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Electron-spectral-line profiles of resonances by attosecond XUV or x-ray pulses
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An attosecond XUV or x-ray pump-control scheme for the electron-spectral-line profiles of Fano and Auger
resonances is proposed and studied. A weak pump resonantly excites the atom and creates the resonance, and
then a second strong attosecond control pulse resonantly coupling the resonance to an valance excited state is
applied at different time delays (�t21). Resonance with lifetimes (1/�) much longer than the pulse duration (τ ) is
studied. It is found that the dynamic variations of the electron spectra can be partitioned into two or three regions
with respect to the time delays and pulse area of the control pulse: explicitly, the overlap region (�t21 <∼ 4τ )
and analysis region (�t21 >∼ 4τ ) in the case with a sub-π -control pulse; and the overlap region (�t21 <∼ 4τ ),
reverse region (∼4τ < �t21 <∼ 2/�), and analysis region (�t21 >∼ 2/�) in the case with a sub-2π -control
pulse. In the case with a sub-π -control pulse, the electron spectral line profiles do not change too much and only
the degrees of asymmetries of the spectra are reduced in the overlap region, while in the analysis region, the main
profiles of the electron spectra are maintained but with modulation structures. In the case with a sub-2π -control
pulse, the electron spectral line profiles totally reverse the asymmetries in the overlap region, while in the reverse
region, the electron spectra keep the reversed asymmetries but with modulation structures, and the electron
spectra pertain the modulation structures in the analysis region but with the main profiles reversed. All these
dynamic features of the electron spectra can be fully understood with the help of an analytic theory, which is also
fully presented based on the time-dependent perturbation theory.
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I. INTRODUCTION

Bound and continuum states are the stationary states of a
quantum system, while resonances are known as the discrete
quantum states embedded in and coupled to continuums in
the time-independent picture, which is introduced by the
configuration interactions between the discrete quantum states
and the continuums [1–3]. Resonances are not stationary states
and occur in quantum collisions as the metastable states of the
scattering system. In electron collisions with an N -electron
target, a resonance (state) is created if the projectile electron
is temporarily captured by the target and compounds with
the target into a metastable state of the (N + 1)-electron
scattering system. While in photon scatterings, the target can
be excited into metastable states, such as doubly excited
states and core hole Auger states of the target, which are
also known as resonances. Explicitly, taking a helium atom
as an example, the doubly excited state He(2s2p, 1P o) can
be considered as a resonance state in electron collisions with
He+(1s) or a resonance in photon scattering with He(1s2).
Shape and Feshbach resonances are the mostly employed
two classifications of resonances from the interaction-potential
picture. The interactions between the projectile electron and
the target are represented by different potential curves, and
each potential curve is known as a channel. If a potential barrier
exists in one channel and is strong enough to temporarily
capture the projectile electron, the state of the potential-barrier-
captured electron can tunnel decay into the same channel and is
known as the Shape resonance. If there are coupled interactions
between two channels, a potential well exists in the up channel
and is deep enough to capture the projectile electron or they
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can compound into a discrete state, and the compounded
discrete state is also energetically above the limits of the down
channel, such kind of discrete state can decay into the down
channel as a continuum by the adiabatic channel interactions
and is known as the Feshbach resonance or Fano resonance
[4–7]. Generally, resonances contribute abrupt changes of the
scattering cross sections and play important roles in quantum
collision dynamics, so the studies of resonance, including
the resonance itself and the methods to study resonance, are
important and of long-standing interest in conventional atomic
and molecular physics [3–13].

