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Shear viscosity in an anisotropic unitary Fermi gas
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We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic
confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic
shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this
experimental setup could mimic some features of anisotropic geometries that have recently been studied for
strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de
Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear
potential, certain viscosity components can be made much smaller than the entropy density, parametrically
violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a
Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary
Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated
to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an
anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction
in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In
extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below
the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.
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I. INTRODUCTION

The calculation of the transport properties of strongly
coupled quantum theories is a challenging puzzle of interest
to theorists working on a wide range of systems, including
ultracold Fermi gases at unitarity [1,2], heavy ion collisions
[1,3], and neutron stars [4,5].

At strong coupling, perturbative expansions fail to give
reliable results. Sophisticated Monte Carlo techniques which
are used to study such theories nonperturbatively by evaluating
path integrals in imaginary time, while very successful for
calculating equilibrium properties (in the Fermi gas context,
see Ref. [6] and references therein; for heavy ion collisions, see
Ref. [7] and references therein), cannot be easily generalized
to study transport (in the Fermi gas context, see Refs. [8,9];
for heavy ion collisions, see Ref. [10] and references therein).

A class of strongly interacting quantum field theories in d

dimensions in some limits can be related to weakly coupled
theories of gravity (called their dual) in (d + 1) dimensions.
This correspondence [11] allows us to compute dynamical
properties of these theories. These computations have provided
many insights into the transport properties of strongly coupled
field theories.

In certain limits (large t’Hooft coupling λ and large number
of “colors” Nc), one can show that for all isotropic theories
in 3 + 1 dimensions which admit gravity duals, the ratio of
shear viscosity η to entropy density s is η

s
= 1

4π
[12,13]

(we are working in units with h̄ = 1 and kB = 1). Since
weakly coupled theories typically have much larger η

s
, it was

conjectured by Kovtun, Son, and Starinets (KSS) that η

s
is

bounded from below by 1/(4π ). Subsequently it was found
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that finite λ corrections can drive η

s
below the KSS bound

[14–19].
While the theories describing ultracold Fermi gases and

heavy ion collisions do not have known gravitational duals
and controlled calculations are difficult, beautiful experiments
have managed to measure the value of η/s in the two systems.
The value of η/s of the quark gluon plasma created in heavy
ion collisions, required for hydrodynamic simulations to be
consistent with the experimentally measured spectrum of low
energy particles (see Ref. [20] for a review), seems to be close
to 1/(4π ). Remarkably, η/s has been measured for ultracold
fermions at unitarity for a wide range of temperatures and the
minimum value (see Refs. [21–23]) is about six times the KSS
bound.

On the other hand, the shear viscosity tensor for many
interesting systems is often anisotropic. For example, it has
been suggested that the highly anisotropic initial states in
heavy ion collisions (the direction parallel to the collision axes
is fundamentally different from the transverse directions) may
give rise to anisotropic transport properties [24]. Furthermore,
many interesting states of matter, e.g., spin density waves
and spatially modulated phases, are anisotropic. Another
possibility that we shall explore in detail in this paper is that
an externally applied field can pick a particular direction and
give rise to anisotropies in the shear viscosity. This possibility
has been explored extensively for the case of weakly coupled
theories in the presence of a background magnetic field. (See
Ref. [25] for a classic treatment, Ref. [26] for applications
to heavy ion collisions, and Ref. [27] for applications to
neutron stars.) The behavior of strongly coupled theories in
the presence of an external field is less well explored. With
this in mind, anisotropic gravitational backgrounds in field
theory have been recently studied using the AdS/CFT (anti-de
Sitter/conformal field theory correspondence) (see Refs. [28–
36]) and the behavior of the viscosity in some of these
anisotropic phases has also been analyzed (see Refs. [37–44]).

2469-9926/2017/96(5)/053601(27) 053601-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.053601


RICKMOY SAMANTA, RISHI SHARMA, AND SANDIP P. TRIVEDI PHYSICAL REVIEW A 96, 053601 (2017)

The results of Refs. [42] and [45], for example, indicate
that one may obtain parametric violations of the KSS bound
in such anisotropic scenarios. This feature arises in a wide
variety of examples and seems to be quite general. In particular,
for a spatially constant driving force which breaks rotational
invariance, it was found that by increasing the strength of
the driving force compared to the temperature, the ratio for
appropriate components of the shear viscosity to entropy
density can be made arbitrarily small, violating the KSS bound.

If this phenomenon also carries over to the unitary Fermi
gases, it may be possible to measure these small viscosities
in experiments with trapped ultracold Fermi gases. For this
purpose, it is helpful to consider traps which share the essential
features of the systems in Refs. [42,45] listed at the end of
Sec. II of this paper. The goal of this paper is to give a concrete
proposal for the trap geometry and parameters where this effect
is likely to be seen.

While typical trap potentials are harmonic [quadratic (Eq. 6)
rather than linear in the distance], by using existing results for
the thermodynamics of unitary Fermi gases, we show that
for a range of temperatures the dominant contribution to the
damping of collective modes due to viscosity arises from a
narrow region in the trap not near the center, where the trapping
potential can be approximately considered as linear. In analogy
with Refs. [42,45], it is desirable to have traps that are highly
anisotropic, which can be simulated by taking the trapping
frequencies [46] in one of the directions (say ωz) to be much
larger than the frequencies in the other directions.

We describe two hydrodynamic modes whose dissipation is
governed by the components of viscosity which are expected
to become small in the anisotropic situation considered here.
One of them is known in the literature as the scissor mode,
which has been well studied for bosonic superfluids at T = 0
theoretically [47] and has also been experimentally excited
in both bosonic [48] and fermionic [49] superfluids. The
second mode is a quasistationary solution to the hydrodynamic
equations. Particularly for the scissor mode, we show that
for experimentally reasonable values of trap parameters, the
damping rate of the mode lies within an experimentally
accessible range. It should therefore be possible to study this
mode and measure the relevant component of the viscosity and
its possible suppression.

To gain some additional understanding of how the
anisotropic system might behave, we also make a rough
estimate of the viscosity components in the presence of an
anisotropic trapping potential using the Boltzmann equation.
We find that as the anisotropy increases, due to an increase
in the trapping frequency ωz in one of the directions, some
components of the viscosity tensor decrease compared to their
value in the isotropic case.

The outline for the paper is as follows. We review the rele-
vant results [42,45] for anisotropic theories with gravitational
dual in Sec. II and summarize the essential features required
in a system to exhibit the suppression of η/s. Further details
on the gravity results is also provided in Appendix A.

Next, we consider the unitary Fermi gas in an anisotropic
harmonic trapping potential and describe the two hydrody-
namic modes which couple to the small components of the
shear viscosity tensor in Sec. III A. In Appendixes B 2 and
B 3, we show that these two hydrodynamic modes satisfy

the equations of superfluid hydrodynamics. Section III B
discusses the energy dissipation due to shear viscosity in these
two modes we have studied. In Sec. III C, we examine the
constraints on the mode amplitudes by demanding validity of
fluid mechanics, and in Sec. III D, we discuss the damping
in the outer regions of the cloud. Next, we review the
thermodynamics of the system in Sec. III E. In Sec. III F,
we give parameter values for traps (the trapping potential,
the temperature, and the chemical potential at the center of
the trap), which are tuned such that the system possesses the
required essential features, and show that by measuring the
damping rate of fluid modes (described in Sec. III A) one can
measure the shear viscosity. This section contains some of
the key results in the paper. Section IV discusses an analysis
in a weakly coupled anisotropic theory using the Boltzmann
equation. We conclude our discussion in Section V.

The solution of the Boltzmann equation used to estimate the
values of the trap potentials for which we expect the corrections
to the viscosity to be substantial is given in Appendix D. In
Appendix C, we compare the modes (discussed in Sec. III A)
with the well-known breathing modes.

II. RESULTS OF SHEAR VISCOSITY FROM GRAVITY

We briefly review results of computations of shear vis-
cosity in the gravity picture obtained by studying anisotropic
blackbranes [42], where the breaking of isotropy is due to an
externally applied force which is translationally invariant. The
simplest system discussed in Ref. [42] consists of a massless
dilaton minimally coupled to gravity and a cosmological
constant. The action is

S = 1

16πG

∫
d5x

√
g

[
R + 12� − 1

2
∂μφ∂μφ

]
, (1)

where G is Newton’s constant in five dimensions and � is a
cosmological constant. The dual field theory in the absence
of anisotropy is a (3 + 1)-dimensional conformal field theory.
The dilaton profile, linear in the spatial coordinate z

φ = ρz, (2)

explicitly breaks the symmetry to 2 + 1.
The conservation equation for the stress tensor gets modi-

fied as

∂μT μν = 〈O〉∂νφ, (3)

where O is the operator dual to the field φ. The right-hand side
arises because the varying dilaton results in a driving force on
the system. We see that a linear profile results in a constant
value for ∂νφ and thus a constant driving force.

Using AdS/CFT, one finds [42] that for a system at
temperature T (using the compact notation ηijij = ηij ), ηxz =
ηyz (which are spin 1 with respect to the surviving Lorentz
symmetry) is affected by the background dilaton. In the low
anisotropy regime (ρ/T � 1),

ηxz

s
= 1

4π
− ρ2ln2

16π3T 2
+ [6 − π2 + 54(ln2)2]ρ4

2304π5T 4

+O

[(
ρ

T

)6]
. (4)
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The correction to the zero anisotropy result, the KSS bound
ηxz

s
= 1

4π
, is proportional to (∇φ)2

T 2 where ∇φ = ρẑ is the driving
force and 1/T is the microscopic length scale in the system.

In extreme anisotropy (ρ/T � 1),

ηxz/s → (1/4π )(32π2T 2/3ρ2) (5)

and hence it becomes parametrically small [42]. But this
domain will not be physically accessible in the cold atom
systems.

In contrast, the ηxy component (which couples to a spin-2
metric perturbation) was found to be unchanged from its value
in the isotropic case, ηxy

s
= 1

4π
.

Parametric reduction of the spin-1 components of η/s has
been found for a variety of strongly coupled theories with a
gravitational dual [37,45]. Motivated by the generality of the
above results (see Ref. [45]) in the gravity side, we may hope
to find parametrically suppressed viscosities compared to the
KSS bound in systems where the following basic requirements
are met:

(1) The system is strongly interacting and in the absence
of anisotropy has a viscosity close to the KSS bound.

(2) The equations of hydrodynamics for the system ad-
mit modes sensitive to the spin-1 viscosity components as
described above and in Refs. [42,45].

(3) Sufficient anisotropy needs to be introduced in the sys-
tem (say, in the z direction with rotational symmetry preserved
along the x-y plane), such that these spin-1 components of the
viscosity, when measured in units of the entropy density, show
an experimentally measurable decreasing tendency from its
lowest value observed so far in ultracold Fermi gases.

(4) The force responsible for breaking of isotropy is
approximately spatially constant.

(5) The velocity gradients are small enough (compared to,
say, the inverse mean free path), ensuring that hydrodynamics
is the appropriate effective theory to describe the system.

In the next section (Sec. III), we explore a system of trapped
ultracold Fermi gases, chosen so as to explore anisotropic fluid
dynamics. While some of the details of this system are different
from the systems with dual gravitational theories discussed
above, it is possible to choose a set of parameters such that the
system has the five features listed above. It can therefore be
used to explore the behavior of the viscosity in the anisotropic
regime.

While gravitational duals for the ultracold Fermi gases are
not yet known and hence we cannot calculate the anisotropic
viscosity coefficients in this strongly coupled system, if the
main feature that ηxz is smaller than the KSS bound holds true
for these, one could potentially measure this phenomenon in
experiments.

III. ANISOTROPIC VISCOSITY IN TRAPPED
ANISOTROPIC FERMI GASES

Trapped ultracold Fermi gas with their scattering length
tuned to be near the unitarity limit [46,50] are strongly
interacting systems for which η/s [21–23] was measured to be
close to the KSS bound 1/(4π ). In this section, we shall explore
the properties of this system, when it is placed in an anisotropic
trap. We identify suitable hydrodynamic modes which probe
the viscosity component expected to be suppressed due to the

potential in a highly anisotropic harmonic trap and find that
for reasonable choices of parameters the five criterion referred
to above (see Sec. II) can be met in these modes. This leads
us to suggest that an anisotropic shear viscosity can arise in
such systems and appropriate components of the viscosity may
show a reduction from the isotropic values in an experimentally
accessible way.

One method [23] to measure the viscosity is by starting
with an initial state where the fluid is trapped in an anisotropic
harmonic trap. On removing the trapping potential, the fluid
experiences elliptic flow and the extent of the flow is related
to the initial anisotropy and the viscosity. The relevant bulk
viscosity of the system vanishes [51,52], which allows one to
cleanly extract the shear viscosity. Note that even though the
initial state of the fluid is anisotropic, the experiment does not
probe anisotropic shear viscosities: After the trap potential is
removed, the viscosity tensor at any point is isotropic.

An alternative technique is to measure the damping rate
of breathing modes [21,22], which is related to the loss of
energy due to the viscosity. The experiments we propose in
this paper use this alternative technique and propose to measure
the relevant component of the shear viscosity by measuring the
damping of appropriate hydrodynamic modes.

The unitary Fermi gas system we consider here shares
important features with the gravitational system described
in Sec. II. The role of a linear potential was emphasized in
Sec. II. While such a linear potential cannot arise in the trapped
fermion system we consider, we shall see below that if we
choose the velocity profile and the trap parameters carefully,
the dominant contribution to shear viscosity comes from a
region of the trap where the confining force is approximately
constant, satisfying the fourth criterion listed in Sec. II.

The system we consider consists of an ultracold Fermi gas
under harmonic confinement described by the potential

φ(r) =
∑

i

1

2
mω2

i x
2
i , (6)

where i runs over x,y,z and m denotes the mass of the
fermionic species. The trap is anisotropic if ωi’s are unequal.
For example, ωz � ωx,ωy gives rise to a pancake-like trap:
thin in the z direction. This can lead to an anisotropic shear
viscosity tensor as described in Sec. IV. The potential gradient
in the x and y directions is small in most of the trap.

