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Tunable axial potentials for atom-chip waveguides
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We present a method for generating precise, dynamically tunable magnetic potentials that can be described by
a polynomial series along the axis of a cold-atom waveguide near the surface of an atom chip. With a single chip
design consisting of several wire pairs, various axial potentials can be created by changing the ratio of the currents
in the wires, including double wells, triple wells, and pure harmonic traps with suppression of higher-order terms.
We use this method to design and fabricate a chip with modest experimental requirements. Finally, we use the
chip to demonstrate a double-well potential.
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I. INTRODUCTION

Experiments with cold atoms often rely on carefully
designed magnetic fields to create potentials for specific
experimental requirements. A leading method for generating
magnetic potentials involves the design and fabrication of
“atom chips” [1,2], conducting wires on one or more dielectric
substrates. Typically, the trap shape is determined by the wire
pattern, while the magnitude of the trapping field is determined
by the chip currents. This enables a broad range of possible
magnetic trap positions and parameters. Magnetic trap capa-
bilities can be expanded with the addition of radio frequency
[3,4] and microwave [5] fields. Periodic wire structures [6–8],
permanent magnets [9], diffractive magnetic lattices [10,11],
and optical elements for the generation [12–14], manipulation
[15], and detection [16] of ultracold ensembles have been
successfully integrated with atom chips. Due to their extensive
configurability and compact size, atom chips have become a
cornerstone of emerging atomic sensor technologies [17–22].

In this paper, we present a design methodology for pro-
ducing dynamically tunable one-dimensional (1D) magnetic
potentials by summing the magnetic-field contributions from
multiple wire pairs on an atom chip. The field of a single
wire can be Taylor expanded about the position of the atom
trap, revealing a polynomial series. With two wires of equal
or opposite current, equidistant from the location of the trap
minimum, odd or even terms, respectively, are eliminated from
the series expansion due to symmetry. With multiple wire pairs
of the appropriate spacing, an orthogonal basis set is realized.
The linear combination of the fields creates a total magnetic
field that can be approximated as an nth-order polynomial in
the trapping region. We show that the order of the polynomial
is determined by the number and locations of the wire pairs
and that the coefficients of the polynomial are determined by
the ratio of currents in the wire pairs.

Although fabrication methods for atom chips vary consid-
erably, from standard milling of metallic films [23] to optical
and e-beam lithography [24] to electrochemical [25] and laser
etching [26] of direct bonded copper on an aluminum nitride
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substrate, our technique is architecture independent. The chip
design is parameterized only by the working distance between
the atoms and the chip and the desired number of tunable
orders in the polynomial expansion of the field.

Since both even and odd contributions are accessible in
a single chip design, highly arbitrary polynomial potentials
can be realized utilizing a single layer of chip conductors.
This tunability applies to a variety of experiments, including
trapped-atom interferometry [27–29], chip-based precision
measurements [21,30], 1D Bose gases [31], and atomtronic
devices [19,32,33].

In practice, canceling higher-order terms requires a higher-
power dissipation. Therefore, we consider a low-power wire
configuration that relaxes the requirements on higher-order
terms. Based on the calculations outlined in this paper, we
have designed, fabricated, and tested an atom chip capable of
controlling the 1D potential including both the optimal and
reduced-power wire configurations.

The rest of the paper is organized as follows. In Sec. II
we present an idealized atom chip and its corresponding 1D
polynomial potential and examine the tunability of both even
and odd terms. In Sec. III, we describe an example chip design
and solve for wire currents using either the optimal or the low-
power configuration. In Sec. IV we present initial experimental
results showing the tunability of the potential and summarize
our findings.

