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Three-body correlations in a two-dimensional SU(3) Fermi gas
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We consider a three-component Fermi gas that has SU(3) symmetry and is confined to two dimensions
(2D). For realistic cold atomic gas experiments, we show that the phase diagram of the quasi-2D system can
be characterized using two 2D scattering parameters: the scattering length and the effective range. Unlike the
case in three dimensions (3D), we argue that three-body bound states (trimers) in the quasi-2D system can
be stable against three-body losses. Using a low-density expansion coupled with a variational approach, we
investigate the fate of such trimers in the many-body system as the attractive interactions are decreased (or,
conversely, as the density of particles is increased). We find that remnants of trimers can persist in the form of
strong three-body correlations in the weak-coupling (high-density) limit.
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I. INTRODUCTION

The three-component Fermi gas with short-range inter-
actions is of fundamental interest owing to its resemblance
to quark matter [1–3] and the possibility of exploring the
interplay between pairing and three-body clustering. Research
into this system has gained further impetus from the recent
experimental realization of three-component Fermi gases
using ultracold 6Li atoms [4–11].

Thus far, experiments have successfully probed the few-
body properties of three distinguishable fermions—most no-
tably, Efimov trimers. These correspond to a series of three-
body bound states (trimers) that exist when all the interactions
are resonant, even in the absence of two-body bound states
(dimers) [12]. The binding energy of the deepest bound Efimov
trimer is set by the range of the interactions, while the energies
of the weakly bound trimers obey a discrete scaling relation
[13]. Efimov trimers were first observed experimentally for
identical bosonic atoms, where they were detected as low-
energy three-body loss resonances [14]. Subsequently, the
creation of three-component Fermi gases enabled the binding
energies of Efimov trimers to be measured via radio-frequency
association [5,6].

Given the existence of universal few-body bound states
in the three-component Fermi system, a natural question
is how these will impact the many-body limit. Much of
the previous theoretical work has been restricted to two-
body correlations described within mean-field theory [15–24],
where the focus was on the crossover from BCS pairing to
the Bose-Einstein condensation of dimers. However, when the
possibility of trimers is explicitly included [2,3,25–29], it is
clear that three-body correlations cannot be neglected outside
of the weak-coupling regime. Indeed, for sufficiently strong
attraction, one expects a Fermi sea of trimer quasiparticles in
the ground state [2,3]. Nishida has further conjectured that the
behavior of the three-component phase diagram is analogous to
the quark-hadron continuity of nuclear matter, where fermionic
quasiparticles change smoothly from atoms to trimers with
increasing attraction [2]. This statement is supported by studies
of a fermionic impurity in a paired-fermion superfluid [3,28],
but it remains to be seen whether such a crossover from atoms
to trimers is stable against collapse [30].

Certainly, the three-body system is unstable toward decay
into deeply bound states, thus making it an experimental
challenge to create a stable trimer, let alone a many-body trimer
phase. The central issue is that atoms within the trimer tend to
cluster together at short distances, particularly in the case of the
deepest bound Efimov trimer, thus allowing two of the atoms to
readily form a deeply bound dimer (which is absent in effective
low-energy theories). Both the dimer and the remaining atom
are then lost from the trapped system when the dimer binding
energy is converted into kinetic energy. Therefore, while it
may be possible to realize a stable three-component Fermi gas
within a restricted parameter range [9,31], strong three-body
losses are likely to preclude the existence of long-lived Efimov
trimers in current cold-atom experiments.

One proposed route to achieving stable trimers is to confine
atoms to low-dimensional geometries [32,33]. In particular,
when identical bosons are restricted to move in two dimensions
(2D), it has been shown that a short-range repulsion is present
in the effective three-body potential [32], thus suppressing
losses [34]. Indeed, in the strictly 2D limit, there is no
Efimov effect and one has at most two universal trimers that
are completely determined by the low-energy 2D scattering
parameters [35,36]. We expect the same situation to hold
for the three-component Fermi system, since the trimers
composed of identical bosons are identical to the spin-singlet
trimers of fermions with SU(3) symmetry.

Furthermore, quasi-2D Fermi gases involving two spin
components have already been successfully realized experi-
mentally [37–48]. Motivated by the above, we will consider
the phases of the two-dimensional three-component Fermi gas
in this paper. As far as we are aware, previous theoretical in-
vestigations of the 2D many-body system have been restricted
to pairing phenomena [49], and no three-body correlations
were considered. For simplicity, we focus on SU(3) symmetry,
where the masses, interactions, and densities are the same for
all species, but our approach can easily be extended to the
imbalanced case.

We will show how the quasi-2D system in cold-atom
experiments can be described using effective 2D scattering
parameters (the scattering length a2D and effective range R2D)
which are derived from the unidirectional confinement and the
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three-dimensional (3D) scattering resonance. Moreover, we
discuss how an effective 2D SU(3) model can approximately
represent a realistic experimental system, and we provide
evidence for the stability of three-body bound states in
this model by estimating the three-body loss rates. For
the many-body system, we go beyond mean-field theory
by precisely characterizing the low-density (few-body) limit
and by employing a variational wave function to investigate
three-body correlations in the high-density regime. On the
basis of this, we argue that stable three-body bound states
can evolve into strong three-body correlations with increasing
particle density.

The article is organized as follows. Section II outlines our
effective 2D model for a three-component Fermi gas confined
to a quasi-2D geometry, explaining its connection to the two-
body physics. In Sec. III, we determine the three-body bound
states that exist within our 2D model, and we estimate their
size and stability as a function of the scattering parameters
a2D and R2D. In Sec. IV, we analyze the many-body problem
by considering different limits of the phase diagram. First, we
address the low-density regime using a perturbative expansion
based on the few-body states of Sec. III. Second, we employ
mean-field theory to obtain the leading order behavior in the
limit of large effective range. Finally, we investigate the high-
density limit using a variational ansatz. We conclude in Sec. V.

II. THE QUASI-2D SYSTEM

In this section, we will motivate and describe an effective
2D model of a confined ultracold atomic gas experiment.
Before stating our effective 2D Hamiltonian, let us introduce
our model’s key parameters by relating them to familiar
experimental quantities. We make this connection using two-
body scattering theory. Throughout the manuscript, we set
h̄ = 1.