The very recent works [14,15] of Pfeifer’s group in
Heidelberg in ultrafast control of resonance have opened up a
new pathway to study resonance and have brought resonances
into the field of ultrafast and strong-field physics. Attosecond
XUV pump and femtosecond IR control [Fig. 1(a)] has become
into a standard technique to manipulate the spectral line
profiles of resonances between the symmetric Lorentzian and
asymmetric Fano line shapes [16–29]. When the resonant
attosecond XUV-pump laser is on, the electrons are excited
in two different pathways: one with the electrons resonantly
excited into the resonance state and the other with the electrons
directly ionized into the continuum. The electrons in the
resonance state simultaneously decay into the same continuum
state as in the second pathway. The electrons from two different
pathways into the same continuum state ultimately interfere
and exhibit the line profiles in the scattering cross sections.
Resonance is created by excitation from an initial reference
state and its existence is independent of the reference state,
while the exhibition of its effects depends on the reference
state. Compared to the time-independent picture, the time-
dependent picture can present a much more clear picture of
the dynamical processes of excitation, decay, and interference
of resonance.
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FIG. 1. Schematics of the XUV or x-ray pump and IR control
(a), and XUV or x-ray control (b) schemes; the control pulse is
time delayed by �t . Note that the pump pulse resonantly excites the
ground state into a resonance state, and the control pulse resonantly
couples the resonance state to other resonance states (a) or the valance
state (b). Generally, the pump pulse would be an XUV pulse if the
resonance state is a lowly excited Fano resonance state, while both
pump and control pulses would be x-ray pulses if the resonance state
is a highly excited Auger state.

With the strong time-delayed femtosecond IR-control laser,
the strong IR pulse could cycle the electrons of the resonance
state through some intermediate states back to the resonance
state and change the wave-packet dynamics (phase and
amplitude) of the resonance state. The inference pattern of the
electron spectra from the two pathways would ultimately be
changed and even reversed between the symmetric Lorentzian
and asymmetric Fano line shapes. Such kind of manipulations
can be easily understood from Fano’s description of resonance
[5–7]. The cross sections at photon energy E is given in terms
of Fano factor q = 〈DE |z|0〉

π〈B|H |CE〉〈CE |z|0〉 as [5–7]

σ (E) = σa

(q + η)2

1 + η2
+ σb, (1)

where η = E−E0
�/2 is the scaled energy difference with E0 and �

as the position and width of the resonance, respectively; σa and
σb represent two portions of the cross section corresponding,
respectively, to transitions from initial state |0〉 to states of the
continuum |CE〉 (normalized to per unit energy) that do and do
not interact with the discrete autoionizing state |B〉; |DE〉 is the
dressed discrete state produced by the interaction of H with the
mixing of the old discrete state |B〉 and the continuum [30]. The
way of changing the wave packet dynamics of the resonance
with IR-control pulse approximately equals to change the
phase and amplitude of the transition matrix element 〈DE|z|0〉
or the Fano factor q. In this way, the profiles of the cross section
can be surely manipulated. Note that when q is changed by

phase π into −q, the profiles of the spectra will be totally
reversed, and when |q| is changed from a big number into a
small one, the profiles of the spectra will be transferred from
the symmetric Lorentzian into asymmetric Fano shape.

The above scheme of attosecond XUV pump and femtosec-
ond IR control is easy to implement and is broadly applied.
However, the strong IR pulse can couple to many unknown
intermediate states [see Fig. 1(a)] and the pulse duration of
the control pulse is not too short compared to the decay
lifetime (1/�, tens of femtosecond) of the resonance state,
which would introduce significant changes to the results by
neglecting the decay during the implementation of the control
pulse. These create great difficulties when analyzing the results
and make the manipulation unpredictable. In this work, we
present an attosecond XUV or x-ray pump-control scheme
[see Fig. 1(b)] for the manipulation of the electron spectral
line profiles of Fano and Auger resonances. Explicitly, a weak
pump resonantly excites the atom and creates the resonance,
and then a strong attosecond control pulse resonantly coupling
the resonance to an valance excited state is applied at different
time delays (�t21). Since generally the present pulses are
much shorter than the lifetime of the resonance state, the
manipulation of the resonance state can be fully understood
with the help of an analytic theory, which is also fully presented
based on the time-dependent perturbation theory. It is found
that the dynamic variations of the electron spectra can be
partitioned into different regions with respect to the time delay,
and the attosecond x-ray control pulse can be even applied to
instantly terminate the wave packet dynamics of the resonance
state with properly selected pulse parameters. At the same
time, the instant information of the wave packet is mapped
onto the electron spectra (see Sec. III for details). Bearing
in mind that because the techniques of creating multicolor x
rays at present-day x-ray free-electron laser facilities (FELs)
of different wavelengths, pulse durations, and relative time
delays are rapidly evolving [31–33], several schemes have
been proposed to produce transform-limited attosecond and
femtosecond pulses [34–37], and the present attosecond XUV
or x-ray pump-control scheme should be feasible in future FEL
facilities. This work presents a pathway for the applications of
attosecond x-ray FELs. At rest, the typical resonance state or
doubly excited state He(2s2p, 1P o) is taken as an example to
fully show the present pump-control scheme. Unless otherwise
stated, atomic units (a.u.) are used throughout the paper.