II. MAGNETIC-FIELD CONTROL IN ONE DIMENSION

In many experiments, an atom cloud is sufficiently confined
in two directions such that its dynamics can be described by a
1D equation of motion. In this paper, a radial plus an effective
1D axial potential is formed by pairs of wires patterned on
a two-layer atom chip with an adjustable uniform external
magnetic field. This chip is shown schematically in Fig. 1. The
layer closest to the atoms will be used to create a magnetic
waveguide [34], depicted as a set of four horizontal black
wires, that tightly confines the atoms in the radial directions.
The far layer is composed of multiple wire pairs which create
a tunable axial field perpendicular to the waveguide. The wire
pairs will be referred to as pinch wires since they act much
like the pinch coils in a Ioffe trap. While Fig. 1 shows finite
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FIG. 1. Multilayer atom chip with tunable control over Bx along
a cold-atom waveguide. The black crossing wires on the top layer are
used to form a four-wire waveguide. Below, even and odd wire pairs,
spaced by 2WP,m, give control over even and odd contributions to the
1D potential.

wires with leads, the following derivation assumes infinitely
long thin wires.

In Appendix A, we show the axial and radial potentials
are separable when μ|Bx(0)| � mω2

⊥σ 2
⊥, where σ⊥ is the

characteristic size of the atomic cloud in the radial direction
and Bx(0) represents the total bottom field in the waveguide.
The effective 1D axial potential along x can then be written as

V = μ|Bx(x)| + 1
2mω2

⊥r2
⊥, (1)

where μ = μBgF mF is the magnetic moment of the atomic
state that is trapped, μB is the Bohr magneton, gF is the Landé
g factor, mF is the magnetic quantum number, Bx(x) is the
tunable magnetic field in the êx direction, ω⊥ is the trapping
frequency in the radial direction, r⊥ is the distance from the
trap axis, and m is the atomic mass.

For a single wire pair centered about the origin with both
currents running in the êy direction the field can be expressed
as the following series:

Bx(x) = μ0I

2πH

[
c(0) + c(2)

( x

H

)2
+ c(4)

( x

H

)4
+ · · ·

]
, (2)

where I is the current in the wire pair and H is the distance
of the atom trap from the plane of the 1D control wires. In
Appendix B, we show that the parameters c(n) are given by the
relation

c(n)(w) = 2

(1 + w2)n+1

n∑
r=0

(−1)(n+r)/2

(
n + 1

r

)
wrφn+r (3)

for any n, where φa = [1 + (−1)a]/2 is a parity function of
the integer argument a that is 1 if a is even and 0 if a is odd.
Figure 2 shows the first few even values of the coefficients
c(n), given in Eq. (3), as a function of half the scaled wire

FIG. 2. The lowest few even coefficients c(n) are shown. The solid
line is c(2), the dashed line is c(4), the dash-dotted line is c(6), and the
dotted line is c(8).

spacing wE = WE/H , where WE is half the real wire spacing
between a wire pair on the chip. The odd orders cancel due
to the symmetry of the wire spacing and the currents. For
antisymmetric current flow there is a Taylor series similar
to Eq. (2) except the even orders cancel such that there are
only odd terms. Equation (3) holds for both even and odd
contributions to the potential.

Akin to a Helmholtz or anti-Helmholtz coil pair there is
a particular wire spacing where one of the orders in the
expansion will cancel. When just one wire pair is flowing
current, scaling this current will equally scale all orders of the
series expansion but does not change the functional form of the
potential. We use multiple wire pairs at various spacings such
that the potential is a linear combination of the Taylor series
expansions of each wire pair. This can be contrasted with
previous studies, which examine the magnetic field generated
by certain conductor configurations [35–41], or analogously,
the electric field of an arrangement of charged electrodes [42],
by performing a multipole expansion in the region of interest. If
the atom chip is designed with appropriate wire-pair spacings,
individual terms in the total tunable field can then be varied by
changing the relative currents in the wire pairs.