In a real experiment, one constructs a quasi-2D system
by strongly confining a 3D atomic gas along one direction.
Therefore, let us first consider the 3D scattering properties of
a three-component Fermi gas. In the 6Li Fermi gas experiments
[4–11], the scattering between two distinguishable atoms (i.e.,
two different hyperfine states of lithium) is low in energy and is
well described by the s-wave two-body scattering amplitude:

f3D(E) = 1

−a−1
3D + √−mE − i0 − mR3DE

, (1)

where E is the relative energy of the two atoms, each with
mass m, while a3D and R3D are the scattering length and
range parameter, respectively. The real part of the denominator
is obtained from a low-energy expansion of the scattering
phase shift, which is appropriate for systems in the low-energy
regime. Experimentally, the scattering length a3D can be varied
using a magnetically tunable Feshbach resonance [50], and
the range parameter R3D is determined by the width of the
resonance, such that we have R3D > 0. The location of the res-
onance, a−1

3D = 0, and the value of R3D are fixed for a given pair
of hyperfine states. Here, we will assume that they are the same
for all pairs of hyperfine states in the three-component Fermi
gas. This is not such a drastic assumption since there are over-
lapping broad Feshbach resonances in the 6Li system [51], and

we still expect our results to be qualitatively correct when the
scattering lengths and range parameters are slightly different.

Now consider applying a harmonic confining potential
along the z direction with angular frequency ωz, i.e.,
V (z) = 1

2mω2
zz

2. By expressing the two-body problem in the
basis of harmonic oscillator levels in the z direction, one can
derive a quasi-2D scattering amplitude that is a function of
the relative wave vector k between two atoms in the 2D plane
[52,53]. In the limit of strong confinement ωz � k2/m, with
k ≡ |k|, we can expand the quasi-2D scattering amplitude to
obtain [45,52,53]

fq2D(k) � 4π

iπ +
√

2πlz
a3D

− ln
(

π
B
k2l2

z

)+
√

2πR3D
lz

(
k2l2

z + 1
2

) ,
where B = 0.905 and the confinement length lz =

√
1

mωz
.

Equivalently, one can view this as an expansion in small klz,
where we have kept terms in the denominator up to order
lz. For this expansion to be valid, we also require R3D � lz
and lz � vvdW, where vvdW is the van der Waals range of the
interactions between atoms. For a sufficiently broad resonance
where R3D � lz, we can set R3D to zero in fq2D(k).
In the regime of strong confinement, a purely 2D model is
sufficient for describing the behavior of the Fermi system since
the two-body scattering of distinguishable fermions maps onto
the 2D scattering amplitude [54],

f2D(k) = 4π

iπ − ln
(
k2a2

2D

)+ R2
2Dk2

, (2)

where a2D is the 2D scattering length and R2D is the 2D
effective range. Thus, using fq2D(k), one can relate the familiar
3D quantities lz, a3D, and R3D to the purely 2D scattering
parameters a2D and R2D:

a2D = lz

√
π

B̃
e
−
√

π
2

lz
a3D , R2

2D =
√

2πR3Dlz, (3)

where B̃ = B exp(
√

π
2 R3D/lz). Note that the 2D scattering

length is modified from the usual expression (see, e.g.,
Ref. [53]) due to the fact that the 3D effective range couples
to the zero-point energy in the quasi-2D geometry.

With this connection in mind, we proceed to write down an
effective 2D Hamiltonian for the three-component Fermi gas
which captures the required two-body scattering behavior in
the strongly confined limit.

A. Effective 2D model

The effective 2D model that generates the scattering
amplitude (2) contains three species of fermions interacting
via closed-channel structureless bosons. Labelling the dif-
ferent fermion flavors by i = 1,2,3, we have the following
Hamiltonian (with system area set to 1):

Ĥ − μN̂ − 2μN̂b

=
∑
k,i

(εk − μ)c†k,ick,i +
∑
k,i

(
1
2εk + ν − 2μ

)
b
†
k,ibk,i

+ g

2

∑
k,q

∑
i,j,l

(εij l bq,ic
†
k,j c

†
q−k,l + H.c.). (4)
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Here, c
†
k,i creates a type-i fermion with momentum k, while

b
†
k,i creates a closed-channel boson with momentum k and

flavor i (which is distinct from a fermion of type i). Each
pair of fermions is coupled to a closed-channel boson via the
interaction coefficient g. Note that there are three different
types of bosons corresponding to the three distinct pairs of
fermions, as encapsulated by the Levi-Civita tensor εij l . The
kinetic energy εk = k2/2m, while μ is the chemical potential
of the system, and ν is the bare detuning between the open
and closed channels. Since the open and closed channels are
coupled by the Hamiltonian Ĥ , we can assume that the total
number of fermions N is in chemical equilibrium with the total
number of closed-channel bosons Nb.

Following Ref. [55], the scattering physics of Eq. (2)
can be connected to the two-channel model by relating the
bare parameters g and ν to the measurable quantities of the
scattering amplitude, a2D and R2D:

a2D = 1

�
e

2πν

mg2 , R2
2D = 4π

m2g2
, (5)

where � is a ultraviolet cutoff such that all momenta |k| < �.
In what follows, we always take the limit � → ∞, while
keeping the scattering parameters finite. Note that this means
that we also require ν → ∞.

B. Two-body bound state in 2D

The 2D scattering parameters can, in turn, be related to a
two-body bound state, which always exists in 2D [56]. Such
a bound state corresponds to a pole of the 2D scattering
amplitude, i.e., for a dimer with energy ε = k2/m < 0, the
(imaginary) value of k satisfies the condition f2D(k)−1 = 0.
Equivalently, one can obtain the dimer energy by considering
the action of the Hamiltonian on the dimer wave function, as
in the following.

Within our effective 2D model, a general two-body state
is a superposition of a closed-channel boson and a pair of
two distinguishable fermions. Because of the translational
invariance of the system, the center-of-mass motion decouples
from the relative pair motion, and we can thus set the
center-of-mass momentum to zero without loss of generality.
Taking the example of a 2-3 pair of fermions, the two-body
wave function is

|�2〉 = αb
†
0,1|0〉 +

∑
k

βkc
†
k,2c

†
−k,3|0〉, (6)

where |0〉 is the vacuum state, and the amplitudes α, βk
satisfy |α|2 +∑

k |βk|2 = 1. Because of the SU(3) symmetry,
our results for the dimer do not depend on which pair of
distinguishable fermions we choose. In particular, we can
construct a dimer with equal components of the fermions
species i by transforming to the new basi,:⎛

⎝ck,1′

ck,2′

ck,3′

⎞
⎠ =

⎛
⎝1 1 1

1 ei2π/3 ei4π/3

1 e−i2π/3 e−i4π/3

⎞
⎠
⎛
⎝ck,1

ck,2

ck,3

⎞
⎠, (7)

and then considering, e.g., a 2′-3′ pair.
Using the Hamiltonian from Eq. (4) and solving the eigen-

value equation Ĥ |�2〉 = E2|�2〉, we obtain an expression for

FIG. 1. Binding energy per atom of different few-body states.
This corresponds to −μ of the many-body system in the limit of
vanishing density (see text). The solid (orange) line is the ground-state
trimer of the three-body problem, the dashed (gray) line is the excited
trimer state of the three-body problem, and the dotted (purple) line is
the dimer state of the two-body problem. At zero effective range, the
ground-state and excited-state trimer energies are E3ma2

