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Superfluid density and critical velocity near the Berezinskii-Kosterlitz-Thouless transition in a
two-dimensional strongly interacting Fermi gas
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We theoretically investigate superfluidity in a strongly interacting Fermi gas confined to two dimensions at
finite temperature. Using a Gaussian pair fluctuation theory in the superfluid phase, we calculate the superfluid
density and determine the critical temperature and chemical potential at the Berezinskii-Kosterlitz-Thouless
transition. We propose that the transition can be unambiguously demonstrated in cold-atom experiments by
stirring the superfluid Fermi gas using a red-detuned laser beam, to identify the characteristic jump in the local
Landau critical velocity at the superfluid-normal interface, as the laser beam moves across the cloud.
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I. INTRODUCTION

In two-dimensional (2D) many-body systems, topologi-
cally nontrivial vortex fluctuations, which are suppressed due
to vortex or antivortex binding at low temperature, become
amplified above a certain critical temperature, leading to the
so-called Berezinskii-Kosterlitz-Thouless (BKT) transition
[1–3]. The BKT transition has been of great importance in
different branches of physics and has been observed in a
range of settings [4–7]. In particular, ultracold atomic gases are
an ideal candidate to understand the interaction-driven BKT
physics [7], owing to the unprecedented controllability over
interatomic interactions, dimensionality, and species [8,9].
Over the past decade, the BKT transition in a 2D weakly
interacting Bose gas has been extensively studied by measuring
the phase coherence [7,10], confirming the universal equation
of state [11,12], probing the superfluidity [13], or observing
the free vortex proliferation [7,14,15].

A 2D interacting Fermi gas at the crossover from a Bose-
Einstein condensate (BEC) to a Bardeen-Cooper-Schrieffer
(BCS) superfluid provides a unique platform to address the uni-
versal BKT mechanism [16,17], since the underlying character
of the system changes from tightly bound composite bosons
to loosely bound Cooper pairs of fermions, with decreasing
attractions [18]. Indeed, the fermionic BKT transition is now
being pursued by several cold-atom laboratories [19–36], and
there are indications of the transition from the measurements
of pair condensation and correlation function, where (i) the
center-of-mass momentum distribution of Cooper pairs, nQ,
exhibits anomalous enhancement near Q = 0 below a certain
temperature [29] and (ii) the first-order correlation function
g1(r) in real space decays algebraically [30]. However,
confirmation of the transition is still to be demonstrated, as
these two features may be explained using a strong-coupling
theory in the normal phase [37]. This situation marks the
importance of having accurate theoretical predictions for the
fermionic BKT transition.

The purpose of this research is to apply a strong-coupling
theory, beyond the mean field, to a 2D interacting Fermi gas
in the superfluid phase and present predictions for the BKT
critical chemical potential, critical temperature and critical
velocity at the whole BEC-BCS crossover. Through a fully

microscopic calculation of both superfluid density and critical
velocity, beyond the phenomenological Landau quasiparticle
picture, we predict the occurrence of a significant discontinuity
in the critical velocity across the transition as a result of the
universal jump in superfluid density [2], which will provide
unambiguous proof of the fermionic BKT transition.

The theoretical description of pairing in a 2D interacting
Fermi gas at finite temperature is a long-standing challenge due
to strongly enhanced quantum and thermal fluctuations. There
have been intense theoretical efforts over the past 30 years to
understand the corresponding mechanism in 2D layered high-
temperature superconductors [18,38,39]. To a large extent,
current knowledge of the fermionic BKT transition builds
on mean-field approaches [16,17], which break down in two-
dimensions as interactions are increased due to fluctuations
being larger. There are a number of studies that take into
account strong pair fluctuations based on the many-body T -
matrix scheme [40–46]; however, these calculations typically
focus on the normal state due to technical difficulties. The
ab initio quantum Monte Carlo (QMC) simulations at finite
temperature encounter similar issues [47]. In this work, we
consider a Gaussian pair fluctuation (GPF) theory [48–50],
which is known to provide a reliable 2D equation of state at
zero temperature [44]. We generalize the GPF theory for finite
temperatures below the superfluid transition, solving a crucial
technical problem of removing divergences in numerics.
This enables us to calculate the superfluid density, the key
quantity in characterizing the BKT transition, beyond the
mean field and taking into account quantum fluctuations.
Our main results, as shown in Figs. 3 and 4(b), are of
significant importance for further BKT experiments with cold
fermions.