The total tunable field can be expanded into the following
series (note that the c terms denote the magnetic-field contri-
bution from a single wire pair, while C denotes a sum of c

terms):

Bx(x) = B∗
x + BR

[
C(0) + C(1)

( x

H

)
+ C(2)

( x

H

)2

+C(3)
( x

H

)3
+ C(4)

( x

H

)4
+ · · ·

]
, (4)

where

C(n) =
M(P)−1∑

m=0

iP,mc(n)(wP,m), (5)

where iP,m = IP,m/IR is the relative current in the mth wire
pair and wP,m = WP,m/H , scaled by the distance from the
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waveguide axis to the wire plane. The parity of n determines
which wire pairs contribute to C(n). The number of contributing
wire pairs is given by M(P), where P denotes the parity of n,
denoted either E for even or O for odd. Additionally, B∗

x is the
magnitude of the externally applied, uniform bias field in the
x direction, and BR is the overall potential scaling given by

BR = μ0IR

2πH
, (6)

where IR is the reference current.
The rest of this section describes how arbitrary values of

the C(n) coefficients can be generated from a particular wire
configuration.

To ensure separability we compute the bottom field by
summing the externally applied field with terms from the even
wire pairs,

Bx(0) = B∗
x + BR

M(E)−1∑
m=0

iE,mc(0)(wE,m). (7)

Note that the odd wires make no contribution to the bottom
field.

The magnetic field of the wire pairs also consists of a
component in the z direction. This field can be expanded as

Bz(x) = B∗
z + BR

(
D(0) + D(1) x

H
+ · · ·

)
. (8)

The opposite parity condition in the z direction means that the
dimensionless parameters D(n) are determined by the currents
in wires of parity n + 1, of which there are M(P ′). These
coefficients are given by

D(n) =
M(P ′)−1∑

m=0

iP ′,md (n)(wP ′,m), (9)

where d (n) are dimensionless parameters that depend only on
the spacing of the wires.

The parameter D(0) causes a displacement of the wave guide
in the z direction. However, this constant field can be corrected
with the addition of a uniform bias field B∗

z . In the rest of the
paper we assume that the correct bias field is applied.

Nonzero values of D(1) cause a rotation of the waveguide.
Typically, this rotation is set to zero; however, there are
situations where changing this rotation angle will be useful,
such as the alignment of a cloud with a standing-wave laser
field. Extensions to nonzero rotations are straightforward but
will be neglected in what follows.

A general expression for d (n), similar to the one given in
Appendix B, may be found. However, we are interested in only
the two lowest orders, which can be expressed as

d (0)(wO,m) = 2
wO,m

w2
O,m + 1

(10)

and

d (1)(wE,m) = −2
(wE,m − 1)(wE,m + 1)

(w2
E,m + 1)2

. (11)

The currents in a set of M(E) wire pairs can be used
to control usually the lowest M(E) − 1 terms from Eq. (5)
plus the parameter D(1) from Eq. (9). For a given set of
wire spacings {wE }, the currents can be found by inverting

FIG. 3. The lowest few odd coefficients c(n) are shown. The solid
line is c(1), the dashed line is c(3), the dash-dotted line is c(5), and the
dotted line is c(7).

Eqs. (5) and (9). Once the currents have been found, the
contributions to the potential from the uncontrolled parameters
can be calculated.

By placing wire pairs at the roots of a coefficient, we can
eliminate the contribution to the potential from that coefficient.
As Fig. 2 shows, each even coefficient has one more zero
crossing than the previous one; that is, c(2) has one root, c(4)

has two roots, c(6) has three roots, etc. Thus, an atom chip can
be designed to produce a polynomial of any even order with
the next highest order being exactly canceled.

The number of roots is exactly the number of wires needed
to control all of the lower coefficients plus D(1). By placing
wire pairs at all of the roots of a given even coefficient and
controlling the relative current through each pair, one can tune
the lower even coefficients, as well as the additional coefficient
D(1). For example, by placing wires at the three roots of c(6),
we can independently control the three parameters C(2), C(4),
and D(1), while also having C(6) = 0.

