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Observation of a spinning top in a Bose-Einstein condensate
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Boundaries strongly affect the behavior of quantized vortices in Bose-Einstein condensates, a phenomenon
particularly evident in elongated cigar-shaped traps where vortices tend to orient along a short direction to
minimize energy. Remarkably, contributions to the angular momentum of these vortices are tightly confined
to the region surrounding the core, in stark contrast to untrapped condensates where all atoms contribute h̄.
We develop a theoretical model and use this, in combination with numerical simulations, to show that such
localized vortices precess in a manner analogous to that of a classical spinning top. We experimentally verify
this spinning-top behavior with our real-time imaging technique that allows for the tracking of position and
orientation of vortices as they dynamically evolve. Finally, we perform an in-depth numerical investigation of
our real-time expansion and imaging method, with the aim of guiding future experimental implementation as
well as outlining directions for its improvement.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) are ideally suited for
the study of quantum vortices, owning to their purity and
high degree of tunability [1], and this inherent flexibility has
inspired experimental and theoretical works in a wide variety
of settings. Vortex lattices provide the fundamental means for
bulk superfluid flow in rotating BECs [2–5] while, on the
other hand, vortices also lie at the heart of quantum turbulence
in nonequilibrium systems [6–11]. Boundaries play a central
role, and when a vortex line pierces a condensate’s surface
it does so at an angle perpendicular to it. When a vortex is
positioned off center, it tends to orbit around the condensate
center at an increasing frequency as it spirals outward due to
dissipation [12–14]. Under the influence of a pancake-shaped
trapping potential, vortices tend to minimize their energy by
aligning along the short direction and, at finite temperature,
the vortex-unbinding Berezinskii-Kosterlitz-Thouless phase
transition was studied [15–20]. In three dimensions, in addition
to vortex lines [21,22], vortices can fold to create rings [23–28]
and even more exotic structures like hopfions [29–31] and
Chladni solitons [32]. Spiraling undulations of the cores,
known as Kelvin waves, are responsible for the so-called
Kelvin-wave cascade [6,7].

In three-dimensional (3D) cigar-shaped traps the most
stable defect is the so-called solitonic vortex, a short vortex
line that pierces the condensate through its side [26,33–36].
While they are indeed vortices, solitonic vortices possess some
solitonic characteristics such as being more localized and, on
the coarse-grain scale, causing a π phase jump between each
end of the cigar, which results in a planar density depletion
after expansion [37]. Solitonic vortices, which were recently
realized in experiments with bosons [26,38] and fermions [39],
tend to be long lived and orbit about the condensate center on
an elliptical path, along which the core remains surrounded by
a roughly constant density.
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We experimentally produce solitonic vortices in cigar-
shaped traps that are inherited from the condensate formation
process, due to the Kibble-Zurek mechanism [40,41] (also
see [42–48]). A BEC is formed by a cooling quench across
the transition temperature, where a symmetry-breaking phase
transition occurs. If the quench is fast enough, distant regions
of the system do not have sufficient time to communicate and
hence they randomly develop order parameters disparate from
one other. Defects, such as dark solitons or quantized vortices,
then become trapped at the boundaries between such regions.
With an appropriate imaging technique, we track the axial
position and the orientation of the vortex lines that remain in
our BECs, as remnants of the Kibble-Zurek mechanism and
the subsequent postquench dynamics.

Some of these vortices exhibit a peculiar rotation of their
core around the long axis of the trap as depicted in Fig. 1(a). In
this work we show that such a rotation is caused by a tilt of the
vortex line out of the radial plane and towards the symmetry
axis, as shown in Fig. 1(b); the tilt implies an increase of
the vortex line length, with a consequent energy cost and an
induced torque. The torque produces the precession of the
vortex around the axial direction, in a manner analogous to
a classical spinning top. The analogy works well because the
solitonic vortex is a localized object, in contrast to regular 3D
vortices.

We verify this spinning-top behavior by performing numer-
ical simulations, using the Gross-Pitaevskii equation (GPE).
We find that a solution of the GPE exists corresponding to a
tilted vortex, which is stationary in a reference frame rotating
around the long axis of the trap. We then use such a stationary
state as an input of real-time Gross-Pitaevskii simulations
in the nonrotating BEC and we observe that the vortex line
keeps rotating at a constant angular velocity. We use the
GPE also to simulate the extraction and expansion of atoms
as performed in the experiments, in order to reproduce our
minimally destructive imaging scheme that is able to track the
orientation and position of the spinning vortices in real time.