The paper is set out as follows, in Sec. II we describe
the theoretical model used in calculating the thermodynamic
potential and compare the pressure and density equations of
state against other theoretical and experimental results where
they are available. In Sec. III we calculate the superfluid
density and determine the BKT transition to superfluidity.
Here we examine the critical chemical for the BKT transition
and present a phase diagram of the critical temperature as
a function of binding energy. In Sec. IV we consider a
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method to unambiguously identify the fermion BKT transition
through stirring the cloud with a red-detuned laser. Finally, in
Sec. V we consider the conclusion and outlook for future
research.

II. THE GPF THEORY AT FINITE TEMPERATURE

A 2D interacting Fermi gas is well described by the
Hamiltonian [18]

H =
∑

σ

ψ̄σ (r)H0ψσ (r) − Uψ̄↑(r)ψ̄↓(r)ψ↓(r)ψ↑(r), (1)

where ψσ (r) is the annihilation operator for the spin state σ =
↑,↓, H0 = −h̄2∇2/(2M) − μ is the kinetic Hamiltonian with
atomic mass M , μ is the chemical potential, and U denotes
the bare interaction strength of a contact interaction between
unlike fermions and is related to the binding energy εB via
1/U = ∑

k(h̄2k2/M + εB)−1.
Technical details of the GPF theory have been exten-

sively discussed elsewhere [44,48,50]; here, we only present
a brief overview of the key equations. Within the GPF
framework, we account for strong pair fluctuations at the
Gaussian level, beyond the standard mean-field treatment,
and consider separately their contributions to the thermody-
namic potential � = �MF + �GF. These two parts can be
represented by the BCS Green’s function G0(k,iωm) and
the vertex function �(q,iνl) (i.e., the Green’s function of
Cooper pairs): �MF = −kBT

∑
k,iωm

ln[−G−1
0 ] and �GF =

(kBT /2)
∑

q,iνl
ln[−�−1], that is, the expressions of the

thermodynamic potentials for ideal fermions and bosons,
where ωm = (2m + 1)πkBT and νl = 2πlkBT are the
fermionic and bosonic Matsubara frequencies with integers m

and l, respectively. In other words, the system may be viewed
as a noninteracting mixture of fermions and pairs. Though the
picture is simple, it captures the essential physics for weak
and strong interactions. Indeed, at zero temperature, the GPF
theory provides a quantitative description of the BEC-BCS
crossover in both 3D [48–50] and 2D [44,51]. This can be
extended straightforwardly to the general situation where the
condensed pairs flow with the wave vector Q, as represented
by the pairing gap 
eiQ·r [52].

In this case, the mean-field thermodynamic potential is
given by [52]

�MF(Q) = 
2

U
+

∑
k

[
ξ̃k − Ek − 2

β
ln(1 + eβE+

k )

]
, (2)

where ξ̃k ≡ h̄2k2/(2M) − [μ − h̄2Q2/(8M)], Ek ≡√
ξ̃ 2

k + 
2, β = 1/(kBT ), and E±
k ≡ Ek ± h̄2k · Q/(2M),

and to ensure the gapless Goldstone mode, the pairing gap 


should be calculated using the mean-field gap equation

∑
k

[
1 − 2f (E+

k )

2Ek
− 1

h̄2k2/M + εB

]
= 0, (3)

with the Fermi distribution function f (x) ≡ 1/(eβx + 1). The
expression for the thermodynamic potential of pair fluctuations
is more subtle [48,50]:

�GF(Q) = kBT
∑

Q≡(q,iνl )