This section is organized as follows. After a general
discussion, we describe the two modes of interest (referred
to as the elliptic mode and the scissor mode) in Sec. III A.
The equations of superfluid hydrodynamics are described in
Appendix B 1, following which in Appendixes B 2 and B 3,
respectively, we show that the scissor mode and the elliptic
mode satisfy these equations. The fluid flow profile in the
elliptic mode is similar to that shown in Fig. 8: a velocity in
the x direction with a gradient in the z direction. The scissor
mode is well known in the literature. In Sec. III B, we show
that the dissipation of energy in the two modes of interest is
determined by the relevant components of the viscosity tensor
(the spin-1 components described in the previous section).
In Sec. III C, we find a constraint on the magnitude of the
velocity for the two modes by demanding the validity of fluid
mechanics. The thermodynamics of the system is discussed in
Sec. III E. Finally, in Sec. III F, we bring this understanding
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FIG. 1. (Arbitrary units for coordinates) The flow profile in the
x-z plane at time t = 0 for the scissor mode, i.e., v = zx̂ + xẑ

[Eq. (9)].

together and show that for reasonable values of parameters the
required criterion listed in Sec. II can indeed be met.

A. Choice of velocity profile

Here we first describe the two modes of interest which arise
as solutions to the equations of ideal superfluid hydrodynam-
ics. Each of these modes is characterized by the superfluid
and the normal components, which we denote by vs and vn

respectively.

The first mode, which we call the elliptic mode, has vs = 0
and vn = v given by

v = eiωt (αxzx̂ + αzxẑ) (7)

with the following relations:

Elliptic mode : ω = 0,αz = −ω2
x

ω2
z

αx. (8)

The other mode of interest, denoted as the scissor mode
(see Fig. 1), has vs = vn = v given by Eq. (7) with

Scissor mode : ω =
√

ω2
x + ω2

z ,αz = αx. (9)

From the right panel in Fig. 2, we see that in the high
anisotropy limit ωz � ωx , αz → 0 for the elliptic mode, and
hence we recover a flow profile similar to that considered in
[42] (shown in Fig. 8), namely, a time independent (in the limit
of small viscosity) velocity (v ∝ zx̂) linearly increasing with
the coordinate in the direction of the gradient of the external
potential (z), pointing (x̂) in the direction perpendicular to
the gradient of the external potential (neglecting ωx , ωy ; the
gradient is in the ẑ direction). To the best of our knowledge, the
elliptic mode has not been studied in ultracold gas experiments.
The scissors mode has been studied extensively (for example,
see Refs. [47–49]).

B. Energy dissipation due to viscosity

The energy dissipated due to viscosity is given by

Ėkinetic = −1

2

∫
d3r ηijij (r)

(
∂ivj + ∂jvi − 2

3
δij ∂kvk

)2

−
∫

d3r ζ (r) (∂ivi)
2, (10)

FIG. 2. (Arbitrary units for coordinates) The flow profile in the x-z plane for the elliptic mode, i.e., v = zx̂ − xẑ [left panel, corresponding
to ωx/ωz = 1 in Eq. (8)] and v = zx̂ − 0.001xẑ [right panel, corresponding to ωx/ωz = 0.03 in Eq. (8)].
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where ηijij ≡ ηij is the relevant component of the shear
viscosity and ζ is the bulk viscosity. We note that for our chosen
velocity profiles, the bulk viscosity contribution vanishes. Also
in the traps we will consider, the temperature T is constant
throughout the trap. Hence, we also ignored contributions from
thermal conductivity.

Thus,

Ėkinetic = −
∫

d3r ηxz(r)α2
x

(
1 − ω2

x

ω2
z

)2

(11)

is the energy dissipation rate for the elliptic mode, where we
have simply written ηxzxz as ηxz.

The energy dissipated per unit cycle for the oscillatory
time-dependent scissor mode is

Ėkinetic = −2
∫

d3r ηxz(r)α2
x. (12)

C. Validity of hydrodynamics

One expects that hydrodynamics is a valid description of the
system as long as the viscous correction to the stress tensor is
small compared to its value in an ideal fluid (e.g., see Ref. [53]
or Sec. 10.3.4 in Ref. [54]).

For the elliptic mode, the contribution to the stress energy
tensor from viscosity is

ηxz
1
2 (αx + αz) ≈ ηxz

1
2 (αx), (13)

where we have assumed ωz � ωx, y and neglected the contri-
bution from αz [see Eq. (8)].

For the scissor mode, the magnitude of the contribution to
the stress energy tensor from viscosity is

ηxz
1
2 (αx + αz) = ηxz(αx), (14)

where we have αz = αx for the scissor mode.
At any point r, hydrodynamics is expected to be valid if the

viscosity contribution is smaller than the pressure P (r),

αxηxz(r) � P (r). (15)

In the outer edges of the trap the pressure becomes small
while η tends to a constant [55–58] and Eq. (15) is necessarily
violated regardless of how small αx is chosen. The contribution
of this region to the total energy loss is typically small however.
(Note that Eq. (10) cannot be used to evaluate the energy loss
if Eq. (15) is not satisfied [57].) We desire that hydrodynamics
should be a good theory in the region where the energy loss
is substantial. When we consider specific numerical values for
the parameters of the trap in Sec. III F, we will identify a point
rmax close to the edge of the trap, such that the integral Eq. (10)
receives most of its contribution for r < rmax.

We can then define αmax
x by the condition that for this

amplitude the viscosity contribution to the stress energy tensor
is equal to the pressure at the point rmax

αmax
x = P (rmax)

ηxz(rmax)
. (16)

For αx < αmax
x hydrodynamics is valid in the region of

interest. This constraint limits how large αx and consequently
Ėkinetic can be. As long as this dominates over other processes
of energy loss (interaction with the environment), this damping

can be measured. In Table III in Sec. III F, we show this
numerical limit for the traps described in that section.

D. The outer core

It has been noted that a naive application of hydrodynamics
at the outer region of the trap where the density of the atoms is
very low leads to an unphysical result. Since the shear viscosity
in the ultradilute regime has the form η ∼ (mkT )3/2 (m is the
mass, k is the Boltzmann’s constant, and T is the temperature),
the contribution from the tail (or the outer cloud) is independent
of the density, and hence is divergent [55–62]. The unphysical
result arises because in the outer part of the trap collisions
are rare and hydrodynamics breaks down. In fact, the better
approximation in this region is assuming that atom dynamics
in this ultradilute region is collisionless and hence does not
contribute significantly to damping.

Here we use a simple procedure to take this physics into
account. We only consider traps where the chemical potential
at the center is positive and cut off the damping contribution
from the outer cloud by integrating the viscosity contribution
only from the center of the trap up to rmax, which is defined
as the surface where μ − V (rmax) = T . We have checked that
changing rmax by a little (for example, by choosing a slightly
larger r0

max by using the condition μ − V (r0
max) = 0) gives

similar results for the damping rates. Similar prescriptions
have been followed previously by Refs. [22,23] (see Ref. [62]
for an overview).

One can also perform a more careful estimate of the
contribution from the outer cloud. To be concrete, let us
consider the scissor mode. We follow the procedure described
in Ref. [59] which solves the Boltzmann equation in the dilute
regime, rather than assuming that hydrodynamics is accurate in
this region. Their important result is that for the scissor mode1

the energy loss rate in the dilute regime can be written as the
integral over η divided by a suppression factor that increases
exponentially as a function of the trapping potential. More
precisely,

〈Ėkinetic〉|oc = −2α2
∫

r>rmax

d3r
η

1 + ω2τ 2
η (r)

, (17)

where in the dilute regime (or the “classical limit”)

τη(r) = 4.17

Nω̄

(
kT

h̄ω̄

)2

eV (r)/kT , (18)

and the viscosity η is given by

η = 15

32
√

π

(mkT )3/2

h̄2 . (19)

The scissor mode frequency is given by

ω =
√

ω2
x + ω2

z , (20)

and the geometric mean ω̄ = (ωxωyωz)
1
3 .

1Let us also note that the scissor mode is excited in the x-y plane
in Ref. [59]. We have taken care of this fact in our calculations and
comparisons.
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The integral Eq. (17) is convergent because of the exponen-
tial increase in the relaxation time τη(r) even if we take the
upper limit of the integral to ∞ but for the numerical evaluation
we take the upper limit of the x integration to be xmax + L, of
the y integration to be ymax + L, and of the z integration to be
zmax + L with L � |rmax|.

At the core of the trap, hydrodynamics is a good approxima-
tion (unless T � Tc where the superfluid phonons can move
out of equilibrium). This is a crucial point because Boltzmann
transport is not a valid approximation at the core where the
density of atoms is high. As we explained in the last section,
as long as αx = αz = α < αmax

x , hydrodynamics is a good
approximation and the local contribution from the viscosity
to the stress energy tensor

αη(r) (21)

is smaller than the pressure

P (r) (22)

for r < rmax. Therefore, using hydrodynamics to evaluate the
damping contribution from the core, we get

〈Ėkinetic〉|c = −2α2
∫

r<rmax

d3rη(r), (23)

where the local value of η(r) is calculated using the data
for η from Ref. [23]. The integration is performed over
x < xmax, y < ymax, and z < zmax. This approximates the
actual ellipsoidal region with a rectangular shape, but we see
that this will not change the results substantially since the
contribution from the outer cloud is small.

The amplitude decay rate is given by

� = |〈Ėkinetic〉|
2〈E〉 . (24)

〈E〉 is the total mechanical energy averaged over a cycle,

〈E〉 = 1

2

∫
d3rmn(r)|v|2(r)

= 1

2
mα2

∫
d3rmn(r)(z2 + x2), (25)

where v = αei
√

ω2
x+ω2

z t (zx̂ + xẑ). In Eq. (27), α2 cancels out
and we only need n(r), which is obtained from experiments as
explained in detail in Sec. III E.

The damping rate contribution from the outer cloud is
given by

�oc = |〈Ėkinetic〉|oc

2〈E〉 (26)

and the contribution from the core is given by

�c = |〈Ėkinetic〉|c
2〈E〉 , (27)

and the total damping rate Eq. (24) is the sum of the two.
In Table I, for the representative trap parameters which we

will be considering later, (ωz = 2π × 104 rad/s, ωx = ωy =
2π × 385 rad/s, and μ = 10 μK and T/Tc values as given in
the table), we present the comparison of the contribution to

TABLE I. Comparison of contributions to the damping rates for
the scissor mode from the core [�(c) Eq. (27)] and the outer core
[�(oc) Eq. (26)] for the trap parameters we will explore in our paper.

T �c (s−1) �oc (s−1)

4Tc/5 23.03 0.0044
2Tc/3 18.32 0.00009
4Tc/7 14.6 2.14 × 10−6

Tc/2 11.86 4.69 × 10−8

damping from the outer cloud and the core in Table. I. We see
that the damping contribution from the outer cloud is small,
especially for the low temperatures, justifying our approach.
A direct comparison using our technique (where we cut off the
integral for Ėkinetic at the point of the trap where hydrodynamics
breaks down) can only be made for the lowest temperature
(T/TF = 0.1) of Ref. [49]. Our calculations (using the trap
parameters of Ref. [49]) give a damping rate of 250 s−1,
which agrees with experiments (255 ± 40 s−1 [49]). This is a
nontrivial check of our methodology and gives us confidence
in our approach in this regime.

E. Thermodynamics

The evaluation of the energy loss from Eqs. (11) and (12)
requires the viscosity η as a function of the position r in the
trap. In the highly anisotropic traps we are considering, the
viscosity is actually a tensor and the different components of
the shear viscosity can acquire different values, in contrast
with the isotropic case. For the modes of interest, Eq. (7), we
need to determine the behavior of the component (ηxz).

To get a first estimate of the region of the trap which gives
a dominant contribution to the integral in Eq. (10), we use the
local density approximation (LDA) and estimate the resulting
viscosity. More specifically, we assume in this approximation
that thermodynamic variables like the number density n and
the entropy density s depend only on the local value of T and μ.
The viscosity is also then taken to be given by these local values
of T ,μ, neglecting any effects of anisotropy which could make
the different components of the tensor take different values.

The effect of anisotropy on the viscosity tensor are
estimated using Eq. (65), in a following section (Sec. IV).
While we cannot reliably compute them, the key point of our
analysis here is that they may be experimentally measured and
could lie below the KSS bound.

To apply the LDA approximation mentioned above, we start
first by considering a homogeneous system characterized by
temperature T , μ and review the behavior of the thermody-
namical parameters and the viscosity as a function of these
parameters. This is covered in this subsection. In the presence
of the trap, μ varies in the equilibrium configuration. The
effects of the trap, in this approximation, are then incorporated
by using the resulting local value for μ and T in the behavior
for the homogeneous case. The next subsection will then
incorporate the effects of the trap.

In certain thermodynamic regimes, the viscosity of a
uniform unitary Fermi gas can be computed in a controlled
manner. At temperatures much smaller than the chemical
potential, transport is dominated by the Goldstone mode
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FIG. 3. Data of S

N
as a function of T/TF (left panel) and μ/EF vs T/TF (right panel) from Ref. [63]. The central curves (blue online)

correspond to the central values and the band gives an error estimate (Ref. [63]). The band denoted by the dashed vertical lines corresponds
to the phase transition between the normal and the superfluid phase. The error bands represent the maximum error chosen from a set of
representative error bars given in Ref. [63].

associated with superfluidity and the viscosity can be com-
puted by solving the Boltzmann transport equations [64].
At temperatures large compared to the chemical potential,
the density of fermions is small and a kinetic estimate of
the viscosity, η = const. × (mT )3/2, is adequate [55–57]. But
we shall see that the largest contribution to damping arises
from the regime where T and μ are comparable, and a
theoretical evaluation of the viscosity is difficult. Monte Carlo
[8,9] methods, microscopic approaches [65], and T -matrix
techniques [66] have been used to calculate the viscosity in
this regime but presently the best estimate for the viscosity in
this intermediate regime comes from experiments.

In Refs. [21,22], η/s was measured for the first time.
Recently, this measurement was refined in Ref. [23] and the
result for the dimensionless ratio η/n was measured for a wide
range of T/μ, which we show in Fig. 5. Therefore, to obtain
the LDA value of the viscosity, we just need n(μ,T ).

In the next few paragraphs we describe how to obtain
n(μ,T ) using the scaling properties of the unitary Fermi gas.
With that understanding at hand, we will then return to a
discussion of how to obtain the viscosity in the approximation
described above. In the unitary Fermi gas, the chemical
potential μ, and the temperature T are the only energy
scales in the problem. Therefore, we can express various
thermodynamic quantities as a function of the dimensionless
quantity y = T/μ multiplied by an appropriate dimensionful
function of only one of the two variables. Following Ref. [21],
we write

n(μ, T ) = nf (μ)F(y),
(28)

s(μ, T ) = 2
5nf (μ)G ′(y),

where n is the number density, s is the entropy density,
and F(y) = G(y) − 2yG ′(y)/5, nf (μ) = 1

3π2 (2mμ)
3
2 is the

number density of a free Fermi gas. Therefore, one can
compute the desired thermodynamic quantities if the function
G(y) is known. For example, one can write the pressure as

P (μ, T ) = 2
5μnf (μ)G(y). (29)

In the following discussion, we use the usual definitions:

kF = (3π2n)1/3, EF = k2
F

2m
,

TF = EF /kB, vF = kF

m
. (30)

At low temperatures ( T
TF

� 0.6), we use the S
N

data from
Fig. 3(b) of Ref. [63] to obtain G(y). Data from two graphs
obtained from Ref. [63] are shown here in the two panels of
Fig. 3 for convenience. The left panel shows S/N = s/n as a
function of T/TF and the right panel shows μ/EF as a function
of T/TF .