2D/3 ≈ −5.5
and −0.42, respectively. The inset shows the same curves with linear
scales on the axes in order to expose the behavior as R2D/a2D → 0.

the vacuum dimer energy E2:

ν − E2

g2
=

�∑
k

1

2εk − E2
. (8)

Inserting the relations (5), one obtains the cutoff independent
solution [35],

E2 = − 1

mR2
2D

W

(
R2

2D

a2
2D

)
, (9)

where W (x) is the Lambert W function. Note that there is
always one two-body bound state for a given a2D and R2D.
When the 2D effective range is zero, we recover the well-
known result E2 = −1/ma2

2D [57], where a2D corresponds to
the size of the dimer in this case. The behavior of E2 for
general R2D/a2D is displayed in Fig. 1, where we have plotted
the binding energy per atom |E2|/2. In the limit R2D � a2D,
we obtain m|E2| � 1/(a2

2D + R2
2D), while in the opposite

limit R2D/a2D → ∞, we have mR2
2D|E2| → 2 ln(R2D/a2D) −

2 ln [ ln(R2D/a2D)]. To remain in the 2D regime of the quasi-2D
geometry, we require |E2| � ωz, such that the dimer is
flattened out within the plane and the excited levels of the
confining potential can be neglected [53].

III. THREE-BODY BOUND STATES

We now turn to the three-body problem within our 2D
SU(3) model and determine the properties of the bound
three-body trimer states. We will see that the trimers of our
model are identical to those which occur in a system of
three indistinguishable bosons [35,36]. Note, however, that the
situation is different for systems of more than three particles,
since the three-component Fermi system does not have any
s-wave N -body bound states for N > 3, in contrast to the
single-component Bose system. The results of this section
will show that strong three-body correlations cannot be ignored
when determining the many-body state of the SU(3) Fermi gas.
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Similarly to the two-body problem, we can determine the
bound states of three distinguishable fermions by considering
a wave function containing all possible combinations of
fermions and closed-channel bosons at zero center-of-mass
momentum:

|�3〉 =
∑
k,i

αk,ib
†
k,ic

†
−k,i |0〉

+
∑

k1,k2,k3

βk1k2k3 δ(k1 + k2 + k3) c
†
k1,1

c
†
k2,2

c
†
k3,3

|0〉.

(10)

By acting our 2D Hamiltonian on this wave function, we obtain
the Schrödinger equation for the three-body energy: Ĥ |�3〉 =
E3|�3〉. This leads to a set of four coupled equations:

E3αk,i = (
3
2εk + ν

)
αk,i + η

(i)
k ,

E3βk1k2k3 = (εk1 + εk2 + εk3 )βk1k2k3 + g

3∑
i=1

αki ,i ,

where we have the restriction k1 + k2 + k3 = 0 in the last
equation, and we have defined the functions

η
(i)
ki

= g
∑

{kj }j �=i

βk1k2k3δ(k1 + k2 + k3). (11)

Eliminating the amplitudes βk1k2k3 reduces the problem to
three coupled equations:[

1

g2

(
E3 − ν − 3

2
εk

)
−
∑

k′

1

E3 − εk − εk′ − εk−k′

]
αk,i

=
∑

k′

∑
j �=i

αk′,j

E3 − εk − εk′ − εk+k′
. (12)

We can further reduce these down to a single integral
equation by rewriting everything in terms of the function
Ck = ∑3

i=1 αk,i and then using (5) to regularize it:{
mR2

2D

(
E3 − 3

2
εk

)
− ln

[
ma2

2D

(
−E3 + 3

2
εk

)]}
Ck

= 8π

m

∑
k′

Ck′

E3 − εk − εk′ − εk+k′
. (13)

Importantly, this equation is equivalent to that found with
diagrammatic methods in the problem of three identical bosons
[35,36]. Furthermore, while one can construct two more
decoupled equations involving other linear combinations of
αk,i , Eq. (13) is the only equation that yields three-body bound
states. Thus, we can simply set αk,i = Ck/3 when considering
trimer states.

Solving Eq. (13) allows us to determine the energies E3 of
the bound trimers. At zero effective range, there are two trimer
states, ground and excited, which have the universal energies
−16.5/ma2

2D and −1.27/ma2
2D, respectively [36]. In Fig. 1,

we depict the binding energy per atom, |E3|/3, of these two
trimers as a function of the effective range. As we discuss in
Sec. IV A, the energy per atom (as determined from few-body
calculations) can correspond to the chemical potential μ of the
SU(3) many-body system in the limit of vanishing density. For

instance, μ = E3/3 is the chemical potential of an extremely
dilute gas of bound trimers, while μ = E2/2 is that of a gas of
dimers. We see in Fig. 1 that the binding energy per fermion
(corresponding to −μ) for the excited trimer is always lower
than that of the dimer and is thus never stable in the many-body
system. On the other hand, the ground-state trimer is stable up
until the critical effective range R2D/a2D � 1.7.

Unlike the case in 3D, one can show that there is always a
2D bound trimer state in the three-body system. To see this,
we consider the unbinding transition of a trimer into a dimer
and an atom, where E3 → E2 and Ck → δk,0 C0. Rewriting
Eq. (13) so that we absorb the bracketed term on the left-hand
side into Ck to get C ′

k, we then obtain for the k = 0 component

3m
(
1 − mE2R

2
2D

)
16πE2

C ′
0 �

∑
k′

C ′
k′

εk′(E2 − 2εk′)
, (14)

where we have taken E3 = E2 and we have considered small
momenta, |k′| � √

m|E2|. Converting the sum to a 2D inte-
gral, we find that the right-hand side diverges logarithmically
for k′ → 0. Thus, the condition for unbinding can only be
satisfied in the limit R2D → ∞, which demonstrates that the
trimer is always bound in the three-body system.

A. Lifetime of the spin-singlet trimer in 2D

The existence of three-body losses in experiment makes
it a challenge to realize long-lived trimers. For the three-
component Fermi gas in 3D, the Efimov trimers are extremely
unstable because their wave functions have a significant
overlap with a deeply bound dimer state [13], thus allowing
a pair of atoms to readily transition into the deeper dimer
state. The large dimer binding energy is then converted
into kinetic energy of the remaining atom and dimer, which
causes the particles to escape from the trap. Indeed, most
of the experimental evidence for the Efimov trimer relies on
measurements of the loss rate of atoms from the trapped gas
[7–9,11,14].