Similarly, the currents in a set of M(O) wire pairs can
be used to control M(O) terms from Eq. (5). Once the wire
spacings {wO} have been determined, the currents are found
by inverting Eqs. (5) and (9). An applied bias field of B∗

z =
−BRD(0) is required to cancel the D(0) that arises from the odd
wire pairs. The value can be calculated from the currents and
using Eqs. (9) and (10).

Figure 3 shows the first few odd values of the coefficients
c(n), given in Eq. (3), as a function of half the wire spacing
wO = WO/H . The solid line is c(1), the dashed line is c(3), the
dash-dotted line is c(5), and the dotted line is c(7). Like with
the even case, each of the odd coefficients has one more root
than the previous one. However, one of the roots is always at
wO = 0. This root cannot be used to create an odd potential
and is therefore not useful. As a result, c(1) has no useful roots,
c(3) has one useful root, c(5) has two useful roots, etc.

By placing the odd wires at the useful roots of a coefficient,
all of the lower coefficients can be controlled. For example,
by placing wires at the two roots of c(5), the coefficients
C(1) and C(3) can be controlled, and C(5) = 0. The dominant
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contribution of the z component of the field D(0) can be
eliminated using a bias field. It is not necessary to have a
wire pair to control its value.

III. EXAMPLES

We will first determine the placement of the wire pairs
and then describe two potentials that can be generated with
the design. Consider the case of three even wire pairs and
two odd wire pairs. These wires can be used to create any
potential that is described by a fourth-order polynomial. Once
the coefficients and wire spacings are specified, the set of
currents {iP} can be found by solving the following matrix
equations. For the even wires,

⎛
⎝c(2)(wE,0) c(2)(wE,1) c(2)(wE,2)

c(4)(wE,0) c(4)(wE,1) c(4)(wE,2)
d (1)(wE,0) d (1)(wE,1) d (1)(wE,2)

⎞
⎠

⎛
⎝iE,0

iE,1

iE,2

⎞
⎠ =

⎛
⎝C(2)

C(4)

0

⎞
⎠,

(12)

and for odd wires,

(
c(1)(wO,0) c(1)(wO,1)
c(3)(wO,0) c(3)(wO,1)

)(
iO,0

iO,1

)
=

(
C(1)

C(3)

)
. (13)

Equations (12) and (13) can be used to set the coefficients
C(1) through C(4) for any given wire spacing. However,
contributions to the higher-order terms of the potential will
generally depend on these wire spacings.

The sixth-order contribution can be eliminated, C(6) = 0, by
placing the wires with spacing of wE,0 = 0.228, wE,1 = 0.797,
and wE,2H = 2.076. The fifth-order contribution is always
zero, C(5) = 0, when wO,0 = 0.577 and wO,1 = 1.732.

In situations where small sixth-order contributions to the
potential can be tolerated, the total power consumption of
the atom chip can be greatly reduced by moving the outer
pair of wires closer together. We choose to place the outer
wires at a spacing where wE,2 = wE,2L = 1.3. This choice
has much lower power requirements than the optimal spacing
while maintaining a rather low contribution from the sixth-
order term.

Several example trap configurations will now be discussed.
In all cases, we utilize an atom chip with a working distance
of H = 1.6 mm between the atoms and the central plane of
the tuning wires. There are four free parameters, C(1) through
C(4). For each trap type, the results will be presented for the
optimal configuration where wE,2 = wE,2H = 2.076 and a
low-power configuration where wE,2 = wE,2L = 1.3. For both
of these configurations, it will be assumed that the odd wires
are placed to provide optimal tuning of the odd coefficients, as
discussed above.