II. THEORETICAL METHOD

The time-dependent wave-packet-propagation method
[38–42] is employed to evaluate the dynamics of the electronic
states and the electron spectra. The total wave function �(t)
can be formally expanded with the complete basis {|b〉,|κ〉}
of the field-free Hamiltonian as

�(t) =
∑

b

ab(t)|b〉 +
∫

aκ (t)|κ〉dκ, (2)

where {ab(t)} and {aκ (t)} are the corresponding time-
dependent expansion coefficients for the discrete bound basis
|b〉 and continuum basis |κ〉, respectively. Bearing in mind
that high-frequency XUV or x-ray laser pulses are employed
to drive the system, the formal expansion of Eq. (2) can be
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reasonably and greatly simplified by approximately taking into
account the resonantly excited states by the lasers. Explicitly,
for the present study of doubly excited state He(2s2p, 1P o)
by pump and control lasers with frequencies ω1 and ω2,
respectively, the total wave function can be well described as

�(t) = a1s2 (t)|1s2〉 +
∫

dεa1sεp(ε,t)e−iω1t |1sεp〉

+ a2s2p(t)e−iω1t |2s2p〉 + a1s2se
−i(ω1−ω2)t |1s2s〉, (3)

where a1s2 (t), a2s2p(t), a1s2s(t), and a1sεp(ε,t) are the time-
dependent amplitudes of the bound levels |1s2〉, |2s2p〉, |1s2s〉,
and continuum level |1sεp〉, respectively. The rapid evolving

phase factors e−iω1t and e−i(ω1−ω2)t are explicitly separated.
After inserting �(t) into the time-dependent Schrödinger
equation for the total Hamiltonian and applying the rotating-
wave approximation [43,44] and the local approximation
[38,45,46], the following working equations for the expansion
coefficients with a specific electron energy ε can be proposed:

i�̇(ε,t) = H̄(ε,t)�(ε,t), (4)

where

�(ε,t) = [a1s2 (t),a2s2p(t),a1sεp(ε,t),a1s2s(t)]
T (5)

and

H̄(ε,t) =

⎡
⎢⎢⎢⎣

E1s2 − i
2�ph(t) D

†
12(t1,t) 0 0

D12(t1,t) E2s2p − i
2� − ω1 0 D

†
24(t2,t)

D13(t1,t) V E1s + ε − ω1 0

0 D24(t2,t) 0 E1s2s + ω2 − ω1

⎤
⎥⎥⎥⎦. (6)

Ei is the level energy for state |i〉, � = 2π |V |2 is the decay
width of the resonance, and �ph(t) = 2π |D13(t)|2 indicates
the leakage of the ground state by direct photoionization.
The dipole coupling term Dij (ti ,t) = ij

2 g(ti ,t) = dij g0

2 g(ti ,t),
where g0, dij = 〈j |z|i〉 and ij are the pulse electric inten-
sity, transition dipole moment, and Rabi frequency between
states |i〉 and |j 〉, respectively. The Gaussian pulse g(ti ,t) =
e
−4 ln 2 (ti−t)2

τ2 is employed, ti is the pulse center far from
time zero, and the resonant frequencies for the pump and
control pulses are ω1 = E2s2p − E1s2 and ω2 = E2s2p − E1s2s ,
respectively. The electron spectrum σHe+(1s)(ε) pertaining to
the ionic state He+(1s) is given by

σHe+(1s)(ε) = lim
t→∞〈a1sεp(ε,t)|a1sεp(ε,t)〉. (7)

In the numerical calculations, the relative energy levels E1s2 ,
E2s2p, E1s , and E1s2s are 0.0, 60.149, 24.587, and 20.616 eV,
respectively; the decay width � = 0.038 eV or its decay
lifetime 1/� ≈ 17 fs [6]. Attosecond pulses with pulse
duration τ = 0.5 fs, much shorter than the decay lifetime
of the resonance, are employed. Although the transition
dipole d13 depends on the electron energy ε, it is a good
approximation to suppose that the transition dipole is constant
around the peak-electron energy [38–40], and the constant ratio
between the transition dipoles d13/d12 = −7.6 [6] is supposed
and employed. The weak pump pulse (ω1 = 60.149 eV) is
chosen so that the Rabi frequencies 12 = 0.0001 a.u. or
13 = −0.0076 a.u.; the control pulse (ω2 = 39.533 eV) with
pulse area less than 2π will be employed.