To suppress three-body losses, one must therefore prevent
three atoms from clustering close together within the trimer
state. This can be achieved by having a repulsive barrier at short
distances in the effective three-body potential [32,58,59]. For
instance, in a system of two heavy fermions and one light
particle, there is a short-range centrifugal barrier in the three-
body potential due to the Pauli exclusion between the identical
fermions. In 3D, this leads to long-lived universal trimers, pro-
vided that the heavy-light mass ratio is less than ∼13.6 [60,61].

In the absence of Pauli exclusion, short-range repulsion in
the three-body system can also be engineered by confining
the atoms to a quasi-2D geometry [32,34,35]. As shown
for three identical bosons, a tight confinement along the z

direction produces an attractive well at long distances in the
three-body potential, creating extended quasi-2D trimers with
a small weight at short distances [32]. Such 2D trimers are thus
expected to have a reduced rate of three-body recombination.

As seen from Eq. (13), the trimers in the SU(3) three-
component Fermi system are the same as those for three
identical bosons. Therefore, we can, in the same manner,
exploit confinement to stabilize the three-component Fermi
system. Furthermore, our model contains an additional tuning
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parameter—the range R3D—which is absent in previous
studies of the quasi-2D s-wave trimer [32] (although it has been
considered for heteronuclear p-wave trimers in a quasi-2D
geometry [58]). Confinement can thus affect the few-body
physics via both a2D and R2

2D ∼ lzR3D in the quasi-2D
scattering amplitude. We now proceed to analyze how the con-
finement impacts the lifetime of the trimers for a general R3D.

We wish to describe the short-range decay process and
subsequent escape of atoms from the experimental trap.
To capture this nonunitary loss of atoms, we consider a
non-Hermitian perturbation to our Hamiltonian [62] (see
Appendix A). The specific form of the perturbation must model
situations in which the three fermionic atoms are all close
together within the trimer. Since the closed-channel boson
effectively contains two atoms at zero separation, we chose
the following perturbation:

Ĥ3b = −i



2

∑
k,k′,q,i

b
†
q−k′,ic

†
k′,ick,ibq−k,i , (15)

where 
 is a real coupling constant. This describes the
scattering of a closed-channel dimer and an atom at short
distances. Such a loss process has been used in Ref. [63] to
successfully model the losses in 6Li-40K mixtures. For the
SU(3) system, the loss rate � due to this process is given by

� = 2i〈�3|Ĥ3b|�3〉 = 


3

∣∣∣∑
k

Ck

∣∣∣2, (16)

where Ck is found from the integral equation (13). The decay
rate is shown in Fig. 2 as a function of the 2D effective range,
R2D/a2D. Using Eq. (3), we can express this dimensionless
parameter in terms of experimental quantities as follows:

R2
2D/a2

2D =
√

2

π
B

R3D

lz
e

√
π
2

R3D
lz

+√
2π

lz
a3D , (17)

where a3D < 0 for a trimer in the 2D limit. Therefore, for
increasing confinement (decreasing lz), the ratio R2D/a2D

becomes larger and the decay rate decreases. This reveals a
mechanism by which the trimer decay rate in an ultracold
atomic gas experiment may be suppressed by a confining
potential.

This increased lifetime of the trimers has a simple expla-
nation: The spatial size of the trimer increases with increasing
R2D/a2D, such that the short-range decay events are less likely
to occur. To see this, we estimate the spatial size of the trimer
using the real-space wave function ψ(r) = N−1/2 ∑

k eik.rCk,
whereN is the normalization factor such that

∫ |ψ(r)|2dr = 1.
This wave function represents one particular configuration of
the trimer state, where the separation between one pair of
the particles is set to zero (see Appendix B). The variable r
corresponds to the real-space separation between the pointlike
pair and the third particle. The expectation value of the distance
r ≡ |r| is readily calculated as follows:

〈r〉 =
∫

r|ψ(r)|2dr. (18)

This quantity is plotted in the lower part of Fig. 2. We see
how the size of the trimer grows with increasing R2D/a2D

and therefore with increasingly strong confinement, thus

FIG. 2. The solid (orange) lines show the rescaled decay rate �/


(top) and size 〈r〉 (bottom) of the ground-state trimer. The dotted
(purple) lines show the corresponding values at zero effective range
while the dashed (gray) line shows the critical effective range beyond
which a dilute gas of trimers is unstable toward forming dimers.

suppressing short-range three-body losses and extending the
lifetime of the trimer.

IV. MANY-BODY SYSTEM

We now turn to the phase diagram of the many-body system
at zero temperature. Here, we consider a three-component
SU(3) Fermi gas in 2D with area density n for each species of
fermion (corresponding to total density 3n). We parametrize
the many-body problem with the quantities kF a2D and kF R2D,
where we have defined the Fermi momentum kF = √

4πn.
We tackle the phase diagram of the many-body problem
by calculating three limits: First, we characterize the low-
density regime kF → 0, where we can use our few-body
results as a basis for a low-density perturbative analysis.
Second, we investigate the regime kF R2D � 1, where BCS
mean-field theory should capture the leading order behavior in
1/kF R2D [55]. Finally, we analyze the high-density, weak-
coupling regime kF a2D � 1 by using a variational ansatz
that incorporates strong three-body correlations in the Fermi
gas. The approximations we make in each limit are designed
to extract the essential physics, without recourse to overly
complicated calculations. Based on the analysis of these three
limits, we propose a possible schematic phase diagram, as
shown in Fig. 3.

A. Low-density expansion

In this section, we consider the low-density regime defined
by kF a2D � 1 and kF R2D � 1. In this limit, one can have
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FIG. 3. Schematic phase diagram of the 2D SU(3) Fermi gas as
a function of the effective range and scattering length. The blue SF
region designates the fully paired superfluid phase, the orange shaded
region corresponds to trimers only, and the remaining area has a
mixture of a superfluid and fermions (trimers or unbound atoms).
In the low-density limit, where ln(1/kF a2D) � 1 and kF R2D � 1,
the system corresponds to a weakly interacting gas of dimers and/or
trimers, as illustrated by the particle clusters linked by solid lines.
Here, when R2D → 0, the ground state is a trimer Fermi gas, while
increasing kF R2D yields a transition to a trimer-dimer mixture and
then finally a dimer-only superfluid. In the limit kF R2D � 1, there is
a transition from the fully paired superfluid to weak BCS pairing plus
unbound atoms as we decrease ln(1/kF a2D). In the opposite regime
kF R2D < 1, there is a region defined by strong three-body correlations
(illustrated by orange particles linked with dashed lines), where the
size of the three-body clusters can be comparable to or larger than
the interparticle spacing when ln(1/kF a2D) � −1. Eventually, for
sufficiently weak attraction, these three-body clusters are replaced by
Cooper pairs coexisting with an atomic Fermi sea, which smoothly
connects with the high-density phase in the kF R2D � 1 limit.

trimer and dimer molecules in the ground state that are
small compared to the typical distance between particles
(which is set by k−1

F ). Therefore, we may approximate the
state of the dilute system as a gas of interacting pointlike
fermionic trimers and/or bosonic dimers. Conservation of
particle number implies that the number densities of dimers nd

and trimers nt are related to the total atom density as follows:

3n = 3nt + 2nd. (19)

For a given density n, the ground state of the system
corresponds to the set of densities nt , nd with the lowest energy
per particle or, equivalently, the lowest chemical potential μ.