For the optimal and low-power configurations, Eqs. (12)
and (13) are numerically inverted. For the case of the optimal
configuration the currents are given by the relations

⎛
⎝ iE,0

iE,1

iE,2H

⎞
⎠ =

⎛
⎝ 1.33 1.47 1.05

2.31 0.70 1.64
12.37 11.54 5.31

⎞
⎠

⎛
⎝C(2)

C(4)

D(1)

⎞
⎠, (14)

and for the low-power configuration⎛
⎝ iE,0

iE,1

iE,2L

⎞
⎠ =

⎛
⎝0.31 0.52 0.61

0.29 −1.18 0.77
3.18 2.96 1.36

⎞
⎠

⎛
⎝C(2)

C(4)

D(1)

⎞
⎠. (15)

With one exception, the magnitude of the currents in the
high-power configuration (14) is always larger than the values
in the low-power configuration. This is especially true of the
last row in the matrices, which determines the current in the
outermost wire.

Assuming the resistances of each of the pinch wires are
equal, the total power dissipated is given as the sum of the
squares of the currents. For the harmonic potential in the
optimal configuration, the power dissipation is proportional
to

∑
m i2

m = 160.12, and in the low-power configuration the
power dissipation is proportional to

∑
m i2

m = 10.29. For the
case of a harmonic potential, the power dissipation due to the
pinch wires is 15 times less for the low-power configuration.
In addition, the low-power configuration requires a smaller
external bias. We are interested in the case where D(1) = 0, so
the last row in both matrices will not be used in the discussion
that follows below.

The inverted equation for the odd terms is(
iO,0

iO,1

)
=

(−0.19 0.77
−1.73 −2.31

)(
C(1)

C(3)

)
. (16)

Finally, the bias field needed to cancel the D(0) term is

B∗
z /BR = 1.66C(1) + 1.33C(3). (17)

A. Harmonic trap

This tunable trap will be useful for atom interferometry in
harmonic traps. This is particularly true for an interferometer
that uses trapped thermal atoms because contributions to the
fourth- (and higher-) order term cause decoherence due to the
larger size of the cloud which samples more of the potential.
Additionally, higher-order contributions to the potential can be
caused by the finite length of chip wires, the leads that connect
the chip wires to the power supplies, ion pumps, or other
laboratory equipment. These contributions can be canceled by
tuning the parameter C(4) while holding C(2) constant. C(4) can
be tuned both positive and negative to cancel any stray C(4)

coefficient. To effectively remove the effects of the fourth-
order contribution to the potential, the background value of
C(4) must first be determined. We are currently developing
methods for measuring these fourth-order contributions and
plan on using the chip described in this paper to evaluate the
effectiveness of these methods.

Before tuning the parameter C(4), a harmonic trap must
first be created and loaded. Figure 4 shows the magnetic
field for the case where C(2) = 1 and all other coefficients
are zero. The solid red curve shows the field produced by
the wires in the optimal configuration wE,2 = wE,2H , and the
dashed blue curve shows the field produced by the wires in the
low-power configuration wE,2 = wE,2L. The dotted lines show
the field profile when higher-order terms are neglected. With
the pinch wires in the optimal configuration, the trap remains
harmonic over a larger range. The optimal trap is also deeper
and has a larger bottom field. Thus, the bias field to reduce the
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FIG. 4. With C(2) = 1 and all higher-order terms zeroed, the
field along x is harmonic. The solid (red) curve shows the field
produced by the wires in the optimal configuration wE,2 = wE,2H .
The dashed blue curve shows the field produced by the wires in
the low-power configuration wE,2 = wE,2L. Dotted lines represent
idealized harmonic field profiles.

bottom field will need to be larger for the optimal configuration
compared to the low-power configuration.

To quantify the effects of the uncontrolled higher-order
contributions of the field, Fig. 5 shows a log plot of the
difference between the simulated field keeping higher-order
terms and an ideal parabola given by Bap = C(0) + x2, where
C(0) is found using Eq. (5) for the wire spacings. The solid red
curve shows the difference in the optimal wire configuration,

FIG. 5. Comparison of the deviations of the axial field from
pure harmonicity for optimal configuration versus the low-power
configuration. The high-power configuration (solid red line) results
in an order-of-magnitude improved harmonicity over the low-power
configuration (dashed blue line).

and the dashed blue curve shows the difference in the low-
power configuration. The low-power configuration produces
a field that is about an order of magnitude “less harmonic”
than the wires in the optimal configuration. However, for
sufficiently small atomic clouds, σ‖/H < 0.05, where σ‖ is
the axial size of the atomic cloud, both configurations produce
potentials that are harmonic to one part in 10−9.