III. RESULTS AND DISCUSSIONS

In Eq. (6), the non-Hermitian elements D13(t1,t) and
V correspond to the two different pathways into the ionic
state He+(1s) by direct photoionization and resonance decay,
respectively. Bearing in mind that the pump pulse is weak,
we can approximately split a1sεp(ε,t) into two parts from
the bound and continuum pathways within the first order of

time-dependent perturbation theory as

a1sεp(ε,t) = a1s2→2s2p→1sεp(ε,t) + a1s2→1sεp(ε,t). (8)

The bound and continuum pathways interfere and result
in the line profiles in the electron spectra [5–7,30,47].
The corresponding equations of motion and solutions for
a1s2→2s2p→1sεp(ε,t) and a1s2→1sεp(ε,t) are listed in the ap-
pendix, and we have

a1s2→2s2p→1sεp(ε,t)

t1<t2<t→∞≈ −V sin
S1

2

1 + (
cos S2

2 − 1
)
e− �

2 �t21+i�ε�t21

�
2 − i�ε

× e−i�ε(t−t1)

a1s2→1sεp(ε,t)

t�t1≈ −i
13

2

√
π

e− �ε2τ2

16 ln 2√
4 ln 2

τe−i�ε(t−t1). (9)

where S1 = √
π

4 ln 2τ12 and S2 = √
π

4 ln 2τ24 are the pulse
areas (the time-integrated intensity profile) for the pump and
control pulses respectively, �t21 = t2 − t1 and �ε = E1s +
ε − ω1. Note that Eq. (9) is achieved by reasonably ignoring
the resonance decay during the attosecond pulses.

For the general study of resonances with only the pump
pulse, Eq. (9) can reduce into

a1s2→2s2p→1sεp(ε,t)
t1<t→∞≈ −V sin

S1

2

e−i�ε(t−t1)

�
2 − i�ε

a1s2→1sεp(ε,t)
t�t1≈ −i

13

2

√
π

e− �ε2τ2

16 ln 2√
4 ln 2

τe−i�ε(t−t1),

(10)

which tells a lot about the line profiles: (1) The line profile
of the bound pathway is proportional to the Lorenz profile

1
1+( �ε

�/2 )2 and only depends on the decay width �, and the

full-width half-maxima of the line profile is exactly the decay
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FIG. 2. Evaluations of Eq. (10) based on the parameters [below
Eq. (7)] presented in the last section for resonance He(2s2p, 1P o).
Panel (a) shows the absolute squares for the bound pathway
a1s2→2s2p→1sεp , the continuum pathway a1s2→1sεp , and the total
continuum wave packet a1sεp; panel (b) shows the relative phase
or argument without the phase term e−i�ε(t−t1) for both the bound
pathway and continuum pathway.

width � [see Fig. 2(a)]. (2) The line profile of the continuum

pathway is proportional to the Gaussian profile e− �ε2τ2

8 ln 2 and
depends on the pulse duration [see Fig. 2(a)]. Note that the
profile should be also modulated by the transition dipole 2

13;
however, 2

13 can be considered as quasiconstant around the
energy region of �ε and is not discussed here. In the limit
of the long pulse with monochromatic light, �ε → 0 and

e− �ε2τ2

8 ln 2 → 1, the line profile can only be achieved by scanning
the frequencies of the monochromatic light pulses and is
quasiconstant. While in the limit of an ultrashort attosecond