Let us start from the limit of vanishing density, n → 0,
where we may neglect the intermolecular interactions. In this
case, the trimer gas simply corresponds to a noninteracting
Fermi gas, while the dimers form an ideal Bose-Einstein
condensate. Here, the chemical potentials of the trimer and
dimer gases are, respectively, given by

μt = E3

3
+ 2πnt

3m
, μd = E2

2
, (20)

where E2, E3 are the few-body energies calculated in Sec. III,
and the second term in μt corresponds to the Fermi energy
of the trimer gas. Comparing the different chemical potentials
gives rise to three distinct regimes: (i) a trimer-only phase,

FIG. 4. Phase boundaries for the dimer-only (a) and trimer-only
(b) regions calculated within different approximations. The shaded
regions are the same as in Fig. 3. (a) The solid (black) lines
are defined by the low-density condition (25), where the thickest
line corresponds to add = 0, while the thinner solid lines are for
add = 0.1a2D and 0.56a2D, in order of decreasing thickness. The
add = 0 phase boundary is displayed as dotted once the dimer size
∼1/

√
m|E2| is larger than the interparticle spacing ∼k−1

F . The thin
dashed (blue) line corresponds to the mean-field phase boundary
described by Eq. (29). (b) The solid (black) lines depict the phase
boundaries calculated using Eq. (24), where the thickest line is the
solution with F = 0, while the thinner solid lines correspond to
F = 0.5 and −0.1, in order of decreasing thickness. The thick lines
are displayed as dotted when the trimer size ∼1/

√
m|E3| is larger

than the interparticle spacing. The thin dashed (orange) line marks the
region at high density where three-body correlations are relevant, as
discussed in Sec. IV C. This line is approximated by takingF = 0.14,
which corresponds to the boundary of the (orange) shaded region.

where nd = 0 and μt < μd ; (ii) a trimer-dimer mixture, μt =
μd ; and (iii) a dimer-only phase, where nt = 0 and μt > μd .
These different phases are depicted in the low-density regime
of the phase diagram in Fig. 3.

The phase boundary between the dimer-only and mixed
phases is defined by the condition E2/2 = E3/3, i.e., we
require the binding energy per atom to be equal for the
dimers and trimers. As discussed in Sec. III, this yields the
curve R2D/a2D � 1.7, which is shown as the thickest solid
line in Fig. 4(a). Similarly, the boundary of the trimer-only
region (where n = nt ) is described by the relation E2/2 =
E3/3 + 2πn/3m and is shown as the thickest solid line in
Fig. 4(b). From this and Fig. 3, we see that the mixed
trimer-dimer phase becomes a vanishingly small sliver of the
phase diagram as we take n → 0. This is a direct consequence
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of the fact that the trimer Fermi energy enters at a higher order
in the density than the molecular binding energies.

For larger densities, we must consider the intermolecular
interactions in the dilute gas, which can be described using
the low-energy scattering amplitudes for the dominant partial-
wave components. In particular, the trimer-trimer and dimer-
dimer scattering amplitudes are, respectively, given by

ftt (k) � 4stt k
2, fdd (k) � 4π

ln
(

1
k2a2

dd

) . (21)

Here, we have relative momentum k between the scattering
particles in 2D, while stt is the trimer-trimer scattering area,
and add is the dimer-dimer scattering length. At low energies,
the bosonic nature of the dimer ensures that the dimer-dimer
scattering is predominantly in the s-wave channel. On the
other hand, the low-energy expression for the trimer-trimer
scattering amplitude has the general form of a p-wave
interaction since the trimers are identical fermions; i.e., there
is only one type of s-wave trimer. Note that we have taken
the angle between incoming and outgoing momenta in the
scattering problem to be zero, so that ftt only depends on the
magnitude k = |k|.

In principle, there are three different flavors of dimer in
the SU(3) fermion system, thus implying that we have both
intraspecies and interspecies dimer-dimer scattering lengths,
add and a∗

dd , respectively. However, since a trimer bound state
is always present in the interspecies dimer-dimer scattering
problem (which involves three types of fermions rather than
two), then we expect to have enhanced scattering such that
a∗

dd > add . Thus, a gas composed of identical dimers will have
a lower energy than one containing three types of dimers.
Furthermore, the identical-dimer ground state can still have
equal densities for each fermion species i if we pair within the
transformed basis i ′ defined by Eq. (7).

From the dimer-dimer scattering amplitude in Eq. (21), we
can incorporate dimer-dimer interactions into the chemical
potential of the dimer gas as follows [53]:

μd � E2

2
+ nd

2m
fdd (

√
4πnd ), (22)

where we have only kept the leading order term in nda
2
dd . For

the case of zero effective range, the dimer-dimer scattering
length for two identical bosonic dimers was determined to
be add |R2D=0 = 0.56a2D [64,65]. In general, the scattering
length is unknown for R2D �= 0, but we expect add/a2D → 0 as
R2D/a2D → ∞, since the system approaches a noninteracting
Bose gas in this limit. Since add appears in the argument of
a logarithm, its precise value is not so important, provided
that it is not exceptionally large, i.e., add � a2D, which is not
expected to be the case here.

For the trimer gas, the chemical potential expanded up to
lowest order in ntstt has the form

μt � E3

3
+ 2πnt

3m
+ κ

nt

3m
ftt (

√
4πnt ),

where κ is a positive constant. The precise determination of
the scattering area stt for two identical trimers is still an open
problem. However, we can make progress without a numerical
value for stt by using dimensional analysis to write κstt =

F(R2D/a2D)a2
2D, where F is a dimensionless real function.

This yields

μt � E3

3
+ 2πnt

3m

(
1 + 8Fnta

2
2D

)
. (23)

We will discuss the possible behavior of F when we construct
the phase diagram below.