To determine the amount of current that needs to be run in
each wire of the chip, we need to determine the scaling of the
current. To make a harmonic trap, with trap frequency ω, the
scaling current should be

IR = πH 3mω2

μμ0
, (18)

where, as before, μ is the magnetic moment of the trapped
state. Trapping 87Rb in the F = 2, mf = 2 state in a trap
with frequency ω = 2π × 10 Hz that is H = 1.6 mm from
the pinch wires means that IR = 0.63 A. Applying this scaling
current, the currents in the high-power configuration are IE,0 =
0.84 A, IE,1 = 1.45 A, IE,2H = 7.79 A, with a bottom field
of BRC(0) = 7.86 G. For the low-power configuration, the
currents are IE,0 = 0.20 A, IE,1 = 0.18 A, IE,2L = 2.00 A,
and the bottom field is BRC(0) = 2.59 G.

B. Double-well trap

The same chip can be used to produce a double-well trap,
where both the distance between the two traps and the differ-
ence between the potential at the bottom of each trap can be
independently tuned. This type of double-well trap can be used
to study the merging of two cold or ultracold atomic clouds and
the quantum dynamics of a Bose-Einstein condensate (BEC)
in a double-well potential, or most interestingly, it may be
useful as a coherent splitter for a BEC.

Figure 6 shows a double-well magnetic field produced by
our chip. The solid red curve in Fig. 6 shows the magnetic field
produced by the pinch wires in the optimal configuration for a
double-well trap with parameters C(2) = −0.75 and C(4) = 1.
The dashed blue curve is the field produced by the pinch wires
in the low-power configuration. The two dotted curves are the
approximate values when no higher-order contributions to the
field are included. Figure 6 is an example of how two traps that
have the same shape near the origin can have very different
behavior far from the origin. For the trap created using the
wires in the optimal configuration, the bottom field is positive.
To reduce the size of this bottom field, a negative bias field must
be applied. The field has a maximum before it tends towards
zero. On the other hand, for the low-power configuration, the
field is always negative. Since the absolute value of the field
determines the potential, in order to create a double well, there
must be a positive bias field applied to lift the field such that
it is always positive. The field has no other extrema and tends
towards zero after the double-well structure.

For the experimental realization of the double well, seen
in Fig. 7, the reference current, which determines an overall
scaling of the total field, is set to IR = 1 A. For a harmonic
trap with C(2) = 1, this would produce a trap frequency of
ω = 2π × 12.5 Hz. However, the trap frequency at the minima
of the two wells is reduced to approximately ω = 2π × 10 Hz
for this particular choice of the C(2) and C(4) parameters.
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FIG. 6. A double-well potential created by tuning the terms C(2)

and C(4). For both configurations C(2) = −0.75 and C(4) = 1.0. In the
optimal configuration (solid red line) the potential is deeper and has
a large bottom field that may be offset with an external bias field. In
the low-power configuration (dashed blue line) the field is negative
and would need to be offset with an external bias field to maintain
the shape of the double well.

The locations of the two wells are x/H = ±√
3/8 for an

ideal potential of this form. For the high-power configuration,
the applied currents are IE,0 = 0.47 A, IE,1 = −1.02 A, and
IE,2H = 2.27 A. For the low-power configuration, IE,0 =
0.29 A, IE,1 = −1.39 A, and IE,2L = 0.58 A. Only the high-
power configuration was investigated experimentally.