pulse with broad bandwidth, τ → 0 and e− �ε2τ2

8 ln 2 → 1, the line
profile is also quasiconstant around the energy region of �ε.
Actually, before the advent of the attosecond pulses, the line
profiles of photoionization could only be studied by scanning
the frequencies of the long pulses (e.g., synchrotron radiation);
now, ultrashort attosecond pulse with broad bandwidth can
interact with the system simultaneously by a bunch of different
frequencies and the efficiencies are almost constant around
the energy region of �ε. (3) After throwing away the same
phase term e−i�ε(t−t1) for the bound and continuum pathways,
the continuum pathway does not change the phase around
the whole energy region of �ε, while the bound pathway
changes the phase by almost π when �ε changes from the
negative-energy region into the positive-energy region (the
energy region of �ε is much broader than �) [see Fig. 2(b)].
Furthermore, supposing d12 and d13 are the signed scalars
with the same sign and supposing that both transition dipoles
are parallel (or antiparallel) to the induced field or d12/d13

is positive, the bound pathway is almost out of phase and
in phase with the continuum pathway in the negative- and
positive-energy regions of �ε, respectively, and vice versa.
It is obvious that such kind of phasing in the negative- and
positive-energy regions between the bound and continuum
pathways will result in the enhancement and suppression of
the cross sections in the negative- or positive-energy regions,

and the electron spectra exhibit the famous asymmetric Fano
profile. When d12 and d13 are the signed scalars with the same
(or opposite) signs, the Fano factor q ≈ 1

πV
d12
d13

[5–7] will be
positive (or negative), and the electron spectra will exhibit
the dip-peak (or peak-dip) line profiles with the increasing of
the electron energy. (4) When only the bound pathway plays
important role, or d12/d13 � 1 and |q| � 1, such as in the
case of the Auger state, the electron spectra will exhibit a
peak close to the Lorenz profile. Note that when ultrashort and
strong pump pulses are employed, other pathways will also
play important roles, and the Auger electron spectra would
be totally changed [39,48,49]. (5) Actually this model can
not well describe the case with the continuum pathway only
playing important role or |d12/d13| → 1 and |q| → 0, when
the electron spectra will exhibit a inverse window [5–7]. In
such a case, bound state |2s2p〉 does not dominate the dressed
bound state any more and should be replaced by the dressed
bound state, which, however, has the formal expression of
the principal part of an integration and cannot be explicitly
expressed [5–7,30]. Note that we will not study such cases
in this work, and the above comments of Eq. (10) with only
the pump pulse is significant to fully understand the buildup
process of the profiles of the electron spectra.

In the present study with the attosecond pump-control
scheme, the manipulation of the wave-packet dynamics of
the resonance is performed with the help of a time-delayed
strong control pulse with pulse area S2 = √

π
4 ln 2τ24. Figure 3

shows the time-delayed photoelectron spectra for the pulses
with S2 = 0.75π and S2 = 1.25π , the typical cases with pulse
area less than π and 2π , respectively. Note that the results
are numerically solved from Eqs. (4)–(7) by giving a specific
free electron energy ε and time delay �t21 = t2 − t1, which
is almost the same as the analytic results of Eqs. (8) and (9)
except in the time domain where two pulses largely overlap
each other. As the figures show, the dynamic evolutions of the
time delayed spectra are totally different for the two typical
cases in the region with scaled energy (ε − ε0)/� ∼ 0 and
�t21 <∼ 30 fs.

In the case with a sub-π -control pulse [S2 = 0.75π ; see
Fig. 3(a)], the time-delayed spectra is clearly partitioned into
two regions (�t21 <∼ 4τ and �t21 >∼ 4τ ). In the region of
�t21 <∼ 4τ , the pump and control pulses to some extent
overlap each other, so it can be called the overlap region.
In the overlap region as shown in Fig. 3(a), it is interesting
to notice that the electron spectral line profiles only reduce
the degrees of asymmetries compared to the ones without the
control pulse. It indicates the pump and control pulses do not
interact with each other too much in this overlap region with
the a sub-π -control pulse, and the control pulse mainly plays
the role of transferring the wave packet from the resonance
(state |2s2p〉) to the control state (state |1s2s〉) and reducing
the wave-packet dynamics of the resonance. In the region of
�t21 >∼ 4τ , the control pulse is far behind the pump pulse
and they do not overlap each other; the effects of the attosecond
control pulse can be well analyzed by Eq. (9) and this can be
called the analysis region. In the analysis region as shown
in Fig. 3(a), the electron spectra are characterized by the
modulation structures and close to asymmetry profiles without
the control pulse. These features can be easily understood
with the help of Eq. (9). The phase term ei�ε�t21 results in the
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FIG. 3. Time-delayed photoelectron spectra |a1sεp|2 with attosecond control pulses of pulse area S2 = 0.75π (a) and 1.25π (b), ε0 =
E1s − ω1 = 35.562 eV and � = 0.038 eV. The upper panels are the contour plots of the spectral intensity with respect to the time delay
�t21 and scaled energy (ε − ε0)/�; the lower panels are the snapshots of the spectral intensity for selected time delays. The lower and upper
horizontal dashed lines in the upper panels correspond to time delay �t21 = 4τ (2 fs) and 2/� (34 fs), respectively, which can be approximately
considered as the division of different spectral regions. To better differentiate the curves in the lower panels, the curves for �t21 = 1.0, 4.0,
20.0, 40.0, and 60.0 fs have been shifted down by 0.0003, 0.0006, 0.0009, 0.0012, and 0.0015 arbitrary units, respectively.