The paper is structured as follows. In Sec. II A we present
our spinning-top theory for the solitonic vortex. In Sec. II B
we outline our numerical approach for simulating real-time
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FIG. 1. Illustration of solitonic vortex precession. The shaded
region represents the isosurface at half the peak density of the
condensate, while the green lines indicate the vortex core. (a) Example
of precession around the x axis by a quarter of a period, changing
from a vertical to a horizontal orientation. On this scale the axial tilt
is too small to be visible. (b) Condensate segment containing a tilted
solitonic vortex whose core lies in the y = 0 plane with a tilt angle θ

into the long (x) axis of the trap [the tilt angle is larger here than for
the vortex in (a)]. The dashed line is a vertical reference. The vortex
experiences a torque τ that acts to reduce the core length, i.e., by
attempting to reduce θ . An arrow indicating the direction of τ and
arrows for the directions of the angular momentum of the vortex L and
precession � are shown. The senses of the vortex and the precession
are indicated by the bottom and top blue arrows, respectively.

dynamics of 3D cigar-shaped condensates. We also explain
how to obtain solitonic vortex initial states for our precession
simulations. The focus of Sec. III A is the comparison of our
spinning-top model with our numerical results; in particular,
we calculate the precession frequency versus the axial tilt angle
θ [see Fig. 1(b) for the definition of θ ]. In Sec. III B we outline
our experimental extraction procedure and provide details for
how this is numerically simulated. Section III C presents our
experimental observations of solitonic vortex spinning tops,
along with their numerical counterpart for comparison. We
also discuss our extraction and imaging scheme and suggest
directions for its improvement. We conclude in Sec. IV.

II. FORMALISM

A. Theory of the BEC spinning top

In contrast to a vortex in an untrapped system, the solitonic
vortex is a highly localized object. This local character is what
allows for a close analogy with the classical spinning top and
serves as the basis for our analytic approach.

For an isolated straight vortex line in an untrapped con-
densate, each atom contributes h̄ to the angular momentum
regardless of the distance from the core. Consequently, the
angular momentum per unit length rapidly diverges with
increasing system size. Realistic trapped systems, however,
offer qualitative differences: Close boundaries in anisotropic
traps act to restrict the superfluid flow, which limits the fraction
of atoms that contribute to the angular momentum to be only
those in the vicinity of the core. A solitonic vortex in a
cigar-shaped condensate is an excellent example, and Figs. 2(c)
and 2(d) show that the dominant contributions to the angular
momentum are tightly localized about the core. Furthermore,
as can be seen in Figs. 2(a) and 2(b), the kinetic energy density
is also localized about the core.

One way for a vortex to decrease its energy is for its core
length to shorten. It follows, then, that a solitonic vortex that
is tilted by an angle θ into the long axis of the trap, as shown
in Fig. 1(b), experiences a restoring torque that acts to reduce
θ . The torque τ modifies the angular momentum L according
to

τ = dL
dt

= � × L, (1)

causing a precession � about the x axis, as illustrated in
Fig. 1. Note that we assume that the angular momentum
associated with the precession is much smaller than the
angular momentum of the vortex itself. The angular precession
frequency, in radians per second, is then given by

� ≡ |�| = τ

L cos θ
, (2)

where τ = |τ | and L = |L|.
The torque τ can be calculated as follows. The energy of

an untilted solitonic vortex in a highly elongated condensate
(ω⊥ � ωx for radial and axial harmonic trapping frequencies,
respectively) has been calculated [39,49], to logarithmic
accuracy, to be

E0 = 4

3

πn0h̄
2R⊥

m
ln

(
R⊥
ξ

)
, (3)

where ξ = h̄/
√

2mμ is the healing length, R⊥ = √
2μ/mω2

⊥ is
the Thomas-Fermi radius in the tight-confinement direction,
n0 is the peak density, and m is the mass. Tilting the solitonic
vortex so that the core develops a nonzero axial (x) component,
as shown in Fig. 1(b), increases its energy. To lowest order in
θ , this is described by E = E0/ cos θ , which produces a torque
of strength