In order to solve Eq. (28), we need to get S
N

as a function
of y. We use Fig. 3(a) of Ref. [63] to convert the S

N
data in

terms of y = T
μ

rather than T
TF

. We obtain the function G(y) by
numerically solving Eq. (28), subject to the boundary condition
G(0) = 1/ξ 3/2 at T = 0. We use ξ = 0.376 ± 0.0075. (The
value of ξ quoted here is from Ref. [63]. Various theoretical
calculations can be found in Refs. [6,67–72].) Figure 4 shows
the numerically extracted function G, its first derivative, and
the function F . In Fig. 4 and the rest of the figures, the band
denoted by the dashed vertical lines corresponds to the phase
transition between the normal and the superfluid phase.

The data in Ref. [63] stops at T/TF ≈ 0.6. For higher
temperatures, the density is small and as far as thermodynamics
is concerned, we can model the system as a gas of weakly
interacting fermions with a self-energy correction in the
chemical potential associated with self interactions in the
normal phase. Therefore, n and s have the same form as in
a Fermi gas [73]:

nnorm =−g(mT )
3
2

PolyLog
(

3
2 ,−e

μ

T

)
2
√

2π3/2
,

snorm =
√

T
[
2μPolyLog

(
3
2 ,−e

μ

T

) − 5T PolyLog
(

5
2 ,−e

μ

T

)]
2
√

2π3/2
,

(31)
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FIG. 4. The thermodynamic function G (top left panel) and its derivative (top right panel) as a function of T

μ
. The lower panel shows F .

These dimensionless functions are defined in Eq. (28). The error bands follow from the error bands in Fig. 3.

where nnorm, snorm denote the number density and entropy in the
normal phase, g = 2 is the energy level degeneracy, and μ with
self-energy corrections is replaced by μ − 32/3n2/3π4/3(ξn−1)

2m
.

Fitting to high temperature data gives ξn ≈ 0.45 [63]. This
description works well all the way down to temperatures
T/TF � 0.5 or equivalently T

μ
� 3.2 as one can check by

comparing the values of S/N as a function of T/TF in
this approximation with the results from Ref. [73]. These
results match smoothly to the low-temperature measurements
in Ref. [63]. Therefore, for T

μ
> 3.2 we use Eq. (31) to compute

the thermodynamics.
Now that we have understood how to obtain n(T ,μ) we can

return to our discussion of the viscosity. To evaluate η at a given
μ and T we simply multiply η

n
from Fig. 3 of Ref. [23] (shown

here in the left panel of Fig. 5) with the number density that
can be found using Eq. (28). One could alternatively multiply
η

s
from Fig. 5 of Ref. [23] (shown here in the right panel of

Fig. 5) with the entropy that can be found using Eq. (28). The
former works better because of the smaller error bars.

As we shall see in the next section when we describe the
fermions in a trap, the dominant contribution to the energy loss
arises from the region in the trap where T/μ is about 0.54. This
is just above the critical temperature Tc given by the relation

Tc/TF = 0.167 ± 0.013, (32)

or equivalently

Tc

μ
= 0.4 ± 0.03. (33)

From the right panel of Fig. 5, we see that just above Tc

μ
≈

0.4, η/s ≈ 0.7 ≈ 8( 1
4π

). This fact will be relevant in the next
section.

F. Results for the trap

Having understood the thermodynamics in the absence of
the trap, we now turn to incorporating the trap potential in the
discussion. We first use the LDA approximation to calculate
how thermodynamic quantities like s,n, etc., vary along the
trap. It turns out that on starting at the center of the trap at a
sufficiently low temperature, the entropy density has a peak,
z0, close to the point where the superfluid-normal transition
occurs. In turn, this leads to the viscosity and damping effects
for the fluid modes of interest receiving their contribution from
a region close to the peak and with a width, δz, that can be made
narrow, δz/z0 < 1. Finally, in this subsection we examine the
resulting behavior of the system for a range of reasonable
values of parameters and show that the five conditions listed
at the end of Sec. II can be met. It turns out that both the time
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FIG. 5. The left panel shows η

n
vs T/TF from Figs. 2 and 3 of Ref. [23]. The right panel shows η

s
vs T/TF from Fig. 5 of Ref. [23].

scales for energy loss and the magnitude of the total energy lie
in the range of experimentally accessible values.

Before we start, let us note that there are three energy
scales, T ,μ,ωz, in the system (μ without an argument refers
to the chemical potential at the center of the trap, and we are
neglecting ωx,ωy here). These give rise to two dimensionless
ratios, T/μ,ωz/μ. Length scales can be obtained from these
energy scales using the mass, via the relation L = 1√

2mE
.

1. Thermodynamics in the trap

As discussed in Sec. B 1, in the presence of a trap the
equations for superfluid dynamics can be solved at equilibrium
by taking the chemical potential to have a local value which
varies along the trap, as given by2 Eq. (B7). The temperature
T in equilibrium is a constant.

Once we have the function G as discussed in Sec. III E,
one can then use LDA to express all quantities of interest as
a function of the displacement from the trap center (which
we denote by r). Thus, within LDA, we can write the number
density as

n(r) = n(μ(r), T ). (34)

We can also express energy and entropy density in the same
fashion as a function of the distance from the trap center. Some
comments on the conditions for the violation of LDA will be
made in the end of the section.

To set the scales, we show (see Fig. 6) the number density
and the entropy density as a function of the distance z from
the trap center at x = 0,y = 0, for a typical trap configuration
that we consider. In all the examples we consider, we will take
Li6 as the fermionic species.

In making Fig. 6, the chemical potential at the center of the
trap is chosen to be 10 μK, which is typical for experiments
performed with fermionic cold atoms [22,74]. The potential is
taken to be harmonic [Eq. (6)], with the confinement frequency
along the z direction, ωz = 2π × 104 rad/s, which is about 10

2From now on, μ without the argument r refers to the chemical
potential at the center of the trap and μ(r) = μ − φ(r).

times that chosen in Ref. [74].3 Since we are taking x = y = 0,
ωx and ωy do not matter in drawing Fig. 6. However, since
we will be exploring anisotropic traps, we keep in mind the
condition that ωx = ωy � ωz.

The temperature throughout the trap is taken to be T = 2Tc

3 ,
where Tc is the critical temperature [Eq. (33)] associated with
the chemical potential (μ) at the center of the trap defined by

Tc ≡ 0.4μ. (35)

To avoid confusion, we note that Tc is the temperature at which
the superfluid to normal phase transition would have occurred
at the center of the trap. In the system under consideration
with T = 2Tc

3 , since T at the center of the trap is below the
local critical temperature at the center of the trap, the transition
actually occurs away from the center of the trap, at a location
z = zc, where the local chemical potential μ(zc) = T

(0.4) [where
we have abbreviated μ((0,0,zc)) as μ(zc)] corresponding to the
phase transition to the normal phase. In Fig. 6, we have denoted
it by dashed (gray online) vertical lines corresponding to the
central value and the error bands.

The error bands to the densities (marked by red curves
online surrounding the blue central curve) are associated
with the errors in G (Fig. 4). They are discontinued from
z = 27.5 × 10−5 cm corresponding to the point where we
switch to Eq. (31) to calculate the thermodynamics.

In the other trap geometries we consider below, we will
keep the chemical potential at the center, μ, unchanged as
it will set the overall scale of the problem, and only change
the temperature of the trap and the confining frequency ωz, in
order to explore traps which satisfy criteria listed in Sec. II.
The strategy we follow is given below.

As explained in the last section, we estimate the η at a given
location r corresponding to the local chemical potential μ(r)
and temperature T by simply multiplying the local number
density n we find using Eq. (28) with η

n
from Fig. 3 of Ref. [23].

(We have reproduced it here in Fig. 5 for convenience.) This

3For conversions to energy units, we use 1 eV−1 = 1.97 × 10−7 m,
1 eV = 1.78 × 10−36 kg, 1 eV−1 = 6.58 × 10−16 s, and 1 eV =
1.16 × 104 K. The mass of Li6 in natural units is 5.6 × 109 eV.
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FIG. 6. Variation of number density (left panel) and the entropy density (right panel) with respect to z for T = 2Tc

3 at ωz = 2π × 104 rad/s
with chemical potential at the trap center 10 μK. The vertical lines denote the band in z where T = (0.4 ± 0.03)(μ − φ(z)) (Eq. (33).

estimate assumes that not only thermodynamic but also the
transport quantities are determined by the local chemical po-
tential and the temperature. This estimate necessarily implies
that the viscosity is isotropic. Nonetheless, this will help us
identify the values of T/μ for which the energy loss of the
hydrodynamic shear modes is dominated by a region where
the potential can be approximated as a linear potential. Having
done that, we will increase ωz to induce anisotropy in the
transport coefficients.

Let us consider the four panels in Fig. 7. They show the local
shear viscosity (in units of (2mμ)3/2/(3π2), where μ is the
central chemical potential) as a function of z for x = 0,y = 0
for four different temperatures at ωz = 2π × 104 rad/s. The
chemical potential at the center is taken to be 10 μK. The
temperatures are T = 4Tc

5 (top left panel), T = 2Tc

3 (top right
panel), T = 4Tc

7 (bottom left panel), and T = Tc

2 (bottom right
panel). Like Fig. 6, the vertical line (gray online) corresponds
to zc where T = 0.4μ(zc). The error bands of the curves are
associated with the errors in G—which impact n—as well as
the errors in the measured η/n. The x axes of the plots is the
z coordinate scaled by the trap size

ztrap =
√

2μ

mω2
z

. (36)

One can also define a characteristic distance zmax where
T/μ(z) = 1 given by

zmax =
√

2(μ − T )

mω2
z

. (37)

For μ = 10 μK at the center of the trap and ωz = 2π ×
104 rad/s, ztrap and zmax are ∼10−4 cm. Beyond the distance
ztrap, we assume the viscosity to behave like 15

32
√

π
(mT )

3
2 as

predicted by the two-body Boltzmann equation [56].
Note that within LDA the plots in Fig. 7 are independent

of ωz if we keep T/Tc fixed. This is because scaling ωz by a
factor f can be undone by scaling z by a factor 1/f . Since ztrap

is scaled by the same factor, z/ztrap at any point on the curve
remains unchanged.

To understand the behavior of viscosity along the trap, first
consider the central values in Fig. 7 (blue curve online). For
all temperatures given above (notice that they are all below
Tc meaning that the center of the trap is superfluid), we
find the presence of a peak in the middle region of the trap
length. Qualitatively we understand this from the fact that the
local entropy [see Eq. (28)] is the product of nf (μ(r)) which
decreases along the length of the trap, while the function G ′
increases along the length of the trap; hence it is natural to
expect a peak for the entropy density somewhere along the
length of the trap. It is clearly seen in the right panel of
Fig. 6. Since the local shear viscosity over entropy density
is relatively slowly varying in this region (the peak location is
just above the critical region), it is not surprising that the local
shear viscosity shows a similar behavior. Henceforth, we will
denote the position of this peak by z0. We also denote the full
width at half maximum of the peak by δz.

The existence of the peak allows us to construct a system
where the dominant contribution comes from a region where
the potential approximately varies linearly, modeling the
theories (Sec. II) where the force that breaks rotational
invariance is spatially constant. Here, the trap potential is
harmonic, but the dominant contribution to the integral in
Eqs. (11) and (12) comes from an interval δz near z0. If we
expand the confinement potential as a Taylor series around
z0 as

φ(z0) + φ
′
(z0)(δz) + 1

2φ
′′
(z0)(δz)2 + · · · , (38)

the linearity approximation will hold as long as the confine-
ment potential satisfies

φ
′′
(z)

φ
′(z)

δz � 1 ⇒ l ≡ δz

z0
� 1. (39)

Since we are using a harmonic trap, there are no higher order
terms. Our criterion for constant driving force is therefore
straightforward. We desire that the dimensionless ratio l ≡ δz

z0
be less than 1.

There are other motivations to choose the dominant contri-
bution to shear viscosity to arise from such a localized region.

053601-10



SHEAR VISCOSITY IN AN ANISOTROPIC UNITARY . . . PHYSICAL REVIEW A 96, 053601 (2017)

FIG. 7. Local shear viscosity with respect to z for T = 4Tc

5 (top left), T = 2Tc

3 (top right), T = 4Tc

7 (bottom left), and T = Tc

2 (bottom right)
at ωz = 2π × 104 rad/s and μ = 10 μK. The red curves around the central blue curve denote the error estimate which include errors in the
measurement of η/n [23] as well as errors in G due to errors in the measurements of thermodynamics [63]. The black dashed vertical line to

the left is at zc while the one to the right is at ztrap =
√

2μ

mω2
z
. We do not extend the viscosity curves in the dilute regime as discussed in Sec. III C.

The dashed orange horizontal line corresponds to η/nf in the μ → −∞ limit [56].

We are interested in extracting the value of η/s, for suitable
components of the viscosity tensor, for particular values of T ,μ

(in particular, close to the critical temperature Tc where η/s is
known to be close to the KSS bound). Due to the varying trap
potential, μ(z) and therefore the entropy density at equilibrium
also vary along the trap. The change resulting in the viscosity
due to anisotropy should be bigger than the effect due to the
variation of the trap potential on s, thereby giving rise to the
condition

δη

η
>

∂s

∂z

δz

s
. (40)

As we saw in Sec. II after Eq. (4), the corrections to the
viscosity due to anisotropy are like the square of the force that
generates the anisotropy. For the system at hand, this leads to
the expectation

δη

η
∼ (∇φ)2

[μ(z)2kF (z)2]
. (41)

This estimate agrees with the analysis based on the Boltzmann
equation, as discussed later in Sec. IV [see Eq. (65)]. The
right-hand side (RHS) in Eq. (40) is like ∂s

∂z
δz
s

∼ δz/z0 = l,

and this gives rise to the condition

κ2
LDA > l, (42)

where we have introduced the notation

κLDA = (∇φ)

[μ(z0)kF (z0)]
. (43)

It is easy to see that κLDA roughly scales as

κLDA ∼ ωz

μ
(44)

so that Eq. (42) leads to the condition

ω2
z

μ2
> l. (45)

For fixed T ,μ one can show that l does not change as ωz

changes. Thus, the left-hand side is independent of the ratio ωz

μ

for fixed T/μ, and the inequality can be met for sufficiently
large ωz

μ
.