We show preliminary experimental results of a tunable atom
chip well in Fig. 7, where an approximately 2 μK atom cloud
of 87Rb atoms in the |F = 2,mF = 2〉 state is trapped on an

FIG. 7. Experimental images of an atom cloud at appropriately
2 μK being transitioned from a pure C(4) = 1 state to the double-well
state shown in Fig. 6 as a function of the C(2) parameter. There is an
apparent tilt between the two wells that results in a number imbalance
between the two wells. It has not been determined if this is a physical
tilt of the waveguide or an êz gradient.

atom chip similar to the chip shown in Fig. 1. The pure fourth-
order potential is modified by the addition of a negative C(2)

contribution that splits the potential into two wells. Further
results are being prepared for future publication.

IV. CONCLUSIONS

We have demonstrated that tunability of an axial magnetic
field in a cold-atom waveguide can be achieved with sets
of paired wires on an atom chip. By symmetry, wires with
(antiparallel) parallel currents contribute to only the (odd)
even terms in the polynomial expansion of the field along the
guide axis. When a wire pair is placed at a zero of a particular
coefficient, it allows the lower-order terms (of the same parity)
to be adjusted without contributing to the coefficient itself.
Several wire pairs, appropriately placed, lead to arbitrary
tunability of N − 1 coefficients simply by controlling the
relative currents through the sets of wire pairs. Experiments
that employ 1D potentials now have a tool with which precise
potentials may be generated from a double-layer atom chip.
We have also shown the initial operation of a tunable atom chip
by trapping a 2 μK cloud of 87Rb atoms in a pure fourth-order
potential and in a double-well configuration that is composed
of C(2) = −0.75 and C(4) = 1.0.
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APPENDIX A: SEPARABILITY OF THE
WAVEGUIDE POTENTIAL

A magnetic waveguide is a field configuration where the
magnetic field vanishes along an axis. Near the zero, the field
points perpendicularly to the guide and can be described by a
single parameter G, which is the magnetic-field gradient of the
waveguide. For example, the magnetic field for a waveguide
that points in the x direction can be written as

Bradial = G(êyy − êzz). (A1)

The 1D potential will be created using a magnetic field that is
produced by the current in several wires that run parallel to the
y axis (perpendicular to the waveguide axis). This field will
provide confinement in the axial direction and will be assumed
to be of the form

Baxial = Bx(x,z)êx + Bz(x,z)êz. (A2)

The z dependence in Eq. (A2) causes two small shifts to
the potential. First, it causes a change in the gradient in the
z direction, which can be neglected when G � ∂Bz

∂z
. Next,

it causes a displacement in the z direction, which can be

neglected when G2σx � ∂B2
x

∂z
, where σx is the size of the

cloud in the x direction. When these inequalities are satisfied,
Eq. (A2) reduces to

Baxial = BT
x (x)êx + Bz(x)êz. (A3)

The x component of the magnetic field creates the potential
along the waveguide and is the field that we wish to control.
The z component of this field causes deformations to the
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waveguide. The constant term B(0)
z = BRD(0) in Eq. (8) causes

a shift in the location of the guide by B(0)
z /G along the y

axis, which can be corrected using a uniform bias field in the
z direction. We assume that the appropriate zeroing bias is
applied. The second term causes a rotation of the waveguide
about z in the x-y plane. The waveguide is rotated by the angle
θ ≈ B(1)

z /G. When using optical pulses to manipulate the state
of the trapped atoms, this rotation angle becomes important.
Typically, this angle will be set to zero and neglected.
However, including nonzero rotations is straightforward. The
higher-order contributions to Bz cause other distortions to the
path of the waveguide, but below those effects will not be
considered.

With Bz set to zero, the field along the waveguide axis can be
separated into two parts: a nonzero “bottom field” Bx(0) which
prevents spin-flip losses and is necessary for the potential to
be separable and Bx(x), the part of the axial field that depends
on the x coordinate,

Baxial = BT
x (x) = Bx(0) + Bx(x). (A4)

The potential that the atoms experience is obtained from
the radial and axial components, given by Eqs. (A1) and (A4),
respectively, as follows:

V = μ

√
[Bx(0) + Bx(x)]2 + G2r2

⊥, (A5)

where μ is the magnetic moment of the trapped state and
r⊥ =

√
y2 + z2 is the radial coordinate.