τ = dE

dθ
= 4

3
AE

πn0h̄
2R⊥

m
ln

(
R⊥
ξ

)
sin θ

cos2 θ
. (4)

The constant AE , to be determined numerically by solving
the GPE, is a correction factor to Eq. (3) and is expected to
be approximately unity. Its purpose is a way to both quantify
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FIG. 2. (a) and (b) Kinetic energy and (c) and (d) angular momentum density of a solitonic-vortex stationary state in a nonrotating BEC. The
vortex core is aligned along the z axis and we consider both parallel and perpendicular slices. Due to symmetry, only the z component gives a
nonzero contribution to the total angular momentum and here we plot its real part, i.e., Lz(x) = Re{ψ∗(x)L̂zψ(x)}, where L̂z = h̄/i(x∂y − y∂x).
The white lines denote where the Thomas-Fermi density is expected to vanish. These data are produced by a GPE simulation of 8 × 105 20Na
atoms with ω⊥/ωz = 10 and ω⊥/2π = 92 Hz, which gives μ/h̄ω⊥ = 9.72.

the accuracy of Eq. (3) for realistic chemical potentials and
3D trapping and improve the value of τ for the prediction
of the precession frequency given by Eq. (2). For the
regime considered in our simulations (i.e., μ/h̄ω⊥ = 9.72 and
ω⊥/ωx = 10) we find AE = 0.944, which is indeed close to
unity.

As shown in Figs. 2(c) and 2(d), the atoms contributing
to the angular momentum are predominantly confined to the
vicinity of the core, within a radius R⊥. If each of these atoms
contributes approximately h̄, then this gives a total angular
momentum

L = ALπR3
⊥n0h̄, (5)

where AL is some constant of order unity. We also calculate
this numerically and find that for the regime of our simulations
AL = 0.995. Finally, by substituting Eqs. (4) and (5) into
Eq. (2), we obtain a prediction for the precession frequency

�A

ω⊥
= AE

AL

[
2 ln(2μ̃)

3μ̃

]
sin θ

cos3 θ
(6)

≈ AE

AL

[
2 ln(2μ̃)

3μ̃

]
θ, (7)

which is a function of the tilt angle θ and the dimensionless
chemical potential μ̃ = μ/h̄ω⊥.

B. Numerics

Our analytic predictions are supported by full numerical
simulations of the time-dependent GPE [50]

ih̄
∂ψ(x)

∂t
=

[
− h̄2

2m
∇2 + V (x) + g|ψ(x)|2

]
ψ(x), (8)

where interactions are characterized by g = 4πh̄2as/m, with
as the s-wave scattering length. We consider a 3D harmonic
trapping potential

V (x) = 1
2mω2

xx
2 + 1

2mω2
yy

2 + 1
2mω2

zz
2 (9)

that is cylindrically symmetric and elongated in the x direction,
i.e., ωx 	 ωy,z = ω⊥.

Initial states, for subsequent precession dynamics, are
created by making use of the rotating-trap GPE [50–52]

μψ(x) =
[
− h̄2

2m
∇2 + V (x) + g|ψ(x)|2 − �trL̂x

]
ψ(x),

(10)

where �tr is the trap-rotation frequency and L̂x = h̄/i(y∂z −
z∂y), so that the axis of rotation is coincident with the long (x)
axis. The procedure begins by imprinting an untilted solitonic
vortex onto the ground state of the GPE [Eq. (8)]. A tilted
solitonic-vortex stationary state is then obtained by evolving
this state according to Eq. (10) with imaginary-time evolution;
the adjustment of �tr acts as a control knob for the tilt
angle θ .