In general, one must also consider the s-wave interactions
between dimers and trimers when determining the phase
diagram. Such trimer-dimer interactions can potentially result
in phase separation between the trimer and dimer gases.
However, if we assume that the trimer-dimer interaction is
sufficiently weak (i.e., the scattering length is sufficiently
small) compared to the interactions in Eq. (21), then the
phase boundaries between dimer-only, mixed, and trimer-only
phases should remain continuous. Therefore, the structure of
the phase diagram will be independent of the dimer-trimer
interactions since either nt or nd will be zero on the phase
boundaries.

Following the same procedure as in the noninteracting case,
we can find the phase boundary between the trimer-only phase
and the trimer-dimer mixture by setting nd = 0 and μt = μd .
This yields the condition

E2

2
= E3

3
+ 2πn

3m

(
1 + 8Fna2

2D

)
. (24)

Likewise, the boundary between the trimer-dimer mixture and
the dimer-only phase is given by

E3

3
= E2

2
+ 3n

4m
fdd (

√
6πn), (25)

where we have used the fact that 2nd = 3n in this case.
According to Eq. (25), the presence of repulsive dimer-

dimer interactions reduces the size of the dimer-only region
in the phase diagram as the density is increased. To obtain
an estimate of the phase boundary, we use the dimer-dimer
scattering length add = 0.56a2D, which is the known result
for R2D = 0 [64,65]. Referring to Fig. 4(a), we see that our
estimated boundary substantially deviates from the nonin-
teracting boundary (set by E2/2 = E3/3) once kF R2D ≈ 1.
However, at this point, R2D/a2D approaches ∼10, and thus
we expect add � 0.56a2D since we have add/a2D → 0 in the
limit R2D/a2D → ∞, as discussed previously. We therefore
expect that the phase boundary initially follows the trajectory
of the thinnest line in Fig. 4(a), but eventually tends toward the
noninteracting line as we increase kF R2D. This is represented
schematically in the low-density regime of Fig. 3. Note that
this transition remains continuous as long as the dimer-trimer
interactions are irrelevant.

Turning to the phase boundary between the dimer-trimer
mixture and the trimer-only phase, we see from Eq. (24) that
the shape and size of the trimer-only region will depend on the
behavior of F . Though the trimer-trimer scattering problem is
unsolved, we can deduce the likely magnitude and sign of stt ,
and therefore estimate F .

In the absence of any scattering resonances, the strength
of the trimer-trimer scattering should be set by a2D when
R2D = 0, which means that F should be of order 1 or less for
arbitrary R2D.
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At first glance, one might conclude that the trimer-trimer
p-wave interactions are attractive, i.e., F < 0, since there are
no bound states with four or more particles in the six-body
problem. For instance, in the simpler case of p-wave scattering
between a 1-particle and a 1-2 dimer, the scattering area is
always negative when the mass ratio m1/m2 < 3.33 and there
are no three-body bound states [66,67]. However, this atom-
dimer scattering has a different symmetry than our trimer-
trimer problem: The atom-dimer attraction is induced by an
exchange process where the 2-particle can readily form a dimer
with either of the 1-particles. This does not extend to the case
of two trimers, since an atom in one of the trimers must be
excited in order for an atom to be exchanged (see, for instance,
the work on trimer-trimer scattering in the 3D two-component
Fermi system [68]). It is therefore likely that the trimer-trimer
p-wave scattering is repulsive such that F > 0.

The boundary defined by Eq. (24) is shown in Fig. 4(b)
for attractive and repulsive trimer-trimer interactions. We see
that the phase boundary becomes sensitive to F as the density
increases, because, as one might expect, attractive interactions
enlarge the trimer-only region, while repulsive interactions
disfavor the trimer phase. For the former case where F < 0,
we expect the trimers to form a superfluid of p-wave pairs,
while for the latter case where F > 0, we will simply have a
Fermi liquid of trimers [69]. In the schematic phase diagram
in Fig. 3, we have used repulsive trimer-trimer interactions,
with F = 0.14.

B. BCS mean-field theory

We now consider the limit where kF R2D � 1. This is
the 2D analog of a narrow Feshbach resonance in 3D,
where it is known that fluctuations around the mean-field
approximation are suppressed by 1/kF R3D [55,70]. Since
Gaussian fluctuations around mean-field theory remain finite
even in 2D [71], we expect such fluctuations to be similarly
suppressed by 1/kF R2D as R2D → ∞. Therefore, we will
employ BCS mean-field theory to obtain the leading order
behavior in 1/kF R2D in this limit.

In our three-component Fermi system, we require the
density of all closed-channel boson flavors to be equal due
to SU(3) symmetry. This implies that the condensate order
parameters 〈b0,j 〉 are equal up to an arbitrary phase. In the
ground state, we may set the phases to zero, without loss of
generality, and thus define a single, real, order parameter: 
 ≡√

3g|〈b0,j 〉|. Starting from Eq. (4), the mean-field Hamiltonian
is then given by [72]

ĤMF = 1

2

∑
k

�
†
kMk�k + 3

2

∑
k

ξk + 
2

g2
(ν − 2μ), (26)

where �k = (ck,1,c
†
−k,1,ck,2,c

†
−k,2ck,3,c

†
−k,3)T ,

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξk 0 0 
√
3

0 
√
3

0 −ξk − 
√
3

0 − 
√
3

0

0 − 
√
3

ξk 0 0 
√
3


√
3

0 0 −ξk − 
√
3

0

0 − 
√
3

0 − 
√
3

ξk 0

√

3
0 
√

3
0 0 −ξk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

and ξk = εk − μ. This matrix has six eigenvalues: ±ξk and a
degenerate pair ±Ek, where Ek =

√
ξ 2

k + 
2. The former type
of eigenvalue corresponds to an atomic Fermi sea, while the lat-
ter is the quasiparticle spectrum associated with BCS pairing.

At zero temperature, we have the mean-field free energy
� = 〈ĤMF 〉, which is given by

� =
∑

k

ξk�(−ξk) +
∑

k

(ξk − Ek) + 
2

g2
(ν − 2μ), (28)

where �(x) is the Heaviside step function.
Note that the mean-field approximation only incorporates

pairing between fermions, and it does not allow for the
possibility of trimers or three-body clustering. Minimizing
the free energy gives rise to two possible phases: a BCS
paired superfluid coexisting with an atomic Fermi sea for
μ > 0, and a superfluid state where all the atoms are paired
when μ < 0. This scenario is consistent with previous BCS
mean-field studies [15–24].

We calculate the boundary between these two phases by
solving the gap and number equations, ∂�

∂

= 0 and 3n = − ∂�

∂μ
,

at μ = 0:

k2
F a2

2D = R2
2D

3πa2
2D

exp

(
2R2

2D

a2
2D

)
+ 2

3
exp

(
R2

2D

a2
2D

)
. (29)

This phase boundary is plotted as the dashed (blue) line in
Fig. 4(a), where the atom-pair mixture emerges as we decrease
ln(1/kF a2D) at fixed kF R2D.