Let us also mention that the gravity results apply to
situations with only linearly varying potential [Eq. (2)],
leading to only |∇φ|2 corrections due to the anisotropy. In
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TABLE II. Trap characteristics for various T/Tc. The scaling behavior of various quantities with ωz are also shown. The entries were
calculated for μ = 10 μK, Tc = 0.4μ. l = δz

z0
[Eq. (39)] tests how well the potential can be approximated as a linear potential in the regime of

interest. κLDA [Eq. (59)] tests how well LDA is expected to work at z0.

T ztrap

√
μ

10 μK
2π×104

ω
cm z0

ztrap
l T

μ(z)

∣∣
z0

η

n

∣∣
z0

η

s

∣∣
z0

κLDA
10 μK

μ

ωz

2π×104 rad/s

4Tc/5 27 × 10−5 0.63 0.98 0.54 0.89 0.85 0.05
2Tc/3 27 × 10−5 0.71 0.62 0.54 0.89 0.85 0.08
4Tc/7 27 × 10−5 0.76 0.46 0.54 0.89 0.85 0.11
Tc/2 27 × 10−5 0.8 0.37 0.55 0.91 0.85 0.13

general, we would expect that there are additional corrections
proportional to ∇2φ. There is little guidance on what these
corrections do, for the kind of strongly coupled system we
are dealing with here. Thus, to the extent we are trying to
stay close to situations where gravitational systems give at
least some guidance, it is desirable to choose the dominant
contribution to shear viscosity to arise from a narrow localized
region.

2. Viscosity and other properties for varying trap parameters:
Table II

We now turn to examining the behavior of η, η/s, and l = δz
z0

as trap parameters are varied. In Table II, we keep ω,μ fixed
to take the values ωz = 2π × 104 rad/s, μ = 10 μK, and vary
T . As mentioned at the beginning of Sec. III F, there are two
dimensionless ratios that characterize the energy scales in this
system. The different rows corresponding to different values
of T in units of Tc show how various quantities vary with T/μ.
The scaling of these quantities with ωz/μ is given in the first
line on top of Table II. Thus κLDA scales like ωz/μ. z0,ztrap and
δz scale like 1/ωz for fixed T ,μ, as was discussed above after
Eq. (37). Thus, their ratios, zo

ztrap
,l = δz

z0
, etc., are independent

of ωz/μ. The third column of Table II tests the linearity of
the potential, which is a good approximation near the peak if
l = δz/z0 � 1.

The ratio l is governed by the temperature of the trap
divided by the chemical potential or equivalently Tc at the
center. As we decrease T/Tc, z0 increases and δz decreases.
This consideration would suggest that to obtain δz

z0
as small as

possible we should consider as small a temperature as possible.
But this conclusion is not correct, as is clear from the upper
error band in Fig. 7 (red online).

The errors bands on η are fairly narrow in the region near z0.
However, the errors grow near z → 0, in particular for smaller
T/Tc (Fig. 7). The reason is the large errors in the measured
η/n in the superfluid regime (see the region T/TF � 0.16 in
Fig. 5). Indeed, we expect that for T � TF , the viscosity is
dominated by superfluid phonons whose contribution diverges
as T → 0 as η ≈ (9.3 × 10−6)ξ 5(T 8

F /v3T 5), where v is the
speed of superfluid phonons [64]. Numerically, η/n ≈ 2.5 ×
10−5 T 5

F

T 5 . Therefore, to avoid a large contribution from the
center of the trap rather than from near z0, we do not consider
temperatures below Tc/2. Within this constrained temperature
regime between Tc/2 and Tc we find that the linearity condition
δz/z0 < 1 is satisfied, although it is not possible to generate
traps where δz/z0 is parametrically small. In the narrow range
of temperatures, it turns out that the location of z0 is such that

T/μ(z0) ≈ 0.54, just off to the right of the phase transition at
T/μ(zc) ≈ 0.4.

Note that, as explained in the discussion above, a few
paragraphs after Eq. (35), the value for the viscosity η/s

which appears in Table II is an approximate one, obtained
by taking the value in the isotropic situation corresponding
to the local value for μ, T at the location z0. By a similar
argument as before, this value is independent of the ratio
ωz/μ for a fixed T/Tc. We note that the values of η/s in
Table II are about 10 times the KSS bound. One would
expect that various components of the viscosity tensor deviate
from this rough value by a fraction of order κ2

LDA. The
parameter κLDA which was introduced in Eq. (43) above, when
computed at the location of the peak z0, has the more exact
form

κLDA = mω2
zz0

[3π2n(z0)]
1
3 μ(z0)

=
√

m
2 ω2

zz0[
F

(
T

μ(z0)

)]1/3
[μ(z0)]

3
2

(46)

as one can easily check by using Eq. (28).

3. Energy damping for varying values of trap parameters:
Table III

We now turn to considering the effects of varying the trap
parameters on various quantities like the total energy Ekinetic,
the damping rate of this energy Ėkinetic, etc. In Table III, we
again keep μ,ωz fixed to take values ωz = 2π × 104 rad/s,
μ = 10 μK and consider the effects of varying T . In addition,
we also need to consider the effects of the harmonic trap in
the x,y directions. We keep ωx,ωy to be fixed to take values
ωx = ωy = 2π × 385 rad/s. The different rows then show
how various quantities vary as T/μ changes. We note that
for the range of temperatures considered, the total number of
atoms in the trap is approximately ∼106.

The energy which appears in this table is the total
mechanical energy E given by

E = 2Ekinetic, (47)

where

Ekinetic =
〈

1

2

∫
d3r mn(r)v2

〉
, (48)

where v is the velocity of either mode and the average is
taken over one cycle for the scissor mode (the elliptic mode
is nonoscillatory). For the elliptic mode and the Scissor mode
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TABLE III. Additional trap characteristics for various T/Tc at ωz = 2π × 104 rad/s, ωx = ωy = 2π × 385 rad/s, and μ = 10 μK. The
energy is given in joules abbreviated as J and energy loss rate in joules per second (J/s). For a fixed T/μ, the energy of the elliptic mode scales
as ∼ 1

ωxωyω3
z

and that of the scissor mode scales as ∼ 1
ω3

xωyωz
. The characteristic time τ0 [given in seconds in the table and defined in Eq. (50)] of

the elliptic mode scales as ∼ μ

ω2
z

and that of the scissor mode scales as ∼ μ

ω2
x

. For the elliptic mode to account for the fact that only the normal

component of the velocity is nonzero near the trap center, we assume that the normal component density in this region is T

Tc
times the total

density in this region. For the scissor mode, we have the full number density.

T αmax
x (10−10 eV) Ėkinetic (J/s)(a) E (J) (a) τ0(s)(a) Ėkinetic (J/s) (b) E(J) (b) τ0(s) (b)

4Tc/5 2.83 2.37 × 10−16 3 × 10−20 0.0002 4.7 × 10−16 10−17 0.04
2Tc/3 2.35 1.25 × 10−16 2 × 10−20 0.0003 2.5 × 10−16 6.8 ×10−18 0.05
4Tc/7 2.02 7.12 × 10−17 1.4 × 10−20 0.0004 1.4 × 10−16 4.8 ×10−18 0.07
Tc/2 1.77 4.33 × 10−17 1.1 × 10−20 0.0005 8.65 × 10−17 3.6 ×10−18 0.08

with amplitude αmax
x , the kinetic energy is given as follows:

For elliptic, Ekinetic(a) =
∫

d3r
1

2
m nnormal

(
αmax

x

)2

×
[
ω4

x

ω4
z

x2 + z2

]
.

For scissor, Ekinetic(b) =
∫

d3r
1

4
m n

(
αmax

x

)2
[x2 + z2]. (49)

Ėkinetic is the rate of energy loss due to viscosity-induced
dissipation, Eq. (10). The energy loss, Ėkinetic, in these modes
is given by Eqs. (11) and (12).

Note that for the scissor mode the expression corresponds
to the kinetic energy averaged over an oscillation cycle. Also,
for the elliptic mode, vs = 0, Eq. (8), and only the normal
component contributes to the kinetic energy. The density in
the normal phase is estimated in the region close to the center,
where both the superfluid and normal components are present,
as being T

Tc
times the total density in this region and we have

denoted it by nnormal in Eq. (49). For the scissor mode, we have
the full number density denoted by n in the above formulas.

The validity of hydrodynamics imposes a condition on how
big αx can become, and the resulting maximum value, αmax

x ,
was estimated in Eq. (16). The quantities Ekinetic, Ėkinetic which
appear in Table III are obtained from Eqs. (10) and (49) by
setting αx = αmax

x .
A convenient quantity with which to compare αmax

x is the

ratio of the speed of sound at the center cs =
√

2μ

3m
to a measure

of the trap size ztrap. For comparison, let us note that for ωz =
2π × 104 rad/s we obtain cs

ztrap
= ωz√

3
= 3.63 × 10−11 eV.

The (amplitude) damping time τ0, which appears in
Table III, is defined as

τ0 = 2E/Ėkinetic. (50)

As mentioned above, the table considers the effects of
varying the temperature while keeping μ,ωz,ωx,ωy fixed. For
fixed T/μ, one can also consider what happens as the angular
frequencies are varied. In the highly anisotropic situations
ωz � ωx,ωy , one finds that the total energy Ekinetic for the
elliptic mode approximately scales like

Ekinetic(a) ∼ μ
μ

ωx

μ

ωy

(
μ

ωz

)3

(51)

and the damping time τ0 for the elliptic mode approximately
scales like

τ0(a) ∼ μ

ω2
z

. (52)

Similarly, for the scissor mode we get

Ekinetic(b) ∼ μ
μ

ωy

μ

ωz

(
μ

ωx

)3

, (53)

τ0(b) ∼ μ

ω2
x

. (54)

These scalings are obtained by noting that αmax
x ∼ μ for fixed

T/μ, and also that the trap potential is unchanged under a
rescaling ωz → λωz,z → z/λ and similarly for x,y. We have
also assumed that ωz � ωx,ωy . Some of these scalings are
summarized in the caption below Table III. For example, the
scalings of the scissor mode can be derived as follows: E ∼∫

dxdydz[mnv2] ∼ LxLyLz[mnα2L2
x] ∼ μ6

ω3
xωyωz

, where we
have assumed that at the center of the trap μ > 0 and

Li =
√

2μ/(mω2
i ). In a similar manner, one can derive the

approximate scalings for energy dissipation rates: Ė ∼ μ5

ωxωyωz

for both the modes (assuming η scales the same way as n ie.
∼(mμ)

3
2 .

The approximate value of T ,μ,ωz we consider here are
of the same order as those considered in Ref. [22], where
the viscosity of a unitary Fermi gas was measured, using a
radial breathing mode. The scissor mode has been considered
in the literature before. The damping rate has been measured
for cold atoms system in this mode in superfluid bosonic (see
Ref. [48] and references therein) and in fermionic systems [49].
In particular, Ref. [49] carries out these measurements in the
unitary Fermi gas. The values for trap parameters we consider
are similar to those considered, for example, in Ref. [22]
and not very different from those considered in Ref. [49].
The maximum angular amplitude of the the scissor mode is
determined by the velocity amplitude αx [Eqs. (9) and (7)],
which is bounded above by αmax

x in Table III. One can show that
the angular amplitude (in radians) of the oscillation executed
by the deformed cloud in the scissor mode is given by

θ = tan−1

(
e

2αx
ω − 1

e
2αx
ω + 1

)
, (55)
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where ω = √
ω2

x + ω2
z . Taking αx to be the maximum value

αmax
x ∼ 10−10 eV and ω to be 2π × 104 rad/s ≡ 4.16 ×

10−11 eV, we find θmax ∼ tan−1[1] ≡ 45◦. For a frequency
10 times larger, θmax ∼ tan−1[0.4] ≡ 24◦. It is satisfying
that these amplitudes are larger than those measured in
Ref. [49] for the scissor mode and hence the condition for
hydrodynamics [Eq. (16)] does not force the amplitudes
to be so small as to preclude observation using existing
techniques. For μ = 10 μK, ωx = ωy = 2π × 385 rad/s and
ωz = 2π × 104 rad/s, τ0 ranges from roughly 0.04 to 0.08 s.
The damping of the scissor mode has been observed for slightly
different parameters values, μ ≈ 1 μK, ωx = 2π × 830 Hz,
ωy = 2π × 415 Hz, and ωz = 2π × 22 Hz in Ref. [49],
where the damping time scales measured are of the order of
milliseconds.

4. Summary

Now we come to the final point of this section. The effects
of anisotropy can cause a fractional change in components
of the viscosity tensor, potentially lowering some of them.
This effect is expected to be like δη/η ∼ κ2

LDA, as mentioned
in Eq. (41). We see from Table II that for fixed ωz/μ,
κLDA increases as T decreases (i.e., T/μ decreases), with the
maximum value, within the range of allowed temperatures,
being of order κLDA ∼ 10%. This would lead, one expects, to
a fractional change in components of the viscosity of order
δη/η ∼ (few) × 1%, which is quite small. However, note that
increasing ωz will increase κLDA with a linear dependence
κLDA ∼ ωz/μ as noted in Eq. (44) and also in the first row
of Table II. In turn, this should lead to a quadratic fractional
change in δη/η ∼ (ωz

μ
)2. We can carry out this change while

keeping ωx,ωy fixed, thereby increasing the anisotropy. Note
that this change of ωz will decrease the total energy of this
mode Ekinetic(b) ∼ 1/ωz, Eq. (53), but it does not change τ0

significantly, since τ0 depends to a good approximation on ωx

and not ωz as seen from Eq. (54). Also note that changing
ωz while keeping T/μ fixed will not change l and thus the
localized nature of the region from which the damping arises.
In fact, it will make it easier to meet the condition of Eq. (45).

Also it is worth commenting that it is easy to see from
Eqs. (44), (53), and (54) that if one want to keep τ0 and Ekinetic

for the scissor mode both fixed and increase κLDA → λκLDA

one could do this (while keeping ωx = ωy) by scaling

ωx → λ
1
6 ωx, ωy → λ

1
6 ωy, ωz → λ

4
3 ωz,

μ → λ
1
3 μ, T → λ

1
3 T . (56)

This keeps T
μ

, τ0, and Ekinetic fixed, increases the overall
magnitude of μ, and increases ωz and ωx,ωy .