For the purpose of investigating the in-trap dynamics of
precessing solitonic vortices we consider N = 8 × 105 23Na
atoms in a cigar-shaped trap, having ω⊥ = 10ωx . The scat-
tering length is 54.54(20)a0, for Bohr radius a0 [53], and the
radial trapping frequency is given by ω⊥/2π = 92 Hz, which
then corresponds to μ/h̄ω⊥ = 9.72, a system well within the
Thomas-Fermi regime. Time propagation is performed with a
fourth-order Runge-Kutta integration method and a time step
size of 1.7 μs. The 3D numerical grid for the simulation of
in-trap dynamics has size {Lx,Ly,Lz} = {229,34.9,34.9} μm
and there are {Nx,Ny,Nz} = {600,60,60} points in the respec-
tive directions. The grid has linear spacing and we employ fast
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FIG. 3. Precession frequency versus tilt angle for a solitonic
vortex. Full numerical results (pluses) and the analytic prediction �A

(solid line) provided by Eq. (7) are displayed. The red dashed line is a
straight line to guide the eye, having a slope that matches the first two
numerical data points. Note that the chemical potential used in Eq. (7)
was chosen to match that of the numerical simulations. Incidentally,
the difference in chemical potential due to the presence or absence
of a vortex has no discernible effect on the results presented here.
For Eq. (7) we use the numerically determined adjustment factors
AE = 0.944 and AL = 0.995 obtained from the GPE (see the main
text). The parameters are the same as in Fig. 2.

Fourier transforms to evaluate the kinetic energy terms at each
time step.

III. RESULTS

A. In-trap behavior: Numerics and analytics

Recall from Fig. 1(b) that a solitonic vortex that is tilted
into the long (x) axis of the trap will experience a torque
and precess about this axis without changing its shape; in
this section we numerically investigate how the precession
frequency � depends on the tilt angle θ . In Sec. II B we outlined
how to construct tilted solitonic vortex states by solving the
rotating-trap GPE [Eq. (10)] and using its stationary states.
It is a relatively straightforward extension to turn off the trap
rotation and then to evolve these initial states in real time, i.e.,
by solving Eq. (8). In fact, the resulting real-time precession
frequencies � were compared with the corresponding values
of �tr, used for initial state preparation, as a means to check
the convergence. The numerical data are presented in Fig. 3
as pluses. As expected from our analytic model [Eq. (7)],
for small tilt angles the precession frequency exhibits a
linear dependence, although, remarkably, this nearly linear
relationship extends up to around θ = 0.6 rad. The agreement
with the analytic prediction given by Eq. (7) (solid line) is also
quantitatively reasonable, with the analytic prediction being
around 27% smaller. It should be noted that this discrepancy
is not entirely surprising given that the system is not a rigid
body and, as the vortex tilts, the superfluid flow has to contend
with the anisotropic boundary.
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FIG. 4. (a) Vortex-core profiles of rotating-trap stationary states
for a selection of rotation frequencies, each separated by 1 Hz,
from � = 0.5 to 15.5 Hz. The thick red line marks the initial state
used for the real-time precession dynamics shown in Fig. 6(a). The
dashed lines mark where the Thomas-Fermi approximation predicts
the density to vanish. (b) Same vortex-core profiles collapse onto a
single curve (black solid lines) when the x-axis coordinates of each
vortex are rescaled by its central slope dz/dx = 1/ tan θ . The thick
blue curve is a sine-function fit (see the text), whereas the dashed red
line is a straight line, fitted to a central slope, to guide the eye. The
parameters are the same as in Fig. 2.

Next we investigate how the shape of a tilted solitonic
vortex depends on a range of precession frequencies, from
�/2π = 0.5 to 15.5 Hz, in Fig. 4(a). The precession phases
are chosen such that the cores lie exclusively in the y = 0
plane; incidentally, these were also used as initial states for
the dynamical simulations displayed in Fig. 3. Remarkably,
when the x axis is multiplied by the central slope of the
corresponding vortex core, i.e., x → x/ tan θ , all profiles
neatly collapse onto a single curve as shown in Fig. 4(b).
The tendency for a vortex line to exit its condensate at an
angle perpendicular to the surface [54] suggests that the most
natural deformation, for a tilted (θ > 0) solitonic vortex, is a
sine function

x = D sin(kz), (11)
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with k = π/2R⊥ and amplitude D. It is worth noting that
this deformation is analogous to the lowest Kelvin mode for
a vortex of length 2R⊥, but with the distinction that a Kelvin
mode in a uniform superfluid is a helix whereas the states
considered here lie in a plane. If one fits Eq. (11) to the profiles
in Fig. 4, one finds a value of k slightly smaller than expected,
consistent with the fact that the density is not quite zero in the
region |z| > R⊥, where it vanishes smoothly. In detail, for the
condensate in Fig. 4, the chemical potential is μ = 9.72h̄ω⊥,
which corresponds to a transverse Thomas-Fermi radius R⊥ =
4.41a⊥, where a⊥ = √

h̄/mω⊥. The analytic Thomas-Fermi
prediction is then π/2R⊥ = 0.36/a⊥, while a best fit to the
GPE data gives k = 0.30/a⊥.