A natural question is how the phases in the limit kF R2D →
∞ are related to the phases obtained in the low-density limit
in Sec. IV A. As discussed in Ref. [2] for the 3D case, one
possibility is that the mean-field phase boundary smoothly
connects with the boundary of the dimer-only phase at low
density. This scenario is represented schematically in Fig. 3,
where we have the low-density dimer-trimer mixture smoothly
evolving into the atom-pair phase with increasing kF R2D.
Thus, we obtain an atom-trimer crossover, which is the cold-
atom analog of the quark-hadron continuity in nuclear matter.

An alternative scenario is that there is an intervening phase
or a first-order phase transition that destroys the crossover
between atoms and trimers at intermediate densities. However,
note that the 2D system is always stable against collapse
(i.e., an unconstrained increase in the density), since the gas
becomes weakly interacting with increasing density.

C. High-density ansatz

To complete the phase diagram, we now tackle the high-
density, weak-coupling regime kF a2D � 1. In the high-density
limit kF a2D → ∞, the ground state is the noninteracting gas,
whose wave function is a product state of three distinguishable
Fermi seas: |FS〉 = ∏

|k|�kF ,i c
†
k,i |0〉. Therefore, to analyze

the behavior near this limit, we consider perturbations of the
noninteracting ground state that can accommodate different
few-body correlations.

Let us begin by looking at two-body correlations. Perturb-
ing away from the high-density limit, the simplest correction
to the ideal Fermi gas that includes two-body correlations is a
wave function of the form∣∣�C

2

〉 = αb
†
0,1|FS〉 +

∑
k

βkc
†
k,2c

†
−k,3|FS〉. (30)
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Here, we have allowed a single 2-3 pair of fermions to
interact, while the rest of the fermions in the system remain
noninteracting. Despite the lack of explicit interactions, the
inert Fermi seas can effectively influence the correlations
between the 2-3 pair via the Pauli exclusion principle. The
problem of a single interacting pair of fermions placed
above an ideal Fermi sea is equivalent to the Cooper pair
problem [73], which was first introduced in the context of
superconductivity, and which demonstrated that pairing in the
presence of a Fermi sea exists for arbitrarily weak attraction.

To determine the energy of the Cooper pair state |�C
2 〉, we

use the variational method, where we minimize the quantity
〈�C

2 |Ĥ |�C
2 〉 over the set of variational parameters α and βk.

This gives us an upper bound on the ground-state energy, which
corresponds to the Cooper pair energy

EC
2 = 2εF − 1

mR2
2D

W

(
R2

2D

a2
2D

ek2
F R2

2D

)
, (31)

where we have defined the Fermi energy εF = k2
F /2m. We find

that EC
2 < 2εF for arbitrarily large kF a2D, which implies that

the pairing of fermions is favored in the weak-coupling high-
density regime. Note that the threshold for pairing has been
shifted from zero in the vacuum case to 2εF in the high-density
case. In particular, for R2D = 0, we simply obtain EC

2 = 2εF −
1/ma2

2D, where −1/ma2
2D is the dimer energy at zero density.

Using the same concepts, we can write down a high-density
ansatz for a Cooper trimer:∣∣�C

3

〉 =∑
k,i

αk,ib
†
k,ic

†
−k,i |FS〉

+
∑

k1,k2,k3

βk1k2k3 δ(k1 + k2 + k3) c
†
k1,1

c
†
k2,2

c
†
k3,3

|FS〉.

This corresponds to three distinguishable fermions interacting
on top of the Fermi sea, thus allowing for three-body
correlations. Once again, we proceed to minimize the quantity
〈�C

3 |Ĥ |�C
3 〉 over the variational parameters αk,i and βk1,k2,k3 .

The Cooper trimer energy satisfies an equation similar to that
of the vacuum trimer as follows:⎡

⎣EC
3 − ν − 3

2εk

g2
−

∑
|k′|>kF

�(εk+k′ − εF )

EC
3 − εk − εk′ − εk+k′

⎤
⎦Ck

= 2
∑

|k′|>kF

�(εk+k′ − εF )Ck′

EC
3 − εk − εk′ − εk+k′

,

where |k| > kF and Ck = ∑
i αk,i .

Unlike the Cooper pair, we find that the Cooper trimer does
not exist for arbitrary kF a2D. Instead, the three atoms prefer to
remain uncorrelated, i.e., EC

3 = 3εF , above a critical kF a2D.
For R2D = 0, the Cooper trimer first appears at ln(1/kF a2D) ≈
−1.47. A similar situation is observed in 3D [27], where
for a given density, three distinguishable fermions require a
sufficiently strong attraction in order to form a three-body
cluster.

In order to determine the preference of the atoms towards
two- or three-body correlations, we compare the energy of the
Cooper trimer EC

3 with the energy of the Cooper pair plus one
noninteracting atom: EC

2 + εF . As discussed, the Cooper pair
exists for all densities whereas the Cooper trimer only exists

below a critical density; therefore, at sufficiently large density,
the atoms will prefer to form two-body correlations rather than
three-body correlations. On the other hand, in the low-density
limit, we know that the three atoms prefer to form bound trimer
states rather than bound dimer states, for sufficiently small
R2D/a2D. Therefore, the condition EC

3 = EC
2 + εF defines a

boundary between two-body and three-body correlations in
the atomic Fermi gas. For R2D = 0, the transition is located at
ln(1/a2DkF ) ≈ −1.42, while the boundary for general kF R2D

is shown in Fig. 4(b).
From Fig. 4(b), we identify the correspondence between

the results of our low-density expansion and the high-density
ansatz. Specifically, we see that the low-density F = 0.14
curve interpolates between the two limits and we therefore
use this curve for the schematic phase diagram in Fig. 3. We
conjecture that the trimer-only phase of the low-density regime
smoothly connects with the Cooper trimer phase of the high-
density regime. Here, the two approximations conspire to form
a dome-shaped region in the phase diagram for kF R2D � 1.5.
Within this dome, the ground state is defined by strong three-
body correlations which evolve from tightly bound trimers in
the low-density regime to Cooper trimers in the high-density
regime. In parallel to this evolution, above the dome in the
phase diagram (Fig. 3), the low-density trimer states evolve
into an uncorrelated Fermi sea of atoms.