The discussion of the previous two paragraphs suggests
that one can quite plausibly keep the damping time scale
and the total energy in the experimentally accessible range,
while gradually increasing ωz, making κLDA ∼ O(1) and
the effects of anisotropy significant. While some of the
theoretical approximations made will break down in this limit,
it is possible that the effects of anisotropy would get more
pronounced, and potentially even dramatic, driving the spin-1
components of the viscosity to be much smaller than their

values in the isotropic case, and potentially even violating the
KSS bound.

We have not discussed the elliptic mode in as much detail.
One reason is that unlike the scissor mode, this mode has not
been experimentally realized in cold atom systems yet.4 Also,
we see from Table III that the damping time τ0 in this case
is about two orders of magnitude smaller, and this too might
be an issue of some experimental concern. It may turn out,
of course, that this mode is experimentally accessible. It will
then be certainly interesting to explore its properties, especially
since this mode in a very direct way measures the resistance
to shear in the resulting fluid flow.

Finally, we note that all the five conditions which were listed
at the end of Sec. II for observing the suppression of viscosity
can be met in the system being analyzed here. Conditions 1
and 2 are met by the two modes discussed above in the unitary
Fermi gas. We have ensured that l < 1 (Table II) so that the
contribution arises from a localized region where the potential
is approximately linear, meeting condition 4. As argued above,
for the scissors mode the anisotropy can be made large enough
while staying within the fluid mechanics approximation (αx <

αmax
x ), thereby meeting conditions 3 and 5. The resulting values

for the total energy and the damping time we find lie within
the experimentally accessible range.

To summarize, we have seen in this section that for experi-
mentally reasonable values of parameters one can increase the
anisotropy of the trapping potential and probe the viscosity
tensor by measuring the energy loss and related damping time
in the scissor mode. As the anisotropy is increased, its effects
could well become quite significant, driving some components
of the viscosity (spin 1 in our notation) to become very small,
and potentially making them even smaller than the KSS bound.

G. Discussion on κLDA

In this subsection, we present a detailed discussion on κLDA

given in the last column of Table II. The results discussed
so far assume LDA is valid. LDA rests on the assumption
that the trap potential varies slowly on the scale of the local

Fermi wavelength k−1
F (r) = [3π2n(r)]

1
3 , i.e., at any local point

r along the length of the trap, the following condition holds
true: ∣∣∣∣∇r(μ(r))

1

kF (r)

∣∣∣∣
r
� μ(r).

Since we desire ωx,ωy � ωz, the gradient is strongest in
the z direction and hence taking x, y = 0 and moving along
the harmonic trap in the z direction, d(μ(z))

dz
= −mω2

zz, we note

4One possible way to set up the elliptic mode is to start with a more
circular trap and exciting a rotational mode by using rotating lasers
using a setup similar to that in Ref. [75]. If the rotational frequency
is small enough, vortices will not be excited and only the normal
fluid will rotate like a rigid body. On adiabatically deforming the
trap, one would then get the elliptic mode because during adiabatic
deformations, hydrodynamics is satisfied at each time, and we expect
that the normal fluid will go smoothly from circular rotation to the
elliptic mode.
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that LDA violations will be significant if

mω2
zz

1

[3π2n(z)]
1
3

∼ μ(z). (57)

For any trap geometry at the outer edges of the trap,
when the density becomes small enough, LDA will be
violated [μ(z) < 0 for z > ztrap]. These regions typically do
not contribute significantly to the trap energy loss. But focusing
on the region near z0, LDA is a good approximation if

κLDA =
√

m
2 ω2

zz0[
F

(
T

μ(z0)

)]1/3
[μ(z0)]

3
2

� 1, (58)

Approximating [F( T
μ(z0) )]

1/3 ≈ 1√
ξ

[since F(0) = 1/ξ 3/2 and
the deviations from F(0) are small for T/μ � 1], we find

κLDA =
√

m
2 ω2

zz0

[μ(z0)]
3
2

√
ξ � 1, (59)

Since z0 scales as 1/ωz for fixed μ and T , LDA will be
violated at z0 if ωz is large enough. From Table II, one can
see that for μ = 10 μK and T = Tc/2, κLDA > 1 for ωz >

2π × 77 000 rad/s. Alternatively, taking ωz = 2π × 104 rad/s
and T = Tc/2, κLDA can become larger than 1 if μ < 1.3 μK.

For T → 0 the corrections to LDA have been previously
studied in Refs. [76,77]. One can write

n(r) = nLDA

[
1 − cχ

64

(∇φ(r))2 + 4(μ − φ(r))∇2φ(r)

m(μ − φ(r))3

+O(∇3φ(r))
]
, (60)

where cχ is related to the response of the density to a periodic
fluctuation in the potential. The low-energy constant cχ has not
been calculated using ab initio techniques so far. In all model
calculations cχ ∼ 1, including in a sophisticated analysis using
SLDA (Ref. [77]).

For finite T for an isothermal system, the deviations from
LDA are not related to the density response but for T � [μ −
φ(r)] we can write corrections to LDA in analogy with Eq. (60):

n(r) = nLDA

[
1 − c1

64

(∇φ(r))2

m(μ − φ(r))3
− c2

16

∇2φ(r)

m(μ − φ(r))2

+O((∇V )3)
]
, (61)

where c1, 2 are functions of (T/μ) and tend to 1 as T/μ → 0.
In particular, for the interesting region, the term proportional
to c1 is dominant (the exception is near the center of the trap).
Therefore, the corrections to LDA near z0 can be written as

n(z) = nLDA

(
1 − c1

64

2

ξ
κ2

LDA + · · ·
)

, (62)

where we have used the low-temperature expression

mμ(r) = ξ

2
k2
F (r) (63)

to write the correction in terms of κLDA.
In the absence of further information about c1 at finite T , it is

difficult to make precise statements about the relevance of LDA
corrections for the traps with large values of ωz that we show in
the next section are needed to make the shear viscosity tensor

locally anisotropic. Therefore, we simply use κLDA � 1 as a
marker for significant LDA violation. However, it is important
to keep in mind that if c1( T

μ(z0) ) ∼ c1(0.54) ∼ 1 (since T
μ(z0) ∼

0.54 for the cases we consider), then the prefactor of 1/(32ξ )
implies that the corrections to LDA can be small even for
κLDA ≈ 1.

IV. LOCAL ANISOTROPY

Hydrodynamics is an effective theory: The conserved
currents are written as a series of terms ordered by the
number of derivatives acting on the local fluid velocity. The
lowest order terms are simply given by the Galilean (for
nonrelativistic systems) or Lorentz (for relativistic systems)
transforms of the local thermodynamic properties like the
density and the pressure, from the local rest frame of the
fluid to the laboratory frame. The first-order terms are
given by the local gradients of the velocity (∂iuj + ∂jui)/2
multiplied by proportionality constants given by the transport
coefficients—for example, viscosities—of the system. We will
not consider higher derivative terms in this paper, instead
restricting ourselves to situations [see Eq. (15)] where the
first-order correction is smaller than the lowest order terms.

In the presence of external fields, the law of conservation
of energy features a source term proportional to the driving
force, ∇φ(r). If ∇φ(r) is “small” (which we shall define in a
moment), its effect on the thermodynamics and transport can
be neglected, and hydrodynamics describes a locally isotropic
fluid (with isotropic thermodynamic functions and isotropic
transport coefficients)5 moving in a space-dependent potential.
The key realization therefore is that to observe an anisotropy in
thermal or transport properties it is not sufficient for ωx,ωy �
ωz. Corrections to isotropy will start becoming significant as
we increase ωz, if ωz starts becoming comparable to some
microscopic scale of the system.

The criterion for the thermodynamic quantities to exhibit
the effect of ∇φ(r) is clear from the previous section. If the
potential varies on length scales comparable to the interparticle
separation—the Thomas-Fermi approximation or LDA breaks
down—the pressure of the fluid in the direction of the gradient
will be different from the pressure in the perpendicular
directions. In this case, clearly the transport coefficients will
also be anisotropic. To explore a system analogous to the one
described in Sec. II, this argument prompts us to consider
ωz large enough that LDA is broken (see Table II). For such
systems, the estimates for the density (Fig. 6) and viscosities
(Fig. 7) using LDA will be only rough guiding values, but if
the analogy with the system in Sec. II holds true, the viscosity
values relevant for the modes described in Sec. III A will be
lower than the LDA values and could be lower than 1/(4π ) in
suitable quantum units.

To estimate the order of the correction to the shear
viscosity due to potential gradients, we note that the first-order
correction to transport due to ∇φ(r) simply appears as the
source term, and hence assuming that the next order corrections

5This assumes that microscopically the fluid is isotropic. For
example, it is not a crystal [53] or a fluid phase with an anisotropic
order parameter.
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will be analytic in ∇φ(r), we expect

ηijkl = η
1

2

{(
δikδjl + δilδjk − 2

3
δij δkl

)

+
[
λ2(∇φ(r))(∇φ(r))

[μ(r)]2

]

×
4∑

α=0

c(α)Mα ijkl

}
+ O(∇2φ,(∇φ)4), (64)

where λ is a microscopic length scale of the system, c(α)

are dimensional constants of order 1 which depend on the
microscopic details of the system, and Mi are five orthonormal
projection operators that arise in a system with one special
direction (e.g., see Ref. [78]). We have given these projection
operators in Appendix D [Eq. (D18)].

λ is a length scale that determines transport behavior. In a
system admitting a quasiparticle description, we expect λ to
be of the order of the mean free path. (We show this explicitly
in Appendix D.) The other length scale in the system is the
interparticle separation 1/kF . In terms of kF , we can write the
corrections as

ηijkl ≈ η
1

2

{(
δikδjl + δilδjk − 2

3
δij δkl

)

+ (λkF )2

[
(∇φ(r))(∇φ(r))

k2
F [μ(r)]2

] 4∑
α=0

c(α)Mα ijkl

}

= η
1

2

[(
δikδjl + δilδjk − 2

3
δij δkl

)

+ (λkF )2
(
κ2

LDA

) 4∑
α=0

c(α)Mα ijkl

]
. (65)

For weakly interacting quasiparticles, the λkF � 1. But
for a strongly interacting system, in the absence of more
information about λkF and c(α), it is not possible to make a
more concrete statement about the corrections to viscosity. We
can only state that the corrections are important if κLDA ∼ 1
as we did in Eq. (41).

As discussed in Sec. II, for the theories considered there,
there is no quasiparticle description. The only relevant length
scale is 1/T and the field φ changes by order 1 on a length
scale 1/ρ. Using AdS/CFT, it has been shown [45] that the
corrections to isotropy are like Eq. (4).

For the unitary Fermi gas, there is no known gravitational
dual [79] and we will need to resort to a rough calculation
to estimate c(α) and λkF . We solve the Boltzmann transport
equation in the relaxation time approximation. We hope this
will give semiquantitative results. We leave the challenging
calculation of the viscosity for temperatures in the strongly
coupled regime just above the critical temperature in the
presence of a background potential for future work.

As we show in Appendix D, the corrections to η for a weakly
interacting, normal (unpaired) Fermi gas at low temperatures

(T < μ) are given by [Eq. (D25)]

η0 = η(0)

[
1 − 31

84
(λkF )2 (∇φ)2

k2
F μ2

+ O((τ∇φ)4)
]

= η(0)

[
1 − 31

84
(λkF )2κ2

LDA + O((τ∇φ)4)
]
,

η1 = η(0)

[
1 − 13

28
(λkF )2 (∇φ)2

k2
F μ2

+ O((τ∇φ)4)
]

= η(0)

[
1 − 13

28
(λkF )2κ2

LDA + O((τ∇φ)4)
]
,

η2 = η(0)

[
1 − 11

28
(λkF )2 (∇φ)2

k2
F μ2

+ O((τ∇φ)4)
]

= η(0)

[
1 − 11

28
(λkF )2κ2

LDA + O((τ∇φ)4)
]
,

η3 = 0,η4 = 0, (66)

where τ is the effective relaxation time.
For the elliptic mode, 1

2 (∂iuj + ∂jui) = 1
2αx(1 − ω2

x

ω2
z
) =

Vxz, which probes the viscosity contribution to the stress
energy tensor

σ2αβ
= 2η2(Vαγ bβbγ + bαVβγ bγ − 2bαbβbγ bδVγ δ), (67)

where b is a unit vector along the gradient of the potential.
For the scissor mode, 1

2 (∂iuj + ∂jui) = αx = Vxz, which also
probes η2. [η2 is the coefficient that corresponds to the
projection operator M2 in Eq. (D18).]

In both cases (see Appendix D), η is reduced from its value
in the absence of the potential, η(0), for τ 2

k2
F

(∇φ)2 � 1. To
estimate the value of τ near z = z0, we note that for z ∼ z0,
T (z0) ∼ 0.54μ(z0). At this T , η(0)/n|z0 ∼ 1.

Using the relaxation time approximation and thermody-
namic expressions for a weakly interacting Fermi gas to
estimate λ near z0, we obtain [Eq. (D26)]

η(0)(z0) = [2mμ(z0)]
5
2 τ (z0)

15π2m

= 2

5
n(z0)μ(z0)τ (z0). (68)

Therefore, near z0, τ (z0) ∼ 5
2μ(z0)

η(0)
n

|z0 , or

λ(z0) = vF (z0)τ (z0) ∼ kF (z0)

m

5

2μ(z0)

η(0)

n

∣∣∣∣
z0

= 5

4kF (z0)

η(0)

n

∣∣∣∣
z0

. (69)

(We have just kept the prefactors of the order of 1 to serve as
mnemonics of the derivation of λ. They have no quantitative
significance.)

Therefore, (since η(0)
n

|z0 ∼ 1 from η

n
data),

λ(z0)kF (z0) = 5

4

η(0)

n

∣∣∣∣
z0

∼ 1. (70)

The fact that kF (z0)λ(z0) ∼ 1 means that the Boltzmann
transport calculation shown in Appendix D is not quantita-
tively trustworthy near z0. But we hope that the two main
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qualitative consequences of Eq. (66) survive a more controlled
calculation.

(1) First, the coefficient of κ2
LDA in Eq. (66) is of the order

of 1.
(2) Second, the sign of the correction term is negative.
If true, this would imply that the shear viscosity component

ηxzxz measured using the elliptic or scissor mode will reduced
by order 1 from its value in isotropic traps, if ωz � 2π ×
77 000 rad/s (Table II).

One might be concerned that for ωz ∼ 2π × 77 000 rad/s,
our conclusions in the previous section about δz/z0 will be
violated because of the violation of LDA. In the absence of
more concrete information on these coefficients, we cannot
be assured this will not happen. We simply note that if the
coefficient c1 in Eq. (62) is of the order of 1 [which it is at
T � μ, but it may be larger for T ∼ 0.54μ(z0)], then there
is a regime where the corrections to the thermodynamics due
to LDA is small, but the reduction in transport coefficients is
substantial.