Single bent vortices were studied in [22,55–60] for BECs in
rotating traps. On the one hand, the so-called S-shape vortices
in cigar-shaped condensates with a fast trap rotation about the
long axis [22,55,56] can be seen as the high-�tr counterpart
of our tilted solitonic vortices. In fact, for large �tr, transverse
vortices become so stretched that they develop long straight
portions, aligned parallel to the trap’s long axis, hence losing
their solitonic-vortex character. Eventually, as the trap rotation
speed increases further, such a vortex continuously evolves
to become a perfectly straight line, coaxial with the trap’s
long axis. Furthermore, the cigar-shaped trap of [55] was not
symmetric about the trap’s long axis. This means that a vortex
stationary state in the rotating frame would not simply precess
if evolved in real time with the trap’s rotation switched off.
On the other hand, in the extremely dilute limit where kinetic
energy dominates over interaction energy, Ref. [60] found that
instead of a sine-shaped core the tilted (θ > 0) solitonic vortex
remains as an almost rectilinear line. In contrast, our BECs are
not dilute, i.e., they are well within the Thomas-Fermi limit,
and we consider an axially symmetric nonrotating trap with
slowly precessing solitonic vortices.

B. Extraction procedure

In our experiments we implement forced evaporation
to produce sodium BECs of around 2 × 107 atoms in the
same cigar-shaped traps as used for our numerics, i.e., with
ω⊥ = 10ωx and ω⊥/2π = 92 Hz. A detailed description of
our experimental procedure can be found in Refs. [61,62],
while here we highlight the relevant points. The speed of the
temperature quench is controlled such that a given condensate
typically inherits one or a few solitonic vortices via the
Kibble-Zurek mechanism [40,41,44–48]. For the purpose of
investigating vortex dynamics in real time we utilize an
imaging scheme, also presented in Ref. [61], that periodically
probes the condensate in a minimally invasive manner [45,63].
A small fraction, approximately 1%, is extracted every 12 ms
and after expansion this is imaged, leaving the trapped
condensate otherwise intact. The extraction is performed by
transferring atoms from the trapped |F = 1,mF = −1〉 state
to the untrapped |1,0〉 state using a radio-frequency field.
Since only one component experiences the magnetic trap,
the energy difference (and hence the resonance condition)
between the two states is position dependent and enables us to
selectively address different spatial regions of the condensate.
The gravitational sag, of 30 μm in the z direction, is larger
than the condensate radius and this allows us to linearly sweep

the radio-frequency field to produce a single resonance front
that travels from top to bottom. This sweep of the extraction
front has the effect of compressing the extracted portion in
the vertical direction and enhancing self-interference effects,
which aids with the gathering of in situ information about
the position and orientation of the solitonic vortices. As the
extracted fraction expands it also falls under gravity while
interacting significantly with the trapped condensate for about
3 ms, after which they become spatially separated. Finally,
following a 13-ms time of flight (TOF), the extracted portion
is imaged.

To better understand how the expansion images from the
above procedure relate to the in situ positions and orientations
of the vortices, we perform full numerical simulations using
the time-dependent GPE [Eq. (8)]. The interactions between
trapped atoms, and between untrapped and trapped atoms, are
of the same strength and are characterized by the scattering
length 54.54(20)a0; the subdominant interactions between
extracted atoms have a scattering length of 52.66(40)a0 [53].
On the one hand, the expansion dynamics is relatively fast
and this allows us to treat the in-trap vortex positions as fixed
during the extraction sweep. On the other hand, the global
phase of the trapped condensate continues to evolve and it
turns out to be crucial to account for this during the extraction.