modulation structures in the spectra. With the increasing of the
time delay, the modulation turns more apparent; however, the
fast decay term e− �

2 �t21 (proportional to the remaining wave
packet of the resonance when the control pulse is on) reduces
its depths. The term 1 + (cos S2

2 − 1)e− �
2 �t21+i�ε�t21 shows the

intensity of the wave packet of the resonance after the control
pulse. Obviously when the time delay is very big, the remaining
wave packet of the resonance, proportional to the fast decay
term e− �

2 �t21 , that can be manipulated by the control pulse
is negligible, and the electron spectra return into the ones
without the control pulse. In most cases with a short time
delay, the sub-π -control pulse turns cos S2

2 − 1 < 0 and the

phase of 1 + (cos S2
2 − 1)e− �

2 �t21+i�ε�t21 is almost around zero,
which equals the reduction of the transition matrix d12 and the
Fano factor |q ≈ 1

πV
d12
d13

| (the sign of q does not change), and
therefore the asymmetric profiles of the electron spectra of the
resonance do not change but only become reduced.

In the case with a sub-2π -control pulse [S2 = 1.25π ;
see Fig. 3(b)], the time-delayed spectra can also be roughly
partitioned into the overlap region (�t21 <∼ 4τ ) and analysis
region (�t21 >∼ 4τ ); however, as shown in Fig. 3(b), it
would be more appropriate to partition the analysis region
into a reverse region (∼4τ < �t21 � 2/�) and the analysis
region (�t21 � 2/�), since the line profiles of the spectra
in the reverse region experience asymmetric changes from
that of Fig. 3(a). In the overlap region, the sub-2π -control
pulse is strong enough to cycle the wave packet of the
resonance back to the resonance through the control state
with the phase changed by π , and provides a new pathway

to interfere with the wave packet of the resonance by the
pump pulse. The strong interaction results in the changes
of the sign of the Fano factor q and the electron spectra
totally reverse their line profiles from the peak-dip asymmetry
into the dip-peak asymmetry. In the rest region, the electron
spectra are characterized by the modulation structures from the
phase term ei�ε�t21 , while the spectra gradually reverse back
the line profiles from the dip-peak asymmetry into peak-dip
asymmetry with the increasing of time delay from the reverse
region into the analysis region. The variations of the electron
spectra in both reverse and analysis regions can be analyzed
by Eq. (9); the differences come from the results of the fast
decay term e− �

2 �t21 , characterizing the remaining wave packet
of the resonance that can be revered by the attosecond sub-2π -
control pulse. In the reverse region (∼4τ < �t21 � 2/�) with
e− �

2 �t21 > e−1, the accumulated decays from the reversed wave
packet with phase changed by π by the control pulse dominate
contributions to the electron spectra and the electron spectra
exhibit the dip-peak profiles from the π -phase-changed wave
packet after the control pulse; while in the analysis region
(�t21 � 2/�) with e− �

2 �t21 < e−1, where there is not much
remaining wave packet of the resonance that can be reversed by
the control pulse, the electron spectra would keep the peak-dip
profiles and gradually return into the case without the control
pulse with the increase of time delays. Note that the profiles of
the time-delayed spectra exhibit different features in different
regions and change gradually through different regions with
respect to the time delay; the exact division for the regions
should be meaningless. However, the different features of
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(a) (b)

FIG. 4. Similar to Fig. 3, but for the time-delayed module squares of the bound pathway |a1s2→2s2p→1sεp|2 with attosecond control pulses
of pulse area S2 = π (a) and 2π (b), and the curves in the lower panels are not shifted.

the spectra in different regions come from different physical
origins, the division of the spectra should be significant, and
the present divisions around 4τ and 2/� should be reasonable.
The case in which the control pulse comes much earlier than the
pump pulse (no overlap between the pulses) is not necessarily
or explicitly presented and discussed. In such a case, the control
pulse plays no role, since the resonance has not yet been created
by the pump pulse while the control pulse has gone, and such
a case should be the same as the case with only the pump pulse
(no control pulse).