V. CONCLUSIONS

We present a concrete realization of a system of ultracold
Fermi gases at unitarity, in an anisotropic trap, which may
show significant reduction in the viscosity compared to its
value in isotropic traps. Given that the value of the isotropic
viscosity has been measured to be a few times the KSS bound
in this system, it presents a candidate setup to observe a shear
viscosity smaller than the KSS bound when it is subjected to
an anisotropic driving force.

The anisotropic force is obtained by placing the system in
an anisotropic trap. The trapping potential is harmonic, Eq. (6),
and characterized by three angular frequencies, ωx,ωy,ωz. We
consider an anisotropic situation where ωz � ωx,ωy , so that
the trapping potential is much stronger in the z direction.
For simplicity, we also take ωx = ωy so that the system
preserves rotational invariance in the x,y plane. For some of
the discussion below we can neglect the effects of the trapping
potential in the x,y directions characterized by ωx,ωy .

We work in conventions where kB = h̄ = 1. There are three
energy scales T ,μ,ωz and two dimensionless ratios T/μ and
ωz/μ which then characterize the system. The 6Li atoms have
a mass m, and using this parameter, any of the energy scales
can be converted to a length scale, L = 1√

2mE
.

Based on the behavior seen quite generically in gravity
systems, we identify five criteria (Sec. II) which when met
could plausibly lead to a decrease in the value of some
components of the viscosity tensor (the spin-1 components).
These are summarized toward the end of Sec. II. On studying
the superfluid equations, we identify two modes which
are sensitive to these components of the viscosity tensor.
One of these is the scissor mode, which has already been
studied experimentally in some detail. By taking reasonable
values for the parameters, T , μ, ωz,ωx,ωy , which are in the
experimentally accessible range [22], we find that all the five
criteria can be met. Furthermore, we find that the resulting
energy and damping rate of this energy, from which the
viscosity can be extracted, are within the range of values
which are measured by experiments currently being done on
cold atom systems, in particular on Li6 unitary Fermi gas

systems [49]. For example, for μ = 10 μK, ωz ∼ 2π × 77 000
rad/s, and T = Tc

2 (Tc = 0.4μ), we find that the anisotropy, as
measured by the parameter κLDA, Eq. (43), is of order unity and
therefore significant. At these extreme values of anisotropy,
our theoretical calculation, strictly speaking, do not apply, but
a reasonable extrapolation suggests that the maximum total
energy is of the order of 10−17 J, which corresponds to the
angular amplitude of the scissor mode of about 24◦, which
is within the experimental range of Ref. [49]. The damping
time τ0 is of the order of 10−2 s, which is roughly ten times
longer than the observed amplitude damping time that has been
accurately measured in the experiments on ultracold Fermi
gases [49].

While the system is certainly close to being two dimen-
sional when κLDA ∼ 1 and ztrap ∼ 5.4k−1

F (this corresponds to
μ/ωz ∼ 2.7) are on the small side, the effect of small viscosity
can already set in when κLDA is somewhat smaller than unity.
We illustrate this with concrete quantitative examples below.

For concreteness, let us consider traps where we fix T/Tc =
1/2 (Tc = 0.4μ, where μ is the chemical potential at the
center of the trap) and change ωz. Further, for concreteness,
we set the overall scale by μ = 10 μK. Considering first a
representative trap geometry where the shear viscosity tensor
is locally isotropic to a large accuracy, we take ωz = 0.048μ

(corresponding to ωz = 2π × 104 Hz, which is typical), for
which κLDA = 0.13. The fractional reduction in the shear
viscosity for this value of ωz, taking c2 to be its Boltzmann
transport value 11/28, is

�η

η
≈ −11

28
(κLDA)2 = −0.7%, (71)

which is a small reduction in the shear viscosity and may
not be even measurable above measurement errors. At the
other extreme we considered, ωz = μ

2.7 (corresponding to
ωz = 2π × 77.16 kHz), for which κLDA = 1, and the fractional
reduction is

�η

η
≈ −11

28
(κLDA)2 = −39%, (72)

which is very large. However, in this extreme limit (ωz =
μ

2.7 ), only the lowest 2–3 Landau levels are occupied and
the dynamics may be approximately two dimensional. Now
consider an intermediate value, say ωz = 0.9T = 0.18μ for
which κLDA = 0.48 < 1. This gives a correction

�η

η
≈ −9%, (73)

which while not large is still substantial. More generally, the
criterion for confinement in the z direction is

ωz � max(�,T ), (74)

since both T and pairing allow for excitations between the
harmonic oscillator levels. At these extreme values, where the
inequality above is met, our approximations do break down
(shell effects become important as ωz � T , which is another
way of saying that confinement in the z direction becomes
strong). For ωz = μ

2.7 , ωz = 1.85T and indeed confinement in
the z direction is too strong. But, as illustrated by the cases
above, by taking ωz a factor of 2 or 3 smaller (say, ωz = 0.9T ,
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which was chosen above for illustration6) than the extreme
limit, one can measure the tendency of the spin-1 component
of the viscosity to decrease from its lowest value observed in
ultracold Fermi gases. In an optimistic scenario where c2 is
larger in magnitude than the approximate value of 11/28 in
the Boltzmann transport approximation, the reduction will be
even more substantial. Let us also point out that compared with
Ref. [81] the typical value of ωz/EF in the paper is about 80
and the value of ωz/T is 120. In that case, the trap is truly two
dimensional as opposed to when ωz/T ∼ 0.9.

Thus, for smaller values of anisotropy, the theoretical esti-
mates are more reliable and suggest that the different viscosity
tensor components should have a fractional difference given
in terms of κLDA by Eq. (66). This tendency of the viscosity
to decrease should already be measurable at more moderate
values of the anisotropy.

Our proposal is to measures parametrically suppressed
anisotropic viscosity components in ultracold Fermi gases.
Our proposal is different from the discussion of anisotropic
hydrodynamics in Ref. [57] since we are demanding that
hydrodynamics be a good description [in the sense of Eq. (15)]
in the regime which dominantly contributes to the dissipation
of the fluid dynamics modes.

Future theoretical work can improve upon our proposal in
several ways. First, our estimate of the corrections to the shear
viscosity components due to the potential [Eq. (66)] was based
on a relaxation time treatment of the Boltzmann equation. For
strongly interacting fermions, this is not a good approximation
and a more rigorous calculation of the anisotropy corrections
is desirable. This will require calculating transport properties
in a strongly coupled theory without a gravitational dual, in the
presence of a background potential, a formidable challenge.
Second, we have focused on the region that dominantly
contributes to the dissipation. In particular, we have neglected
the contributions from the tail of the cloud. While this is
presumably small, it would be nice to establish this by solving
the Boltzmann transport equations in this dilute regime.

It is also worth noting that while the cold atom system
proposed here shares many features with those discussed in
Refs. [42,45], it also has some differences. First, in equilibrium
the stress energy tensor is not invariant under translations
even for a linear potential. Rather, the density decreases
with increasing z, but the driving force is proportional to the
gradient of the potential φ(r) [see Eq. (3)] as in Refs. [42,45].
Second, in addition to energy momentum, the cold atom
system features another conserved quantity: the particle num-
ber. Consequently the system is locally characterized by two
thermodynamic variables T and μ rather than just T . It would
also be interesting to further study the behavior of viscosity in
gravitational systems which correspond to anisotropy-driven
strongly coupled systems with a finite chemical potential.

6The deviations from LDA due to shell effects for unpaired fermions
was calculated in Ref. [80]. A naive application of the results of
Ref. [80] suggests that for our trap with ωz = 0.18μ, the corrections
to the number density is about 15% at T = 4Tc/5 near the region
relevant for our purposes. Note, however, that pairing suppresses
LDA violations [2,77] and we expect the corrections to be much
smaller in the relevant region.

The examples in Refs. [42,45] did not have a finite chemical
potential, for some discussion of anisotropic gravity systems
with a chemical potential see Refs. [44,82]. As a first step,
we have analyzed a weakly coupled system with a linear
varying potential in Appendix D and find that the viscosity
does become anisotropic in this case.

However, there is no reason to wait for these theoretical
advances. The central point of this paper is that there is already
enough motivation, based on the behavior quite generically
seen in gravitational systems, to suggest that some components
of the viscosity tensor in anisotropic strongly coupled systems
might well become small, making η/s for these components
potentially even smaller than the KSS bound, 1/4π . Such
a decrease in the viscosity might well happen in cold atom
systems, for example, the unitary Fermi gas, which are
experimentally well studied. As argued above, the range
of values involved for temperature, chemical potential, and
angular frequencies are well within the experimental regime
for such a system, and the scissor mode which is sensitive to the
relevant components of the viscosity has already been realized
experimentally in them. Further, the resulting values for the
energy and the damping time from which the viscosity can be
extracted are in an experimentally accessible range which has
already been achieved.

We hope our experimental colleagues in the cold atom
community will take note of these results, and we implore
them to carry out a study of viscosity in anisotropic traps.
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APPENDIX A: MORE DETAILS ON THE RESULTS OF
SHEAR VISCOSITY FROM GRAVITY

In Ref. [45], several anisotropic theories in (3 + 1)-
dimensional spacetime [the boundary with coordinates
(t,x,y,z)], which are dual to a gravitational theory living in
(4 + 1)-dimensional spacetime (the bulk with an additional co-
ordinate u), were studied. Isotropy was broken by considering
states where some of the fields have a background value that
depended on some of the spatial coordinates x,y,z, explicitly
breaking rotational symmetry between them.

All the examples studied in Ref. [45] share the common
feature that the force responsible for breaking isotropy in the
boundary theory is translationally invariant, as we shall explain
via an example below.

Reference [45] built on the results of Ref. [42], which
studied a simple system consisting of a linearly varying dilaton.
The dilaton field φ couples to the graviton in the bulk via the
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Lagrangian

S = 1

16πG

∫
d5x

√
g

[
R + 12� − 1

2
∂μφ∂μφ

]
, (A1)

where G is Newton’s constant in five dimensions and � is a
cosmological constant. The boundary theory in the absence of
anisotropy is a (3 + 1)-dimensional conformal field theory.

In this system, we can clarify what we mean by saying
that the driving force is constant. The dilaton field in the
background solution here has the profile

φ(t,x,y,z) = ρz. (A2)

Clearly this choice of the background singles out the z

direction, breaking isotropy. In the presence of the dilaton,
the conservation equations for the stress tensor get modified
to be

∂μT μν = 〈O〉∂νφ, (A3)

where O is the operator dual to the field φ. The right-hand side
arises because the varying dilaton results in a driving force on
the system. We see that a linear profile results in a constant
value for ∂νφ and thus a constant driving force.

Let us also mention that in this example, on the gravity
side the linearly varying dilaton gives rise to a translationally
invariant stress tensor and thus a black brane solution which
preserves translational invariance. This corresponds to the fact
that in the field theory the equilibrium stress tensor features
only derivatives of φ and is thus space-time invariant.

We shall see that the cold atom system we consider will
not be invariant under translations in equilibrium. However,
the equations of hydrodynamics [Eq. (B3)] in the presence
of a driving force associated with a space-varying potential
look similar to Eq. (A3), where the operator O in the cold
atom system corresponds to the density and the driving force
is proportional to the gradient of the potential φ(r).

The example considered in Ref. [42] also shares the
property that an SO(2,1) residual Lorentz symmetry survives,
at zero temperature, after breaking isotropy. This residual
Lorentz symmetry corresponds to the t, x, y directions in the
boundary theory. Fluid mechanics corresponds to the dynamics
of the Goldstone modes associated with the boost symmetries
of this residual Lorentz group, which are broken at finite
temperature.

In a general system, the viscosity η is a fourth-order tensor
under rotations relating the deviation of the stress-energy
tensor from its equilibrium value to the velocity gradient. If
the local fluid velocity is v = (vx,vy,vz), we have

δT ij = ηijkl 1
2 (∂kvl + ∂lvk). (A4)

Since we are only considering the effects of the shear
components,

ηijklδkl = 0. (A5)

In the example in Ref. [42], with dilaton profile given by
Eq. (A2), the viscosity components that become small corre-
spond to the ηxzxz,ηyzyz components of the viscosity tensor.
In the subsequent discussion, we shall use an abbreviated
notation,

ηxzxz = ηxz,η
yzyz = ηyz. (A6)

FIG. 8. Fluid flow between two parallel plates. For φ = ρz,
the driving force is in the z direction and is proportional to ρ.
Parametrically small values of the viscosity [Eq. (A12)] govern the
dynamics for flows in the x (or y) direction with a gradient in the z

direction (e.g., vx = v0z).

In the gravity description, these components correspond to
perturbations of the metric which carry spin 1 with respect to
the surviving SO(2,1) residual Lorentz symmetry.

A fluid flow configuration where the frictional force (and
therefore the resulting dissipation) is governed by a spin-1
viscosity component arises as follows. Consider the fluid
enclosed between two parallel plates [45,53] separated along
the z axis by a distance L with the top plate moving with a
speed v0/2 along the x direction while the lower plate moves
with a speed v0/2 along the −x direction; see Fig. 8.

The resulting steady-state solution of the Navier-Stokes
equation, even for the anisotropic case, is remarkably simple,
with

vy = 0, vz = 0, (A7)

the temperature T being a constant and vx being a linear
function of z:

vx = v0

L
z, z ∈ (−L/2,L/2) (A8)

(we have chosen coordinates so that z = 0 lies at the midpoint
between the plates). A constant force per unit area is exerted
by the fluid on both the upper and lower plates, T xz = ηxz∂zvx ,
in this solution (we are compactly writing ηxzxz as ηxz). This
frictional force retards the relative motion of the plates and
must be counteracted by an equal and opposite force acting
on both plates externally to sustain the steady-state solution.7

We also note that for this solution, in the gravity theory under
discussion, hydrodynamics is valid as long as the velocity
gradient v0

L
is small compared to the temperature T .

Using results from the gauge-gravity duality [11], it was
shown in Ref. [45] quite generally that the viscosity component
ηxz behaves like

ηxz

s
= 1

4π

gxx

gzz

∣∣∣∣
u=uh

, (A9)

7It is interesting to note that this solution for v is essentially the
same as that of an isotropic fluid.
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where gxx |u=uh
,gzz|u=uh

refer to the components of the
background metric evaluated at the horizon which we denote
by uh. s refers to the entropy density which in the bulk picture
corresponds to the area of the event horizon.

In the isotropic case, the ratio gxx

gzz
|
u=uh

is unity and we see

that the KSS result is obtained. However, in anisotropic cases,
this ratio can become very different from unity and in fact
much smaller, leading to the parametric violation of the KSS
bound, where the relevant dimensionless parameter is the ratio
of the strength of the anisotropic interaction and an appropriate
microscopic energy scale of the system.