As was the case in Sec. II B, the in-trap part of this simula-
tion treats N = 8 × 105 sodium atoms in a harmonic trap with
the same confinement parameters as for the experiment. The
discrepancy of atom number between theory and experiment
corresponds to a chemical potential difference of a factor of
3 and hence Thomas-Fermi radii that differ by a factor of√

3. It is not feasible for us to simulate the full experimental
atom number since, as a reference, producing the results in this
paper already consumed around four weeks of computer time
on 100 cores. However, due to the findings in Ref. [61] and the
comparisons between theory and experiment in this paper, we
expect this discrepancy not to be of qualitative importance. To
account for the different Thomas-Fermi radii between theory
and experiment, when optimizing the vertical compression
of the extracted portion, the numerical extraction sweep is
12 kHz/ms, while it is 10 kHz/ms for the experiment. The
numerical results that follow assume a 10-ms TOF before
imaging the extracted fraction (cf. 13 ms for the experiment);
we have numerically checked that this results in only minor
differences. While the creation of our initial states is described
in Sec. II B, during the course of the expansion we interpolate
and enlarge the grid such that the one used for the final part
of the expansion has size {Lx,Ly,Lz} = {229,139,109} μm
and {Nx,Ny,Nz} = {600,240,500} points, respectively. We
have checked that all results presented here are numerically
converged to ∼1% or better.

C. Extraction results: Experiments and numerics

Numerical simulations relating the in situ vortex orienta-
tions to the corresponding expanded extractions are shown
in Fig. 5 for a vertical (left) and a horizontal (right) vortex.
The compression in the vertical (z) direction, evident in
Figs. 5(c) and 5(d), is remarkable given that this direction
would normally see the greatest expansion if the extraction had
instead been uniform (not swept). By considering a top-down
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FIG. 5. Simulation of expansion and image processing for a vertical (left) and a horizontal vortex (right). The directions of superfluid flow
are indicated by the semicircle arrows. (a) and (b) In situ density isosurfaces at half of the peak density. (c)–(f) Two-dimensional column
densities of the extracted portions in the x-z′ and x-y planes after a 10-ms TOF. Note that z′ = z + z0, for constant z0, is used to account for
the displacement due to gravity, which acts in the −z direction. (g) and (h) Integrated 1D densities n1D(x) = ∫ ∫ |ψ(x)|2dy dz plotted along
with their polynomial fits fpoly, the residual nres = n1D − fpoly, and the fit to the residual ffit [Eq. (12)]. For the vertical vortex on the left, fitting
Eq. (12) gives {δ,xν} = {0,0}, while for the horizontal vortex on the right {δ,xν} = {−1.35, − 3.5 μm}. For the in-trap part of the simulation,
the parameters are the same as in Fig. 2; details of the expansion are provided in the text.

view, i.e., the x-y plane in Figs. 5(e) and 5(f), the extracted
fraction is seen to be framed by a high-density elliptical border
that in turn surrounds an ellipse of low density. This effect is
due to the interactions with the trapped condensate and exists
even in the absence of any vortex.

Importantly, though, by contrasting the 2D extracted frac-
tions for the two different vortex orientations, additional re-
gions of constructive and destructive interference are apparent.
The physical processes involved in the creation of these vortex-
induced asymmetries are complicated, but two important
contributions are as follows. (i) The vortical superfluid velocity
is greatest when forced to flow near a boundary and, after

expansion, such a region of enhanced velocity tends to leave
behind a hole and an adjacent bump [37,38]. This mechanism is
important for, e.g., a vertical vortex, as can be seen in Fig. 5(e),
where two high-density bumps are positioned diagonally about
the core. (ii) During an extraction sweep, the atoms that are
released early experience a drop in potential since they no
longer experience the trap. The result is that the wave-function
phase evolves faster for those atoms that remain trapped and
the eventual interference between the atoms released early
and those released late causes destructive or constructive
interference depending on the in situ phase pattern about the
core. This process was important for the expanded horizontal
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vortex, shown in Figs. 5(d) and 5(f), where constructive
interference can be seen on the −x side, but not the +x side.

