol

215-10-0500 05 10 15
h/t

FIG. 10. The norm of total magnetization for the SU(3) model in
one unit cell, |my|, in the plane of (h/f,1/t) with U/t = 0.0505.
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equivalent to an effective magnetic field which can introduce
polarization. Specifically, we find ny =n, =3 and n3 =0
at the point of (h/t = 1.5,u0/t =0), while we find n; =
np, =0 and n3 =3 at the point of (h/t = —1.5,u0/t =
0), both representing a fully polarized ferromagnetic
state.

VII. CONCLUSIONS AND DISCUSSIONS

In conclusion, we study at the mean-field level the SU(2)
and SU(3) repulsive Hubbard models on the Lieb lattice,
focusing on the existence and properties of a ferromagnetic
state when the flat band is partially filled. For the SU(2) case,
we find that the mean-field calculation works well to capture
the essential physics of the magnetic ground state. Specifically,
the mean-field approach concludes that the ground state is
ferromagnetic for any finite repulsive interaction, consistent
with known rigorous results. We then extend the mean-field
calculation to the case of the SU(3) Hubbard model and find
that the ground state is also a ferromagnetic state as the
flat band is partially filled with filling factor v € (1/3,2/3).
Such a magnetic state is staggered within a unit cell, where
the magnetizations on the composite sublattices are different
in both magnitude and direction. We also find that the C4
rotational symmetry of the Lieb lattice would spontaneously
break for filling away from 4/9 and 5/9, leading to a nematic
magnetic order. To connect to experimental conditions, we
further calculate the mean-field critical temperature of the
magnetic state. We find that the critical temperature increases
with interactions, and the critical entropy per particle needed
is much larger than the lowest that can be achieved in
experiment. Therefore, our discoveries could be observed at
an experimentally achievable temperature by increasing the
density-density interaction.

Finally, we give some discussion about possible competing
phases. Previous studies of the SU(N) Hubbard model on the
square lattice show that for large values of N (e.g., N > 6),
the ground state supports a staggered flux phase, which
breaks time-reversal symmetry as well as lattice translational
symmetry but does not break SU(N) symmetry [13,14,19]. For
N < 6, the dominant tendency of the Hubbard model at half
filling is to break SU(N) symmetry and lattice translational
symmetry, resulting in a flavor density wave state [19].
Compared with these existing works, the present paper focuses
on a special type of lattice called the Lieb lattice, which
features a completely flat band in the middle of the band
structure and can support a so-called flat-band ferromagnetic
state at half filling for the SU(2) Hubbard model. Namely,
there is no other competing phase at this special filling.
Although a rigorous proof for the uniqueness of the ground
state has not been made available so far for SU(3) systems,
the mean-field calculation presented above suggests that the
ground state is also a ferromagnetic state, at least around the
special filling factors of 4/9 and 5/9. When doping away
from these special fillings, however, it is possible to have
other competing phases and a much richer phase diagram,
especially when the Fermi surface lies within the dispersive
bands.
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APPENDIX A: GELL-MANN MATRICES

The Gell-Mann matrices we used in three-dimensional
fundamental representation are as follows:

0 1 0 0 —i 0
M=11 0 o), 2*=[i o o],
0 0 0 0 0 O
1 0 0
P=10 -1 o0},
0 0 0
0 0 1 0 0 —i
W»=10 0 o], ¥»=[0o 0o o],
1 0 0 i 0 0
0 0 0
=10 0 1],
0 1 0
0 0 0 L (1 0 0
V=10 0o —i], »*=—|0 1 0
0 i 0 V3lo 0o -2

APPENDIX B: TECHNICAL PART OF THE GENERAL
MEAN-FIELD APPROACH FOR THE SU(N)
HUBBARD MODEL

In the presence of a repulsive interaction, the Hubbard
model on the two-dimensional Lieb lattice cannot be exactly
solved, and so we resort to mean-field approximation. We
rewrite the density-density interaction in the spin channel first.
Considering the traceless property of the SU(N) generators

PHYSICAL REVIEW A 96, 053616 (2017)

Tr 7% = Oand Tr(T*T?) = 8,5 /2, we obtain the completeness
relation of the generators:

N2-1
D THTS, = 38a08pu — 350apSun- (B1)
a=1

Applying the completeness relation, we obtain the following
identity:

S? = (N + )n; /2 — (N + )n?/(2N). (B2)

Therefore, the density-density interaction is rewritten in spin
(flavor) space as Eq. (5).

The matrix H'F in Eq. (8) can be diagonalized by a unitary
transformation U (k) H, ,yFU f(k) = Ay, where Ay is a diagonal
matrix, ®; = Uk)Ty, and Ty = (y(k), ..., psnk)T. We
then obtain 3N energy bands with eigenvalues E,, (k) (m =
1,...,3N), and corresponding eigenfunctions. For a fixed
filling fraction, the wave function at zero temperature is defined

esi=T1 T

keBZm|E,,(k)<Er

¥, (5)10). (B3)

In the self-consistent mean-field calculation, we need to
calculate the magnetization at each iteration step, which is
defined as the expectation value of spin operators in the ground
state:

m = (S*(R)) = Z(CL,Q(R)%SCMﬂ(R))
af

1
= 57 2 Dl Wrgensh). B4

keBZ aof

where the translational symmetry is assumed. Equation (B4)
is the self-consistent equation for the mean-field calculation.
We can write the matrix form of the unitary transformation of
Uk), cuok) =", UsamE)yn(k). With the definition of
the ground state in Eq. (B3), we find that

(e} a®)crp)as = Y Upt o (VU 5.1 (k)(GS|y) (k)

W®IGS) = Y U, (U pm(k). (BS)

m|Ey(k)<EFp
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