S(Q)eiνl0+
,

S(Q) = 1

2
ln

[
1 − M2

12(Q)

M11(Q)M11(−Q)

]
+ ln M11(Q), (4)

where the matrix elements of −�−1(Q) are given by [52]

M11 (Q) = 1

U
+

∑
k

[
u2

+u2
−

1 − f
(+)
+ − f

(−)
−

iν̃l − E+ − E−
− u2

+v2
−

f
(+)
+ − f

(+)
−

iν̃l − E+ + E−
+ v2

+u2
−

f
(−)
+ − f

(−)
−

iν̃l + E+ − E−
− v2

+v2
−

1 − f
(−)
+ − f

(+)
−

iν̃l + E+ + E−

]
,

M12 (Q) =
∑

k

(u+v+u−v−)

[
−1 − f

(+)
+ − f

(−)
−

iν̃l − E+ − E−
− f

(+)
+ − f

(+)
−

iν̃l − E+ + E−
+ f

(−)
+ − f

(−)
−

iν̃l + E+ − E−
+ 1 − f

(−)
+ − f

(+)
−

iν̃l + E+ + E−

]
. (5)

Here, we use the short-hand notations iν̃l ≡ iνl −
h̄2q · Q/(2M), E± ≡ Ek±q/2, f

(±)
± ≡ f (E±

k±q/2), u2
± = (1 +

ξ̃k±q/2/Ek±q/2)/2, and v2
± = 1 − u2

±. The density n of the
system can be calculated using n = −∂(�MF + �GF)/∂μ,
which determines the Fermi wave vector kF = (2πn)1/2, the
energy εF = πnh̄2/M , and the temperature TF = εF /kB .

Despite the simplicity and elegance of the GPF theory,
it is not easy to solve numerically in general. The technical
difficulty comes from the sum over the bosonic Matsubara
frequency iνl in Eq. (4), which is divergent. For an interacting
2D Fermi gas at zero temperature the problem may be solved
by utilizing an additional function which has no singularities
or zeros in the left-hand plane [44,50]. At finite temperature,

however, the GPF has only been approximately treated by
taking into account the effects of low-energy phonon modes
[40,46]. Here, we overcome the divergence by writing [53]

1

β

∑
|l|>l0

Sη(q,iνl) = − 1

π

∫ +∞

−∞
dω

ImSη(q,ω + iγ )

eβω + 1
, (6)

where Sη(q,iνl) ≡ S(q,iνl)eiνlη and γ = (2l0 + 1)π/β for the
arbitrary positive integer l0. Thus, the contribution to �GF at
a given q can be calculated by using Eq. (6) and taking the
remaining discrete sum with |l| < l0, in the limit of η → 0+.
We have confirmed that this numerical procedure is robust and
independent of the choice of l0.
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FIG. 1. (a) Pressure equation of state at βεB = 0.5, where P =
−�/V . The prediction from the GPF theory (black solid line) is
compared with the results from the Luttinger-Ward theory (red dashed
line) [42,45], the results from the lattice QMC simulation (blue
squares) [47], and the experimental data from Swinburne [33] (solid
circles with error bars at a slightly smaller βεB = 0.47). The inset
shows the density equation of state at the same interaction strength.
(b) Pressure equation of state at βεB = 0.1, where the Fermi gas
remains normal up to βμ = 8. Here, P0(μ) and n0(μ) are the pressure
and the density of an ideal Fermi gas, respectively.

To illustrate the importance of our full treatment of the
GPF, we show in Fig. 1 the results for the pressure and
density equations of state, where P = −�/V , at interaction
strengths βεB = 0.5 (a) and βεB = 0.1 (b) with Q = 0,
compared with the predictions from the mean-field theory,
above Tc calculations with the self-consistent Luttinger-Ward
theory [42,45] and lattice QMC simulation [47], and with
recent experimental measurements [33]. It is reasonable from
the comparison of results in Fig. 1 that the GPF theory
provides a useful description over the whole temperature
regime, differing from the lattice QMC and experimental
results by ≈10% for the interactions strengths shown. For
further comparison of the normal-state calculations of the GPF
with experimental results we refer the reader to Ref. [45],
where in the normal state the GPF calculations consistently
underestimate the density. The discontinuity in the pressure
and density equations of state is an unphysical artifact of