Since each experiment periodically images a given con-
densate, it is useful to process the extraction images to
determine parameters that keep track of the in situ vortices.
The first step is to integrate either column density over the
remaining radial direction to obtain the 1D density n1D(x) =∫ ∫ |ψ(x)|2dy dz, as plotted in Figs. 5(g) and 5(h). A 1D
residual density nres(x) = n1D(x) − fpoly(x) is then obtained
by subtracting a fourth-order polynomial fit fpoly(x). The
residual is subsequently fitted by the function

ffit(x) = A cos[B(x − xν) + δ]

cosh2[(x − xν)/C]
(12)

for fit parameters A < 0, B, δ, C, and xν . It follows, then,
that xν provides a measure of the vortex position along the
long axis while the phase δ furnishes a means of tracking its
orientation. For the cases considered in Fig. 5 we find that
for the vertical vortex {δ,xν} = {0,0}, while for the horizontal
vortex {δ,xν} = {−1.35, − 3.5 μm}. Note that for the latter
case, the value of xν slightly misrepresents the position of the
vortex, which lies in the x = 0 plane. Since a horizontal vortex
that is oriented in the −y direction has a phase δ = −1.35,
then, by symmetry, a horizontal vortex of opposite sense must
have δ = +1.35. An important point is that although this fitting
procedure can ascertain that a vortex is vertical, it cannot
determine its sense. However, Fig. 5(e) demonstrates that the
sense of a vertical vortex can easily be attained from top-down
images in the x-y plane if one notes the locations of the
diagonal high-density bumps about the core. Furthermore, our
simulations (not shown here) illustrate that adding a real-time
imaging capability along the vertical direction, which was not
feasible in the present experiments, would clearly reveal the
y position of off-center vertical vortex cores [see Fig. 5(e) for
comparison].

A numerical calculation of the 1D residual nres(x), as
a function of time, is presented for a precessing vortex in
Fig. 6(a1). The central (red) color represents a negative value,
while the outer (green) color is positive. The initial state for
this simulation, highlighted as the thick red line in Fig. 4(a),
evolves according to the time-dependent GPE [Eq. (8)]. As the
vortex precesses, the wave function is periodically saved and
each of these is then used to initiate an extraction simulation
to produce a single time slice of Fig. 6(a). This particular
vortex has a tilt of θ = 0.22 rad and a precession frequency
�/2π = 5.5 Hz, as can be seen from Fig. 3. The fitted phase
δ [see Eq. (12)], shown in Fig. 6(a2), is a smoothly varying
function of time that maps to the in situ orientation of the
precessing vortex.

We present experimental evidence for a precessing solitonic
vortex in Fig. 6(b). This has a precession frequency of
approximately 5 Hz, which is very similar to that of our
numerical simulation in Fig. 6(a). Since the experiment
has a chemical potential approximately 3 times larger than
in our simulations, the scaling of our analytic model (7)
suggests that the tilt angle be approximately 2 times larger
for this experiment, i.e., θ ∼ 0.4 rad. As was the case for
the simulation, in Fig. 6(b2) the residual’s phase displays
an oscillatory behavior. However, a difference here is that δ

now has an asymmetry, with some saturation near −π/2. A
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FIG. 6. (a1)–(d1) Doubly integrated 1D residual densities nres(x)
after a partial extraction and expansion and (a2)–(d2) the corre-
sponding phase of their fits δ, as a function of time. The central
(red) color is negative while the outer (green) color is positive. (a)
Numerical extractions from an in-trap simulation that used the initial
state marked by the thick red line in Fig. 4(a), having a precession
frequency of �/2π = 5.5 Hz. (b)–(d) Selection of experimental runs.
The parameters are described in Sec. III B.

possible explanation for this bias is a slight tilt (∼1 degree) of
the imaging camera, which looks down the y axis, effectively
rotating the x-z plane relative to the direction of gravity. To help
visualize this, consider the simulation in Fig. 5(d), where the
density minimum of the vortex core exhibits a tilted, relatively
narrow canyon in the vertical direction. The sensitivity to
a camera tilt is expected to be even more pronounced in
the regime of the experiment, for which the healing length
is smaller, the Thomas-Fermi radii are larger, and the TOF
is longer. Two further experimental examples of precessing
vortices are presented in Figs. 6(c) and 6(d). In addition to
the precession evidenced by the changing order of colors (and
the corresponding oscillations of δ), these vortices orbit about
the BEC’s origin, manifested here as oscillations of their x