In the two limited cases of π - and 2π -control pulses,
the π -control pulse can totally empty the population of the
resonance and freeze its wave-packet dynamics, the snapshot
of the wave packet of the resonance is imprinted in the electron
spectra, and the attosecond π -control pulse acts as a scissor
and breaks down the wave-packet dynamics instantly. The
2π -control pulse can change the phase of all the remaining
wave packets of the resonance by π , resulting in the greatest
changes of the wave-packet dynamics and the line profiles of
the electron spectra. The present pump-control scheme directly
interrupts the bound pathway to manipulate the electron spec-
tra, and resonances with the dominated channel of the bound
pathway, such as Auger states, should be more efficiently
performed and observed. Figure 4 shows the time-delayed
module squares of only the bound pathway |a1s2→2s2p→1sεp|2,
to approximately simulate the electron spectra of Auger states,
in the cases of π - and 2π -control pulses. As revealed in
the figure, despite the very clear modulation structures from
the phase term ei�ε�t21 , the changes of the amplitude with
respect to the time decay �t21 around �ε = 0 are also

very significant, and the spectra exhibit clear dips around
�ε = 0 in a broad range in the region ∼4τ < �t21 � 2/� for
S2 = 2π . Bearing in mind that the advent of multicolor strong
attosecond x ray is feasible at present FELs [31–37] and the
Auger electron spectra is clean with negligible background,
the present scheme could be first implemented for Auger
states.

IV. CONCLUSIONS

In conclusion, we propose an attosecond XUV or x-ray
pump-control scheme for the manipulation of electron spectral
line profiles of Fano and Auger resonances. All the dynamic
features of the electron spectra are fully understood with the
help of analytic theory, which is also presented based on
the time-dependent perturbation theory. In the present pump-
control scheme, an weak pump resonantly excites the ground
state of an atom and creates the resonance, and a second strong
attosecond control pulse resonantly couples the resonance to an
valance excited state at different time delays (�t21). Resonance
with lifetime (�) much longer than the pulse duration (τ ) is
studied. It is found that the dynamic variations of the electron
spectra can be partitioned into overlap region (�t21 � 4τ ) and
analysis region (�t21 � 4τ ) in the case with a sub-π -control
pulse; and overlap region (�t21 � 4τ ), reverse region (∼4τ <

�t21 � 2/�), and analysis region (�t21 � 2/�) in the case
with a sub-2π -control pulse. In the case with a sub-π -control
pulse, the electron spectral line profiles do not change too
much and only the degrees of asymmetries are reduced in
the overlap region. In the analysis region, the main profiles
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of the electron spectra are maintained but with modulation
structures. In the case with a sub-2π -control pulse, the electron
spectral line profiles totally reverse the asymmetries in the
overlap region, while in the reverse region, the electron spectra
keep the reversed asymmetries but with modulation structures.
The electron spectra pertain to the modulation structures in

the analysis region but with the main profiles reversed back.
Although the helium resonance |2s2p, 1P 〉 (strictly speaking,
|2s2p, 1P 〉 should be the Feshbach resonance of He+) is
studied as an example, the conclusion of this work is of broad
interest and can be extended to other resonance and other
systems.

ACKNOWLEDGMENTS

Grants from the National Basic Research Program of China (No. 2013CB922200), Shaanxi Normal University, the
Organization Department of CCCPC, NSFC (No. 11604197), and the Science Challenge Program of China (No. TZ2016005)
are acknowledged.