The general result, Eq. (A9), for the behavior of the spin-1
shear viscosity components ηxz = ηyz ≡ η⊥ was studied in the
example of Ref. [42] for two cases, one in the low-anisotropy
regime and the other in the high-anisotropy regime. In this
example, there are two scales of interest, ρ, which enter in the
dilaton profile, Eq. (A2), and determine the anisotropy and the
temperature T (while this theory does not have quasiparticles
at finite T , one can roughly think of the mean free path as being
of the order of 1/T ). Whether the anisotropy is large or small is
determined by the ratio ρ/T , which is dimensionless. Simple
results can be obtained in the limit of low- and high-anisotropy
which correspond to ρ/T � 1 and ρ/T � 1 respectively.

For the spin-1 component of the shear viscosity ηxz =
ηyz ≡ η⊥ the results are as follows:

(1) Low-anisotropy regime (ρ/T � 1):

η⊥
s

= 1

4π
− ρ2 ln 2

16π3T 2
+ [6 − π2 + 54(ln 2)2]ρ4

2304π5T 4

+O

[(
ρ

T

)6]
. (A10)

We see that a small anisotropy at order (ρ/T )2 already reduces
this component of the viscosity and makes it smaller than the
KSS bound. In the limit of zero anisotropy, we recover the
KSS bound

η⊥
s

→ 1

4π
. (A11)

We also note that the driving force in the conservation equation
for the stress tensor [Eq. (A3)] is proportional to ∇φ ∼ ρ

[Eq. (A2)] and the analog of the mean free path is T . Thus, the
corrections go like (∇φ)2

T 2 .
(2) High-anisotropy regime (ρ/T � 1):

η⊥
s

= 8πT 2

3ρ2
. (A12)

We see that in this limit the ratio can be made arbitrarily small,
with η⊥

s
→ 0, as T → 0 keeping ρ fixed.8

In contrast, the ηxyxy component (which couples to a spin-2
metric perturbation) was found to be unchanged from its value

8In this regime, η⊥ ∼ T 4

ρ
and s ∼ T 2ρ, whereas for the isotropic

case (ρ = 0), η⊥ ∼ T 3 and s ∼ T 3. Thus we see that for T � ρ,
η⊥ is smaller than its value in the isotropic case while s is bigger,
resulting in the parametric violation in Eq. (A12).

in the isotropic case,

ηxyxy

s
= 1

4π
(A13)

and thus continues to meet the KSS bound.

APPENDIX B: DERIVATION OF HYDRODYNAMIC
MODES

In this appendix, we will show that the elliptic mode
and the scissor mode satisfy the equations of superfluid
hydrodynamics in the presence of a harmonic trap. There
are viscous corrections to the hydrodynamic equations, but
we work in a limit where viscous corrections are small and
therefore the solutions to the ideal hydrodynamics can be
used to calculate the energy loss rate due to viscosity in a
perturbative manner.

1. Equations of superfluid hydrodynamics

Neglecting viscosity, the superfluid equations are given by
the conservation laws of entropy, mass (particle number),
momentum, and an additional equation for the superfluid
velocity. In the presence of the external potential φ(r), they
are listed below:

∂(ρs)

∂t
+ ∇ · (ρsvn) = 0, (B1)

∂ρ

∂t
+ ∇ · g = 0, (B2)

∂gi

∂t
+ ∇j�ij = −n∇φ(r), (B3)

∂vs

∂t
= −∇

(
v2

s

2
+ φ(r)

m
+ μ(r)

m

)
. (B4)

Here ρ is the total mass density (where ρn and ρs are the normal
and superfluid mass density of the system and the total mass
density ρ = ρn + ρs). We have not written out the dependence
of the velocity on position and time. μ(r) can be thought of as
the local chemical potential. n (not in the subscript) denotes the
total number density (which is related to the total mass density
ρ via the relation ρ = mn), g is the momentum density, and
�ij is the stress tensor, given as follows:

g = ρnvn + ρsvs ,

�ij = Pδij + ρnvn,ivn,j + ρsvs,ivs,j .
(B5)

Let us note that the equation for energy conservation can be
derived from the set of equations above and is not an additional
independent constraint.

Altogether there are eight equations above and they can be
solved for the eight independent variables: six components of
(vs , vn) and T , μ(r). We can then express all thermodynamic
variables as functions of (T , μ(r)) like P (T , μ(r)), s(T , μ(r)),
etc. In the trap geometries we consider, the center of the
trap is superfluid and the outer trap is in the normal phase.
The equations for a normal fluid can be obtained by simply
substituting ρs = 0 and ignoring Eq. (B4).

Let us first look at the equilibrium situation vn = vs = 0
in the absence of external potential φ. Equations (B1), (B2),
(B3), and (B4) are satisfied with μ(r) and P spatially constant.

053601-20



SHEAR VISCOSITY IN AN ANISOTROPIC UNITARY . . . PHYSICAL REVIEW A 96, 053601 (2017)

Before we consider the effects of an external potential, let us
also note that the pressure and number density in the absence
of the trap, which we denote as Pφ=0,nφ=0 respectively, satisfy
the Gibbs-Duhem relation

∂Pφ=0

∂μ
= nφ=0. (B6)

In the presence of the external potential φ(r) with vs = vn = 0,
only Eqs. (B3) and (B4) change. Equation (B4) is satisfied by
taking

μ(r) = μ − φ(r), (B7)

where μ is a global constant that determines the total number
of particles in the system. Equation (B3) in the presence of
φ(r) becomes

∂iP (r) = −n∂iφ(r). (B8)

This is consistent with the replacement μ(r) → μ − φ(r) if
we take the pressure P at a point r in the presence of
the trap to be equal to Pφ=0(T ,μ − φ(r)) and the number
density to be nφ=0(T ,μ − φ(r)). This follows from Eq. (B6),
since ∂iP = − ∂Pφ=0

∂μ
∂iφ = −nφ=0∂iφ. This is also known as

the local density approximation (LDA). Generally, the LDA
corresponds to the conditions

f (μ(r), T ) := fφ=0(μ − φ(r), T ), (B9)

where f is P , n, ρ, or s. In all the subsequent discussions, a
subscript 0 indicates that the conditions for LDA are valid in
equilibrium. Note that in equilibrium T is a constant.

2. Scissor-mode solution to linear order

First, we look for solutions of the form

vn = vs = v (B10)

and ∇ × v = 0. We restrict ourselves to small velocities and
linearize the above equations. For the scissor mode, we see
from Eqs. (7) and (9) that v is given by

v = αeiωt (zx̂ + xẑ), (B11)

where α = αx = αz is a constant. We will solve the equations
to linear order in α.

Let us first explore Eq. (B4). Out of equilibrium (v �= 0),
μ(r) has an extra correction associated with v,

μ(r) = μ − φ(r) + ε(r,t). (B12)

Equation (B4) then gives

ε = −αmxziωeiωt . (B13)

Once we are out of equilibrium, we will see that the
remaining equations are self-consistently solved by letting

fφ �=0(μ(r), T ) := fφ=0(μ − φ(r) + ε(r,t), T ), (B14)

where f is P , n, ρ, or s.

The mass- and momentum-conservation equations, with the
condition Eq. (B10), give

∂ρ

∂t
+ ∇ · (ρv) = 0, (B15)

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇P − n∇φ, (B16)

where φ(r) is the external potential and ρ is the total mass
density (ρn + ρs). By linearizing these equations to order α,9

using Eq. (B14), we get

∂ρ0

∂μ

∂ε

∂t
+ ∇ · (ρ0v) = 0, (B17)

ρ0
∂v
∂t

= −∇
(

∂P0

∂μ
ε

)
−

(
∂n0

∂μ
ε

)
∇φ. (B18)

Using ∂iρ0 = − ∂ρ0

∂μ
∂iφ and using the fact that for the modes

we consider in this paper ∇ · v = 0, we get from Eq. (B17)

∂ε

∂t
− ∂iφvi = 0. (B19)

Plugging in the harmonic potential and the solution of
Eq. (B13), we find that the above equation is solved by the
scissor mode, which satisfies the condition, Eq. (9). Now
taking the time derivative of the Euler equation, Eq. (B18), and
using Eq. (B17) in the second term of the right-hand side of
Eq. (B18) and ∂P0

∂μ
= n0 (total number density at equilibrium),

ρ0
∂2vi

∂t2
= −∂i

(
n0

∂ε

∂t

)
+ ∂j (n0vj )∂iφ

⇒ ρ0
∂2vi

∂t2
+ n0∂i

(
∂ε

∂t

)
= −∂in0

(
∂ε

∂t

)
+ ∂jn0vj ∂iφ

⇒ ρ0
∂2vi

∂t2
+ n0∂i

(
∂ε

∂t

)
= ∂n0

∂μ
∂iφ

(
∂ε

∂t

)
− ∂n0

∂μ
∂jφvj ∂iφ.

(B20)

We see from Eq. (B19) that the right-hand side (RHS) of the
above equation vanishes. For the scissor mode, it follows from
Eqs. (9) and (B13) that the left-hand side (LHS) also vanishes,
and thus the equation is met.

For the time-dependent scissor mode, the mass conservation
equation is

∂ρ

∂t
+ ∇ · (ρv) = 0 (B21)

for vs = vn = v.
Starting with Eq. (B1) and using Eq. (B21), we get

∂s

∂t
+ v · ∇s = 0. (B22)

Assuming that the entropy is of the form s(μ − φ(r) +
ε(r,t)) as given in Eq. (B14) and linearizing in α, we get

∂s0

∂μ

∂ε

∂t
− ∂s0

∂μ
∂iφvi = 0. (B23)

9Note that ε in Eq. (B13) is of order α.
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This equation is valid when Eq. (B19) is met. Hence we find
that the ansatz Eq. (B14) with Eq. (B13) meets all the equations
self-consistently.

3. Elliptic mode solution to linear order

Next we verify that the elliptic mode, Eq. (8), solves the
superfluid equations to linear order in the velocity. Note that
this mode is a stationary solution (ω = 0). Like in the previous
case, we take T to be a constant in this mode. Note that in this
solution vn has a nonzero curl, ∇ × vn �= 0, and therefore in
the absence of vortices vs �= vn. We will denote vn = v below.

We start with Eq. (B4). Since vs = 0 in this mode, we see
that this equation is met if

μ(r) = μ − φ(r), (B24)

where μ on the RHS is an r independent constant.
Next, with vs = 0, the mass and momentum conservation

equations simplify to

∂ρ

∂t
+ ∇ · (ρnv) = 0, (B25)

∂(ρnvi)

∂t
+ ∇j (ρnvivj) = −∇iP − n∇iφ. (B26)

The time derivatives in these equations can be dropped. The
Euler equation, Eq. (B26), is met to order v if P and n take
their form in the LDA approximation, Eq. (B9). We will also
assume that the other thermodynamic values, ρn,s, take this
LDA form and denote them with a subscript 0. Using the fact
that ∇ · v = 0, the other equation, Eq. (B25), becomes

∇ · (ρ0nv) = 0 ⇒ −∂ρ0n

∂μ
∂iφvi = 0, (B27)

where we have used the ansatz, Eq. (B9), for the mass density
of the normal component. For our mode αxzx̂ + αzxẑ with

αz = −ω2
x

ω2
z
αx [see Eq. (8)], one can easily check that

∂iφvi = 0, (B28)

so that this equation is satisfied.
Finally, the entropy conservation equation (after replacing

ρ,s by their LDA values) becomes

∇ · (ρ0s0v) = 0. (B29)

Using the fact that our mode is free of divergence, and ρ0s0 is
a function of μ − φ(r), we see that this equation is also met
when Eq. (B28) is satisfied.

It is interesting to note that the fact that the elliptic mode and
the scissor mode also solve the equations of one-component
fluid mechanics in the normal phase. Since the temperature is
a constant in these modes and the chemical potential varies
as given in Eq. (B7), up to possible corrections of order ε,
Eq. (B12), as one moves from the center of the trap to its
edges, the ratio μ(r)/T becomes smaller and the system will
transit from the superfluid to normal phase. The solutions we
have found above, for both modes, will continue to hold in
such situations as well.

APPENDIX C: IDEAL HYDRODYNAMIC MODES

In this section, we contrast the modes discussed in Sec. III A
with the breathing modes discussed in Ref. [21] in normal
fluids.

We start with the linearized continuity and Euler equations
for a fluid with a polytropic equation of state, which can be used
to derive the following equation valid for ideal fluid dynamics
for the normal component [21]:

m
∂2v
∂t2

= −γ (∇ · v)(∇φ(r)) − ∇(v · ∇φ(r)). (C1)

As shown in Ref. [21], breathing modes can be obtained by
considering a scaling ansatz vi = aixi exp(iωt) (no sum over
i). By substituting in Eq. (C1), one obtains an eigenequation(

2ω2
j − ω2

)
aj + γω2

j

∑
k

ak = 0. (C2)

This is a simple linear equation of the form Ma = 0. Nontrivial
solutions correspond to det(M) = 0.

In the case of a trapping potential with axial symmetry,
ω1 = ω2 = ω0, ω3 = λω0, we get ω2 = 2ω2

0 and [50,67,83]

ω2 = ω2
0

{
γ + 1 + γ + 2

2
λ2

±
√

(γ + 2)2

4
λ4 + (γ 2 − 3γ − 2)λ2 + (γ + 1)2

}
. (C3)

In the unitarity limit (γ = 2/3) and for a very asymmetric
trap, λ → 0, the eigen-frequencies are ω2 = 2ω2

0 and ω2 =
(10/3)ω2

0. The mode ω2 = (10/3)ω2
0 is a radial breathing mode

with a = (a,a,0) and the mode ω2 = 2ω2
0 corresponds to a

radial quadrupole a = (a,−a,0).
Here we consider a different class of modes, with the

scaling form Eq. (C4) (since x and z are exchanged, they are
“twisted”). The eigenequations are now given by Eq. (C5). It

has two solutions, ω = 0 and ω =
√

ω2
x + ω2

y . Hydrodynamic

modes can be obtained by considering an ansatz of the form

v = eiωt (αxzx̂ + αzxẑ). (C4)

Substituting Eq. (C4) in Eq. (C1) gives the simultaneous
equations

ω2αz = αxω
2
x + αzω

2
z ,

ω2αx = αxω
2
x + αzω

2
z .

(C5)

One mode of interest for us is the ω = 0 mode since it has
a velocity profile similar to Fig. 8. This is what we call the
elliptic mode. If ωx = ωz, the mode looks like a rigid body
rotation and cannot exhibit viscous damping. For ωx �= ωz,
however, we get a nonzero energy dissipation due to viscosity
given by Eq. (10). The second mode of interest for us is what
we call the scissor mode, which is well known in the literature.