V. CONCLUSION AND OUTLOOK

In this work, we have investigated the few- and many-body
behavior of a quasi-2D three-component Fermi gas with SU(3)
symmetry. We have focused on the regime of strong quasi-2D
confinement, where the system can be parametrized using the
2D scattering length and the 2D effective range. In the 2D limit,
we have argued that the trimer state is expected to be longer
lived compared with its 3D counterpart since it has a reduced
weight at short distances and, consequently, three-body loss
processes are suppressed. Moreover, we have demonstrated
that the 2D trimer is always bound in the three-body system
for arbitrary values of R2D/a2D, in contrast to the case in 3D.
These results all imply that trimers play an important role in
the 2D three-component Fermi gas.

For the many-body system, we have constructed the
phase diagram of the SU(3) Fermi gas by analyzing
perturbations to the low- and high-density limits where
the ground state is known. Our calculations suggest that
trimers in the low-density limit can evolve into strong
three-body correlations with increasing particle density.
However, two-body correlations dominate in the limits where
kF R2D � 1 or ln(1/kF a2D) � −1.

Unlike the 3D case, the 2D Fermi gas becomes weakly
interacting in the high-density limit, and it is thus expected
to be stable against an unconstrained increase in the density,
i.e., a collapse. Therefore, the 2D system may be more
favorable for realising analogs of the quark-hadron continuity
in nuclear matter, where fermionic quasiparticles smoothly
change their character from atom-like to trimer-like with
increasing attraction [1–3]. However, it remains an open
question whether or not a first-order phase transition will
disrupt such an atom-trimer crossover. As a first step toward
addressing this problem, one would require a detailed analysis
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of the trimer-trimer and trimer-dimer scattering amplitudes,
similar to what has been done for p-wave trimers in 3D [68].

The proposed phase diagram in Fig. 3 can be investigated
experimentally using 6Li atoms confined to a quasi-2D geome-
try. Since there are overlapping Feshbach resonances between
the three lowest hyperfine states of 6Li, one can engineer a gas
that is close to being SU(3) symmetric [4]. Even if we relax the
SU(3) symmetry, we do not expect the overall phase structure
of Fig. 3 to change. In this case, the mixed atom-pair phase
in the weak-coupling regime will now involve Cooper pairs
comprised of the particles with the strongest attraction, while
the fully paired superfluid phase will consist of a mixture
of dimers that could potentially undergo phase separation.
Alternatively, one can realize a 2D SU(3) Fermi gas with 173Yb
atoms [74], where the existence of orbital Feshbach resonances
provides an interesting twist to the problem [75–77]. In both
cases, one can use radio-frequency pulses to directly probe or
associate trimers in the three-component Fermi system [5,6].
Thus, to facilitate the experimental realization, we require a
precise calculation of the quasi-2D three-body problem for
realistic experimental parameters, which is the subject of future
work.
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APPENDIX A: DECAY RATE DERIVATION

Consider an initial state |�(0)〉 subjected to the evolution
operator Ô(t), such that the state at time t is given by
|�(t)〉 = Ô(t)|�(0)〉. For the time-independent Hamiltonian
Ĥ in Eq. (4), we have operator Ô(t) = e−iĤ t and we expect
the amplitude A(t) ≡ 〈�(t)|�(t)〉 to be conserved at all times.

Now consider including the anti-Hermitian perturbation
Ĥ3b from Eq. (15). In this case, we have Ô(t) = e−i(Ĥ+Ĥ3b)t

and Ô†(t) = ei(Ĥ−Ĥ3b)t , so that the amplitude decreases in time
as follows:

Ȧ(t) = d

dt
〈�(t)|�(t)〉

= 〈�(0)|
(

dÔ†

dt
Ô(t) + Ô†(t)

dÔ

dt

)
|�(0) 〉

= −2i〈�(t)|Ĥ3b|�(t)〉.

Since Ĥ3b is a small perturbation, we can take |�(0)〉 to
be an eigenstate of Ĥ . Therefore, we can define the decay
rate � = −Ȧ(0)/A(0). Using the three-body state in Eq. (10)
and assuming A(0) = 1, the necessary expectation value is
therefore

〈�3|Ĥ3b|�3〉 = − i

2




3

∣∣∣∑
k

Ck

∣∣∣2 (A1)

and the decay rate is

� = 2i〈�3|Ĥ3b|�3〉 = 


3

∣∣∣∑
k

Ck

∣∣∣2, (A2)

which is the result quoted in the main text.

APPENDIX B: SPATIAL SIZE OF THE TRIMER

We wish to construct a convenient real-space three-body
wave function in the SU(3) Fermi system from which we
can estimate the size of the ground-state trimer. Working in
the center-of-mass frame, we start by defining the real-space
coordinates sij and rij , where sij is the separation between
a pair of particles i and j ; and rij is the distance from the
center-of-mass of the i-j pair to the third particle. To reduce it
to a problem with only one coordinate, we take the separation
between two particles to be zero. To be concrete, we take
the pair of particles at zero separation to be 1 and 2 in the
following.

Our three-body wave function in Eq. (10) has two types
of terms: an atom plus a closed-channel bosonic dimer, and
a configuration involving three atoms. For the atom-dimer
(ad) parts of the wave function, the closed-channel dimers are
pointlike and thus sij = 0 for any pair i, j that makes up a
closed-channel dimer. Since we have also set the separation
of particles 1 and 2 to zero, we have r31 = r23 = 0. Defining
r12 ≡ r, the transformed atom-dimer wave function is thus

ψad (r) =
∑

k

eik.rαk,3 +
∑

k

(αk,2 + αk,1), (B1)

where the second two terms just give a constant offset that is
independent of r.

Next we transform the three-atom (3a) component of the
wave function, again focusing on the state where the 1 and 2
particles are located at the same point in space:

ψ3a(r) =
∑

k1,k2,k3

[eik3·rei 1
2 (k1−k2)·s12

× βk1k2k3 δ(k1 + k2 + k3)]|s12=0

=
∑

k3

eik3·r 1

g
η

(3)
k3

. (B2)

Here we have used the functions defined in Eq. (11).
From the relation [E3 − ( 3

2εk + ν)]αk,i = η
(i)
k , we see that

ψad (r)/ψ3a(r) → 0 when we take the limit � → ∞ and ν →
∞. Therefore, we can neglect the atom-dimer contribution
and define the normalized three-body wave function ψ(r) as
follows:

ψ(r) = lim
ν→∞

−∑k3
eik3·r 1

g
ηk,3√∫ ∣∣∑

k3
eik3·r 1

g
ηk,3

∣∣2dr

=
∑

k3
eik3·rαk,3√∫ ∣∣∑

k3
eik3·rαk,3

∣∣2dr

= N−1/2
∑

k

eik·rCk,
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where we have used the relation αk,i = 1
3Ck and defined the

normalization factor N = ∫ |∑k eik.rCk|2dr. We can now

readily take the expectation value of the distance r ≡ |r|, as
stated in Eq. (18) of the main text.
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