APPENDIX

This part presents the analytical solutions for Eqs. (4)–(6) with conditions. With the weak pump pulse and in the first order
of time-dependent perturbation theory, the wave packet of the ground state can be well supposed as a1s2 (t) ≈ 1, and bearing in
mind that the non-Hermitian elements D13(t1,t) and V in Eq. (6) correspond to the two different pathways into the ionic state
by direct photoionization and resonance decay, respectively, Eqs. (4)–(6) can be approximately split into the following two sets
with the resonant pulses as [

0 0
13

2 g(t1,t) �ε

][
a1s2 (t)

a1s2→1sεp(ε,t)

]
= i

[
ȧ1s2 (t)

ȧ1s2→1sεp(ε,t)

]
(A1)

and ⎡
⎢⎢⎢⎣

0 12
2 g(t1,t) 0 0

12
2 g(t1,t) − i

2� 0 24
2 g(t2,t)

0 V �ε 0

0 24
2 g(t2,t) 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1s2 (t)

a2s2p(t)

a1s2→2s2p→1sεp(ε,t)

a1s2s(t)

⎤
⎥⎥⎥⎦ = i

⎡
⎢⎢⎢⎣

ȧ1s2 (t)

ȧ2s2p(t)

ȧ1s2→2s2p→1sεp(ε,t)

ȧ1s2s(t)

⎤
⎥⎥⎥⎦, (A2)

where �ε = E1s + ε − ω1, g(ti ,t) = e
−4 ln 2 (t−ti )2

τ2 , a1sεp(ε,t) = a1s2→2s2p→1sεp(ε,t) + a1s2→1sεp(ε,t), and a1s2 ≈ 1. Note that in
the numerical calculation, the equations are propagated from time zero, and the pulse center is set far from time zero, or ti � 0,
and we keep these conditions here. a1s2→1sεp(ε,t) can be solved from Eq. (A1) for time far from the pump pulse or t � t1 as

a1s2→1sεp(ε,t)
t�t1≈ −ie−i�εt

∫ t

0

13

2
g(t1,t)e

i�εtdt = −i
13

2

√
π

e− �ε2τ2

16 ln 2√
4 ln 2

τe−i�ε(t−t1). (A3)

The solutions of Eq. (A2) can be imposed with some conditions. We consider the case of the attosecond control pulse far from
the pump pulse or t2 � t1, and bearing in mind that the pulses are much shorter than the decay lifetime or τ 
 1/�, the resonant
excitation to a2s2p(t) and the spontaneous decay to a1s2→2s2p→1sεp(ε,t) can be well approximated into two independent steps:
First, a2s2p(t) is excited by the pulses by ignoring the decay during the pulse, and then the decay to a1s2→2s2p→1sεp(ε,t) takes
place by shifting the staring time to the pulse center. With these assumptions, a2s2p(t) can be well solved as

a2s2p(t)
t>t1≈

{
−i sin S1

2 e− �
2 (t−t1),t < t2

−i cos S2
2 sin S1

2 e− �
2 (t−t1),t � t2

, (A4)

where S1 = √
π

4 ln 2τ12 and S2 = √
π

4 ln 2τ24 are the pulse areas for the pump and control pulse respectively. The terms of
−i sin S1

2 and cos S2
2 are related to the excitations by the attosecond pump pulse and probe pulse by ignoring the decay during

these pulses, respectively, and e− �
2 (t−t1) corresponds to the relatively long resonance decay part. Finally, a1s2→2s2p→1sεp(ε,t) can

be achieved as

a1s2→2s2p→1sεp(ε,t)
t1<t2<t≈ −iV e−i�ε(t−t1)

∫ t

ti

a2s2p(t ′)e− �
2 (t ′−t1)ei�ε(t ′−t1)dt ′

t1<t2<t≈ −V sin
S1

2

1 + (
cos S2

2 − 1
)
e− �

2 �t21+�ε�t21 − e− �
2 (t−t1)+i�ε(t−t1)

�
2 − i�ε

e−i�ε(t−t1)

t1<t2<t→∞≈ −V sin
S1

2

1 + (
cos S2

2 − 1
)
e− �

2 �t21+i�ε�t21

�
2 − i�ε

e−i�ε(t−t1), (A5)
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where �t21 = t2 − t1. For the case without the control pulse, Eq. (A5) can reduce into

a1s2→2s2p→1sεp(ε,t)
t1<t→∞≈ −V sin

S1

2

e−i�ε(t−t1)

�
2 − i�ε

. (A6)
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