FIG. 2. The superfluid density, in units of the density of an ideal
Fermi gas n0, as a function of the chemical potential at the interaction
strength βεB = 0.5. The GPF and mean-field predictions are shown
by the black solid and gray dot-dashed lines, respectively. The circles
indicate the critical superfluid density (or chemical potential) for the
BKT transition. The inset shows the superfluid fraction ns/n.

treating the pairing fluctuations at the Gaussian level when
calculating the pairing gap 
 and the chemical potential
μ; however, the calculation of the superfluid density is still
consistent [54]. For a superfluid 2D Fermi gas, the GPF theory
provides the best description to date, as current mean-field
theories strongly underestimate the interaction effects [17] and
there are no superfluid QMC calculations at finite temperature.
Alternative T -matrix theories have so far focused on the
normal state only and predict a 2D superfluid transition
at zero temperature [38,43]. This is due to the Gaussian
fluctuations destroying long-range order at finite temperature
in two dimensions.

III. SUPERFLUID DENSITY AND PHASE DIAGRAMS

We now consider the case that the condensed pairs flow
with superfluid velocity vs = h̄Q/(2M). Treating vs as small,
the superfluid density ns of the system can be calculated from
the lowest-order change in the thermodynamic potential, i.e.,

� = �(vs) − �(0) 	 Mnsv2

s /2, due to the added kinetic
energy of the superfluid flow [52], thus, we obtain

ns = 1

M

[
∂2�(vs)

∂v2
s

]
vs=0

= 4M

h̄2

[
∂2�(Q)

∂Q2

]
Q=0

, (7)

and the superfluid density can be calculated from the GPF ther-
modynamic potential of Eq. (4). The BKT critical temperature
Tc can then be estimated by self-consistently solving the KT
criterion [3,17]:

kBTc = π

2

h̄2

4M
ns(Tc). (8)

Figure 2 reports the GPF superfluid density ns at the inter-
action strength βεB = 0.5, as a function of the dimensionless
chemical potential βμ. The main figure shows ns in units of
the density of an ideal Fermi gas n0 = 2λ−2

T ln(1 + eβμ), where

λT ≡
√

2πh̄2/(MkBT ) is the thermal wavelength, while the
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FIG. 3. The critical chemical potential (with εB/2 added) as
a function of the interaction strength. The black solid line and
the gray dot-dashed line show the GPF and mean-field results,
respectively. The symbols (in different colors) show the largest
chemical potential achieved in the recent density-equation-of-state
measurements [33,34], at different interaction strengths.

inset shows the superfluid fraction ns/n. For comparison,
we also plot the mean-field results (dot-dashed lines). By
dividing both sides of the KT criterion, Eq. (8), by n0, we
find that the dimensionless critical chemical potential (βμ)c
may be obtained by plotting ns/n0 and looking for the
intercept with 8/ ln(1 + eβμ). Towards the low-temperature
regime, βμ → ∞, the superfluid density calculated using
the mean-field theory is typically underestimated, although
the superfluid fractions from both mean-field and GPF theories
saturate to unity. Consequently, the mean-field theory predicts
a larger critical chemical potential.

By repeating the calculations at different interaction
strengths we obtain a phase diagram for the critical chemical
potential, as shown in Fig. 3. This phase diagram is particularly
useful for current cold-atom experiments, where the Fermi
gas is confined in a harmonic trapping potential, V (r), and is
inhomogeneous. A section of the cloud is locally superfluid
if its local chemical potential μloc = μ − V (r) is larger than
μc. Therefore, experimentally, once the chemical potential at
the trap center, μ, and the temperature, T , are measured by
fitting the density equation of state at the edge of the cloud with
the known virial expansion [33], one can then determine the
superfluid radius of the Fermi cloud from our phase diagram,
Fig. 3. To make a close connection with experiments, in Fig. 3
we show the largest chemical potential achieved in recent
equation-of-state measurements [33,34]. It is encouraging to
see that the experiment was approaching the BKT transition.