Assuming that Bx(0) � Bx(x) and expanding Eq. (A5)
yields

V = μ

(
|Bx(0) + Bx(x)| + 1

2

G2

|Bx(0)| r
2
⊥

− 1

2

G2

|Bx(0)|Bx(0)
Bx(x)r2

⊥

)
. (A6)

The last term in Eq. (A6) is clearly not separable; that is, it
cannot be written in the form V = Vaxial(x) + Vradial(r⊥).
However, the potential may be regarded as separable in the
limit where Bx(0)2 � G2σ 2

⊥, where σ⊥ is the size of the atomic
cloud in the radial direction.

From Eq. (A6) it is clear that the potential along the
waveguide can be written in the form shown in Eq. (1).

APPENDIX B: DERIVATION OF WIRE COEFFICIENTS

Take the surface of the atom chip to be at z = 0, with
an infinitely long wire parallel to the y axis along the line
x∗ = W . When a current of IR is passed through the wire, the
x component of a magnetic field a distance z = H above the
atom chip, at field point X, is given by

Bx(x) = BR

1

1 + (x − w)2
, (B1)

where x = X/H , w = W/H , and BR = μ0IR/2πH . Equa-
tion (B1) can be expanded as the series

Bx(x)/BR =
∞∑

n=0

2n∑
k=0

(−1)(n+k)

(
2n

k

)
w2n−kxk. (B2)

To determine the coefficients for each power of x, the order
of the summation in Eq. (B2) needs to be interchanged. To
do this first, the even and odd terms are separated so that the
upper limit of the inner summation can be divided in half, i.e.,∑2n

k=0 An,k = ∑n
k=0(An,2k + An+1,2k+1). Then, the order sum-

mation can be flipped
∑∞

n=0

∑n
k=0 Bn,k = ∑∞

k=0

∑∞
n=k Bn,k =∑∞

k=0

∑∞
n=0 Bk+n,k . Finally, after interchanging the order of

the summation, Eq. (B2) becomes

Bx(x)/BR =
∞∑

k=0

(α2kx2k + α2k+1x2k+1), (B3)

where

α(n) =
∞∑

q=0

(−1)(n+q)/2

(
n + q

n

)
wqφn+q, (B4)

where φa = [1 + (−1)a]/2 is 0 when a is odd and 1 when a is
even.

Using the identity

(
n + q

n

)
=

rmax∑
r=0

(
n + (q − r)/2

n

)(
n + 1

r

)
φq+r , (B5)

where rmax = min(q,n + 1), it is assumed that both q and n

are positive integers. Substituting (B5) into (3) and reversing
the order of the summation yields

α(n) =
n+1∑
r=0

∞∑
q=r

(−1)(n+q)/2

(
n + (q − r)/2

n

)(
n + 1

r

)

× wqφq+rφn+q . (B6)

Equation (B6) can be written as the product of two sums by
introducing the new index κ = (q − r)/2, resulting in

α(n) =
[∑

r

(−1)(n+r)/2

(
n + 1

r

)
wrφn+r

]

×
[∑

κ

(−1)κ
(

n + κ

n

)
w2κ

]
. (B7)

Recognizing that the second term in Eq. (B7) can be written
as (1 + w2)−n−1, we can write the coefficients as

α(n)(w) = 1

(1 + w2)n+1

n∑
r=0

(−1)(n+r)/2

(
n + 1

r

)
wrφn+r .

(B8)

Each of the wires contributes to all of the coefficients.
Contributions to the magnetic field with definite parity can be
created using pairs of wires. A pair of wires will be located at
±w. If the current is running in the same (opposite) direction,
only even (odd) terms will contribute to the potential. For a
pair of wires, the coefficients will be larger by a factor of 2,
i.e., c(n) = 2α(n).
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