coordinate, as they follow contours of constant Thomas-Fermi
density [12]. We note that it is not possible to directly obtain a
vortex’s axial tilt from our TOF images, due to complications
from the interactions between the extracted portion and the
trapped condensate, as well as interference effects within the
extracted portion, thus prohibiting a quantitative comparison
with our theoretical prediction (7) for the precession frequency
as a function of the tilt angle.
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FIG. 7. (a) Numerically determined residual phase δ after a 10-ms
partial expansion as a function of in situ vortex orientation. Solid
curves are for untilted (strictly in the x = 0 plane) vortices, while the
pluses are for the tilted precessing vortex already shown in Fig. 6(a).
The middle curve is for a vortex that runs through the origin, while the
others are for off-center vortices. The three dashed lines mark when
the untilted vortices are oriented along the vertical (−z), horizontal
(+y), and vertical (+z) directions and these correspond to the exam-
ples in (b)–(d) that illustrate the positions of the off-center vortices.
(b)–(d) Cuts through the x = 0 plane illustrating the positions of the
vortex cores in (a). Density isocontours are at 10%, 50%, and 90% of
the peak density. The arrows indicate the sense of vorticity. Note that
the curves in (a) and in (b)–(d) have a matching color code to guide
the eye.

An intriguing question is how the relationship between
the residual and vortex orientation is modified for off-center
vortices, i.e., those that do not pass through the x axis. The
residual phase versus the in situ orientation angle is plotted for
various off-center vortices in Fig. 7(a). These untilted vortices,
which lie in the x = 0 plane, are represented as solid lines
that vary in color from black to light blue (gray). To aid
with their visualization, the positions of these vortex cores
are plotted for three angles (the three vertical dashed lines in
the main plot) in Figs. 7(b)–7(d), with a matching color code.
In the main plot, the stationary-state vortex (the straight line
in the lower panels) has a δ that is symmetric about zero, as
expected. For comparison, we collapse the precessing vortex
data from Fig. 6(a2) onto the main plot of Fig. 7 and mark
these with pluses. The behavior is fairly similar to that of the
stationary-state vortex, indicating that the axial tilt (θ > 0)

itself does not have a significant effect on the residual. The
behavior changes radically, however, if a vortex is off center.
In particular, the values of δ become asymmetric and tend
to become either more negative or positive depending on
the sense of the vortex relative to its closest boundary. For
the most-off-center vortices, for example, the one indicated
by the black line, changing the orientation angle has little effect
on δ. Consequently, as a vortex becomes more off center, δ is
no longer a useful indictor of a vortex’s orientation, but instead
conveys the sense of the vortex relative to its closest boundary.
As a final note, we can deduce that this off-center-vortex effect
is not responsible for the δ < 0 asymmetry in Fig. 6(b2). This
is because such an off-center vortex would also orbit about
the condensate center [12], which would be evident as large
oscillations of the vortex position along the x axis, contrary to
observations in Fig. 6(b1).

IV. CONCLUSION

Solitonic vortices are highly localized objects, in terms
of both their energy and angular momentum densities, in
stark contrast to vortices of untrapped systems. With this
as motivation, we developed a theoretical model that treats
solitonic vortices on a footing similar to classical spinning tops.
Using our minimally destructive imaging scheme, we experi-
mentally observed this spinning-top behavior by periodically
imaging a given condensate in real time. We performed 3D
Gross-Pitaevskii simulations to investigate how the precession
frequency varies as a function of the axial tilt angle and com-
parisons of these with our analytic prediction further supported
our spinning-top model, while also quantifying its limitations.
Finally, we carried out Gross-Pitaevskii simulations of our
experimental extraction and imaging scheme. From these we
suggested improvements, such as the addition of real-time
imaging capability along the vertical (z) direction to keep
track of the sense and radial position of vortices when they are
vertical. Our simulations also demonstrated how to interpret
expansion images when vortices are off center, i.e., when they
do not pass through the x axis.

An interesting question arises regarding the role of a trap
asymmetry in the radial plane or, in other words, the squashing
of the cigar-shaped trap along one of its short directions. For
small radial asymmetries the vortex is still expected to precess
about the trap’s long axis, albeit with a small periodic change
of the tilt angle to preserve its length and hence conserve
its energy. On the other hand, vortex dynamics for a highly
squashed cigar becomes dominated by the tight direction, a
situation for which a tilted vortex exhibits a precession about
this new axis [64]. The nature of the transition between these
two orthogonal precession axes, as a function of the radial
asymmetry, presents an intriguing consideration for future
research.
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