On the theoretical side, it is of interest to determine the
phase diagram for the parameter space of Tc/TF and εB/εF ,
where we calculate the superfluid fraction as a function of
T/TF . A typical prediction at εB/εF = 0.1 is illustrated in
Fig. 4(a) by solid circles, contrasted with the mean-field result
(dot-dashed line). The superfluid density of a 2D interacting
Fermi gas has been recently calculated by Bighin and Salasnich
[46] using Landau’s phenomenological formulation for the
normal density and the quasiparticle spectrum based on the

FIG. 4. (a) The superfluid fraction as a function of temperature
at interaction strength εB = 0.1εF . Our GPF prediction (red circles)
is compared with the mean-field result (gray dot-dashed line) and the
approximated result based on the zero-temperature GPF (blue solid
line) [46]. The intersection with the curve 8T/TF determines the BKT
transition temperature. (b) The critical temperature as a function of
εB/εF .

zero-temperature GPF equation of state [55]. Their result
is plotted in Fig. 4(a) for comparison. We find that the
prediction of Landau’s formulation agrees well with our full
GPF calculation at low temperatures, where ns/n ∼ 1, but
significantly overestimates the superfluid fraction when the
temperature becomes larger. According to the KT criterion,
the critical temperature Tc/TF can be extracted by locating the
intercept point between the curves ns/n and 8T/TF and
the resulting phase diagram is reported in Fig. 4(b). Our
result shows a significant improvement on the BCS side
over the previous theoretical predictions [17,46], while on
the BEC side (i.e., εB > 0.5εF ) our result follows closely the
approximate prediction from Landau’s formula, since in the
latter the superfluid fraction at low temperatures T ∼ 0.1TF

is reasonably approximated. In the deep BEC regime our GPF
result approaches the anticipated BKT critical temperature of
a weakly interacting Bose gas [46,56], since the molecular
scattering length is correctly reproduced in the GPF theory
[44,57]. In this respect, the phase diagram Fig. 4(b) gives a
coherent picture across the whole BEC-BCS crossover.

IV. PROBING THE FERMIONIC BKT TRANSITION

We now consider a method to unambiguously identify
the fermionic BKT transition. Due to strong interactions,
measurements of both phase coherence and free vortex
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FIG. 5. The critical velocity vc, in units of the thermal velocity
vT ≡ [kBT /(2M)]1/2 = h̄kT /(2M), as a function of βμ at the inter-
action strength βεB = 0.5. The black circles (with dashed line) and
the gray dot-dashed line show the GPF and mean-field predictions,
respectively. The inset shows the thermodynamic potential at nonzero
superfluid velocity v = h̄Q/(2M), which exhibits a local maximum
at vc.

proliferation, which are efficient for a weakly interacting 2D
Bose gas, do not work well. Instead, we follow the idea
of the superfluidity measurement [13,58,59] and propose to
observe the superfluid behavior of an interacting 2D Fermi
gas by stirring the cloud with a red- or blue-detuned laser
beam. When the Fermi cloud is in the superfluid state, we
anticipate that the measured critical velocity will have a sudden
jump as the position of the stirred beam moves across the
critical radius rc, which corresponds to the critical chemical
potential μc = μ − V (rc). This sudden increase is caused by
the universal jump in the superfluid density, since just below
(above) the BKT critical temperature (chemical potential), the
finite superfluid density is able to support nonzero superfluid
flow [60,61].