APPENDIX D: ANISOTROPIC VISCOSITIES IN THE
RELAXATION TIME APPROXIMATION

In this section, we compute the anisotropic shear viscosities
associated with the motion of a weakly interacting Fermi gas
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in the presence of an external potential in the relaxation time
approximation [27]. For this section, we explicitly keep h̄

and c in the expressions to ease comparisons with existing
literature.

The Boltzmann equation in the relaxation time approxima-
tion is

∂f (x,p)

∂xα
Vα + ∂f (x,p)

∂pα
(−∇αφ) = −δf

τ
, (D1)

where f is the distribution function and τ is the effective
relaxation time.

In equilibrium, the distribution function of occupied states
for a weakly interacting gas is given by the Fermi-Dirac
distribution function f0(x,p) = 1/{exp[(ε(p) − p · V (x) −
μ)/T (x)] + 1}, where ε, p represent electron energy and
momentum respectively. If a slowly varying local fluid
velocity Vα (α = 1, 2, 3) is set up in the system, the electron
distribution function is modified. To the lowest order in the
derivatives of Vα , we can write

f (p) = f0(ε) + δf (p), (D2)

where the nonequilibrium correction δf (p) is of the form
where

δf (p) = −
(

∂f0

∂μ

)
vαpβCαβγ δ(ε)Vγδ, (D3)

where Cαβγ δ is a 4-rank tensor, μ represents the electron chem-
ical potential, vα = dε/dpα denotes the electron velocity, and
Vαβ is proportional to the derivative of the macroscopic fluid
velocity defined as follows:

Vαβ = 1

2

(
∂Vα

∂xβ

+ ∂Vβ

∂xα

)
. (D4)

Similarly, in the presence of a slowly varying external
potential φ, Eq. (D2) holds with

δf (p) = −
(

∂f0

∂μ

)
vαDαγ (ε)∂γ φ. (D5)

Here we consider both ∂αφ and Vαβ nonzero, and hence
δf is the sum of Eqs. (D3) and (D5). After canceling out
the terms proportional to D (which are related to conduc-
tivity), the linearized Boltzmann equation within the relax-
ation time approximation of the collision integral takes the
form(

∂f0

∂μ

)(
vαpβ

∂Vα

∂xβ

− 1

3
vαpαdivV

)
= −δf

τ
+ (∇φ) · ∂δf

∂p
,

(D6)

in analogy with Eq. (2) of Ref. [27] for the magnetic field case,(
∂f0

∂μ

)(
vαpβ

∂Vα

∂xβ

− 1

3
vαpαdivV

)

= −δf

τ
+ e

c
(v × B) · ∂δf

∂p
. (D7)

For ease of calculation, let us decompose the ∇φ term on
the RHS of Boltzmann equation as

∇φ = p̂(p̂ · ∇φ) + (∇φ − p̂(p̂ · ∇φ)) = p̂(p̂ · ∇φ)

+p̂ × (∇φ × p̂). (D8)

In what follows, it is useful to define a basis ξ
′

for the
eight-dimensional noncommutative algebra for the 4-rank
tensor Cγδμν built out of the Kroenecker δ, Levi-Civita, and
the components of the unit vector along the direction ∇φ × p̂

denoted by b̂.
The basis ξ ′

1 − ξ ′
8 is defined as

ξ ′
1αβγ δ

= δαγ δβδ + δαδδβγ , ξ ′
2αβγ δ

= δαβδγ δ,

ξ ′
3αβγ δ

= b̂αb̂δδβγ + b̂αb̂γ δβδ + δαγ b̂β b̂δ + δαδb̂β b̂γ ,

ξ ′
4αβγ δ

= δαβ b̂γ b̂δ, ξ ′
5αβγ δ

= b̂β b̂δδγ δ, ξ ′
6αβγ δ

= b̂αb̂β b̂γ b̂δ,

ξ ′
7αβγ δ

= δαγ b̂βδ + b̂αγ δβδ + δαδb̂βγ + b̂αδδβγ ,

ξ ′
8αβγ δ

= b̂αb̂βγ b̂δ + b̂αb̂βδb̂γ + b̂αγ b̂β b̂δ + b̂αδb̂β b̂γ . (D9)

Let us now simplify the L.H.S. of Eq. (D6):(
∂f0

∂μ

)(
vαpβ

∂Vα

∂xβ

− 1

3
vαpαdivV

)

=
(

∂f0

∂μ

)
vαpβVμν

1

2

(
ξ

′
1αβμν

− 2

3
ξ

′
2αβμν

)
. (D10)

Similarly, the R.H.S. of Eq. (D6) can be simplified as
follows:

R.H.S. = −δf

τ
+ (∇φ)α

∂δf

∂ pα

= −δf

τ
+ (p̂(p̂ · ∇φ) + p̂ × (∇φ × p̂))α

∂δf

∂ pα

= −δf

(
1

τ
−

(
p̂ · ∇φ

p

))

−(p̂ × (∇φ × p̂))αvaCaαγ δVγ δ

(
∂f0

∂μ

)
. (D11)

Taking τ to the LHS, we get

τLHS = −δf

(
1 − τ

(
p̂ · ∇φ

p

))

−τ (p̂ × (∇φ × p̂))αvaCaαγ δVγ δ

(
∂f0

∂μ

)

= vαpβVrs

(
∂f0

∂μ

)(
Cαβrs

(
1 − τ

p̂ · ∇φ

p

)

−τb

p
εθβγ b̂γ Cαθrs

)
, (D12)

where b denotes the magnitude of the vector ∇φ × p̂.
Let a = (1 − τ

p̂·∇φ

p
) and x = τb

p
. If we denote the angle

between ∇φ and p̂ as θ , then a = 1 − ∇φτ

p
cos θ and x =

τ∇φ

p
sin θ .

Hence, we get

τLHS = vαpβVrs

(
∂f0

∂μ

)
(aCαβrs − xεθβγ b̂γ Cαθrs). (D13)
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Symmetrizing in α and β, we get

τLHS = vαpβVrs

(
∂f0

∂μ

)
(

a
Cαβrs + Cβαrs

2
− x

εθβγ b̂γ Cαθrs + εθαγ b̂γ Cβθrs

2

)

= vαpβVrs

1

2
Cγδrs

(
∂f0

∂μ

)
[aδαγ δβδ + aδβγ δαδ

+ x(bβδδγα + bαδδγβ)]. (D14)

Subtracting the trace in αβ, we get

τLHS = vαpβVrs

1

2
Cγδrs

(
∂f0

∂μ

)

×
[
aδαγ δβδ + aδβγ δαδ − 2

3
aδγ δδαβ

+ x(bβδδγα + bαδδγβ + bαγ δβδ + bβγ δαδ)

]

= vαpβVrs

1

2
Cγδrs

(
∂f0

∂μ

)(
aξ ′

1 − 2

3
aξ ′

2 + xξ ′
7

)
αβγ δ

.

Now, by combining the LHS and RHS, we finally get

τ

(
∂f0

∂μ

)
vαpβVμν

1

2

(
ξ

′
1αβμν

− 2

3
ξ

′
2αβμν

)

= vαpβVrs

1

2
Cγδrs

(
∂f0

∂μ

)(
aξ ′

1 − 2

3
aξ ′

2 + xξ ′
7

)
αβγ δ

⇒ τ

(
ξ

′
1αβμν

− 2

3
ξ

′
2αβμν

)
=

(
aξ ′

1 − 2

3
aξ ′

2 + xξ ′
7

)
αβγ δ

Cγ δμν.

Writing Cγδμν = (
∑8

i=1 ciξ
′
i γ δμν), we can now solve for the

coefficients

c1 = aτ

2(a2 + 4x2)
, c2 = − τ (a2 − 2x2)

3a(a2 + 4x2)
,

c3 = 3aτx2

2(a2 + x2)(a2 + 4x2)
, c4 = c5 = − 2τx2

a(a2 + 4x2)
,

c6 = 6τx4

a(a2 + x2)(a2 + 4x2)
, c7 = − τx

2(a2 + 4x2)
,

c8 = − 3τx3

2(a2 + x2)(a2 + 4x2)
. (D15)

The viscosity tensor is given as

ηαβab = − 2

(2πh̄)3

∫
d3 p

(
∂f0

∂μ

)
vαpβvγ pδ

(
8∑

i=1

ciξ
′
i γ δab

)
.

(D16)

It is convenient to decompose the tensor ηαβab into
five irreducible components corresponding to five tensors
Mi αβab (i = 0, . . . ,4) in a system with a special direction

Ê = ∇φ/|∇φ| and reflection symmetry:

ηαβγ δ =
4∑

i=0

ηiMi αβγ δ. (D17)

The tensors Mi are

M0 = 3ξ6 − ξ4 − ξ5 + ξ2

3
,

M1 = ξ1 − ξ2 − ξ3 + ξ4 + ξ5 + ξ6,

M2 = ξ3 − 4ξ6, M3 = −1

2
(ξ7 − ξ8),

M4 = −ξ8, (D18)

where the basis ξ1 − ξ8 is defined as

ξ1αβγ δ
= δαγ δβδ + δαδδβγ , ξ2αβγ δ

= δαβδγ δ,

ξ3αβγ δ
= ÊαÊδδβγ + ÊαÊγ δβδ + δαγ ÊβÊδ + δαδÊβÊγ ,

ξ4αβγ δ
= δαβÊγ Êδ, ξ5αβγ δ

= ÊβÊδδγ δ, ξ6αβγ δ
= ÊαÊβÊγ Êδ,

ξ7αβγ δ
= δαγ Êβδ + Êαγ δβδ + δαδÊβγ + Êαδδβγ ,

ξ8αβγ δ
= ÊαÊβγ Êδ + ÊαÊβδÊγ + Êαγ ÊβÊδ + ÊαδÊβÊγ ,

(D19)

where Ê is the unit vector along the gradient of the potential.
The components ηi can be extracted by projecting onto Mi

and performing the three-dimensional momentum integral in
Eq. (D16). For arbitrarily large |τ∇φ|

kF
, the momentum integrals

cannot be performed analytically in general. However, we are
interested in |τ∇φ|

kF
� 1, where the corrections to isotropy just

start to become important. Then one can expand in |τ∇φ| and
perform the angular integrals to obtain

η0 = η(0)

[
1 − 31

21
τ 2(∇φ)2 I2

I1
+ O((τ∇φ)4)

]
,

η1 = η(0)

[
1 − 13

7
τ 2(∇φ)2 I2

I1
+ O((τ∇φ)4)

]
,

(D20)
η2 = η(0)

[
1 − 11

7
τ 2(∇φ)2 I2

I1
+ O((τ∇φ)4)

]
,

η3 = 0,η4 = 0,

where

η(0) =
∫

p6dp
τ

15π2m2h̄3

(
∂f0

∂μ

)
(D21)

is the shear viscosity in the absence of ∇φ, and I1 and I2 are

I1 =
∫

p6dp

(
∂f0

∂μ

)
, I2 =

∫
p4dp

(
∂f0

∂μ

)
. (D22)

In particular, in the degenerate limit (T � μ)(
∂f0

∂μ

)
≈ δ

(
p2

2m
− μ

)
(D23)

and I1
I2

≈ 1
k2
F

, where kF = (3π2n)1/3 as before.
We can write Eq. (D20) in the form of Eq. (64) by relating

the relaxation time τ to the mean free path λ

τ

kF

= τ

kF

EF

EF

= λ

2EF

, (D24)
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where we have used EF /kF = vF /2, and τvF = λ is the mean free path.
This gives

η0 = η(0)

[
1 − 31

84

λ2(∇φ)2

μ2
+ O((τ∇φ)4)

]
, η1 = η(0)

[
1 − 13

28

λ2(∇φ)2

μ2
+ O((τ∇φ)4)

]
,

η2 = η(0)

[
1 − 11

28

λ2(∇φ)2

μ2
+ O((τ∇φ)4)

]
, η3 = 0,η4 = 0, (D25)

where

η(0) = (2mμ)
5
2 τ

15π2h̄3m
(D26)

in the degenerate limit.
Equation (D25) gives an explicit result of the calculation in the relaxation time approximation which shows that the correction

to the viscosity has the form Eq. (64). Hearteningly, the sign of c(i) is negative, meaning that the viscosity is reduced due to the
external potential, a feature found in strongly coupled theories where a quasiparticle description is not possible and hence the
Boltzmann transport equation cannot be used to calculate the viscosity.

Interestingly, in the degenerate limit it is possible to do the momentum integrals analytically for general ∇φ. Using ( ∂f0

∂μ
) =

δ( p2

2m
− μ), we get (here x = ∇φτ√

2mμ
)

η0 = (2mμ)
5
2 τ

96mh̄3π2x5
√

3x2 + 1

[
−8

√
3(x2 + 1(5x4 + 18x2 + 9) tanh−1(x)

− 24x
√

3x2 + 1(5x2 + 3) − 6(8x4 + 11x2 + 3) ln

(
x(7x − 4

√
3x2 + 1) + 1

x(4
√

3x2 + 1 + 7x) + 1

)]
, (D27)

η1 = (2mμ)
5
2 τ

96mh̄3π2x5
√

3x2 + 1

[
−4x(x2 + 3)

√
3x2 + 1

+ 4
√

3x2 + 1(x4 − 6x2 − 3) tanh−1(x) − (3 + 4x4 + 9x2) ln

(
x(7x − 4

√
3x2 + 1) + 1

x(4
√

3x2 + 1 + 7x) + 1

)]
, (D28)

η2 = (2mμ)
5
2 τ

48mh̄3π2x5
√

3x2 + 1

[
8x

√
3x2 + 1(4x2 + 3)

+ 4
√

3x2 + 1(x4 + 6x2 + 3) tanh−1

(
2x

x2 + 1

)
+ (6 + 13x4 + 21x2) ln

(
x(7x − 4

√
3x2 + 1) + 1

x(4
√

3x2 + 1 + 7x) + 1

)]
,

η3 = 0,

η4 = 0.

(D29)

Expanding in small x, we obtain

η0 = (2mμ)
5
2 τ

15π2h̄3m

(
1 − 31τ 2∇φ2

42mμ
+ O

[(
τ∇φ√
2mμ

)4
])

, η1 = (2mμ)
5
2 τ

15π2h̄3m

(
1 − 13τ 2∇φ2

14mμ
+ O

[(
τ∇φ√
2mμ

)4
])

,

η2 = (2mμ)
5
2 τ

15π2h̄3m

(
1 − 11τ 2∇φ2

14mμ
+ O

[(
τ∇φ√
2mμ

)4
])

,

η3 = 0, η4 = 0.
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