Theoretically, we calculate the critical velocity from the
velocity dependence of the thermodynamic potential �(v) at
a given temperature, T . With increasing superfluid flow, the
loss of stability of the system is indicated by the appearance
of a local maximum in the thermodynamic potential (see the
Appendix for a detailed discussion), as illustrated in the inset
of Fig. 5. The determined critical velocity at the interaction
strength βεB = 0.5 is presented in the main figure. The
apparent discontinuity at (βμ)c ∼ 8 serves as a smoking-gun
signature for the BKT transition. To give some realistic
numbers, consider a single 2D cloud of N = 40 000 neutral 6Li
atoms in a hybrid optical-magnetic trap with frequency ωx 	
ωy ∼ 2π × 25 Hz at temperature T ∼ 20 nK and at binding
energy εB = 10 nK (satisfying βεB ∼ 0.5), which is within
the regime attainable at Swinburne University of Technology,
Melbourne, Australia [33]. The chemical potential at the trap
center is estimated to be μ ∼ 240 nK. Thus, the superfluid
radius is about rc ∼ 100 µm, and from Fig. 5, the anticipated
jump in the critical velocity would be about 
vc 	 0.6vT ∼
4.5 mm/s, which is readily detectable [58].

V. CONCLUSION AND OUTLOOK

In this paper, we have determined the thermodynamic
potential and superfluid density of a two-dimensional Fermi
gas at finite temperature for the BEC-BCS crossover, taking
into account the strong-coupling pair fluctuation effects at the
Gaussian level, beyond previous mean-field calculations. We
have overcome the numerical difficulties through a method
of summing the Matsubara frequencies, allowing for efficient
computation of the superfluid density.

With the calculation of the superfluid density and using the
KT criterion we detailed the superfluid transition temperature
of a strongly interacting 2D Fermi gas. We find phase diagrams
for the critical chemical potential and temperature as a
function of interaction strength and predict the occurrence
of a significant discontinuity in the critical velocity across
the transition as a result of the universal jump in superfluid
density. This work provides estimates for the prediction
of the fermionic Berezinskii-Kosterlitz-Thouless transition
for the whole BEC-BCS crossover, and our results support
ongoing cold-atom experiments to unambiguously observe the
fermionic BKT transition through the microscopic calculation
of both superfluid density and critical velocity. Our approach
may also be useful for understanding the superfluid phases of
the 2D Hubbard model [62].
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FIG. 6. The mean-field thermodynamic potential at nonzero
superfluid velocity v = h̄Q/(2M), which saturates to the ideal gas
thermodynamic potential �0 at the pair-breaking velocity vpb. Here
we take βεB = 0.5 and βμ = 8.35.

053608-5



MULKERIN, HE, DYKE, VALE, LIU, AND HU PHYSICAL REVIEW A 96, 053608 (2017)

APPENDIX: VELOCITY DEPENDENCE OF THE
MEAN-FIELD THERMODYNAMIC POTENTIAL

In this appendix, we examine the mean-field thermody-
namic potential as a function of the superfluid velocity v =
h̄Q/(2M) in the weakly interacting regime with βεB = 0.5
and βμ = 8.35. As shown in Fig. 6, the thermodynamic
potential increases with increasing velocity and saturates to
its maximum value (which is the ideal gas thermodynamic
potential), precisely at the pair-breaking velocity [60],

vpb =
⎡
⎣

√
μ2 + 
2

mf (Q = 0) − μ

M

⎤
⎦

1/2

	 0.9vT . (A1)

At this pair-breaking velocity, the pairing gap becomes zero
and the system is no longer superfluid [60]. As the system is
in the weakly interacting regime (i.e., εB/εF ∼ εB/μ ∼ 0.05
or 
mf (Q = 0)/μ ∼ 0.3), the sound velocity of the phonon
mode vs ∼ 4vT is larger than vpb and hence the critical velocity
of the system is given by vpb, according to Landau’s picture.
Therefore, we observe that within the mean field, the thermo-
dynamic potential attains its maximum at the critical velocity.

By taking into account the strong pair fluctuations beyond
the mean field, we anticipate that the thermodynamic potential
will exhibit a local maximum as the superfluid velocity
increases. This creates an energy barrier. Once the barrier is
overcome, the system may lose its superfluidity. The velocity
at the local maximum can then be reasonably interpreted as
the critical velocity.
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