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Optimizing fingerprinting experiments for parameter identification: Application to spin systems
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We introduce the optimal fingerprinting process which is aimed at accurately identifying the parameters which
characterize the dynamics of a physical system. A database is first built from the time evolution of an ensemble
of dynamical systems driven by a specific field, which is designed by optimal control theory to maximize the
efficiency of the recognition process. Curve fitting is then applied to enhance the precision of the identification.
As an illustrative example, we consider the estimation of the relaxation parameters of a spin-1/2 particle. The
experimental results are in good accord with the theoretical computations. We show on this example a physical
limit of the estimation process.
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I. INTRODUCTION

The fingerprinting method is a well-known technique
generally used for determining the identity of a person. The
basic concept is illustrated in Fig. 1. The overall process can
be decomposed into three different steps: (i) a fingerprint
recording of an ensemble of subjects, (ii) the creation of
a database (also called dictionary) where fingerprint images
are associated with person identities, and (iii) a recognition
process where a numerical search algorithm finds the closest
database element to the fingerprint of an unknown subject.
Assuming that fingerprints are different for each person, a
mapping between fingerprints and persons can be defined,
making possible the identification protocol.

This idea can be generalized to any system which has unique
properties that can be revealed by a measurement process.
This approach can be applied in a static setting, but also in a
dynamical one where the system is subjected to an external
control field. In this latter case, each element of the database
corresponds to the time evolution of some observables under
the action of the field, thus increasing the complexity of the
fingerprints and the precision of the estimation. This idea has
been recently adapted to magnetic resonance imaging (MRI)
for the identification of tissue parameters [1]. This initial
investigation led to an impressive number of studies in this
domain (see, e.g., Refs. [2,3] to cite a few). A crucial issue
in this fingerprinting process is the design of the excitation
field. A simple approach using a time-dependent random field
was proposed in [1] in order to limit the correlations between
the different fingerprints. However, this approach does not
incorporate information about the system dynamics and the
recognition process and is therefore not expected to reach its
precision limit. To overcome this fundamental difficulty, we
propose in this paper to combine a standard fingerprinting
process with recently developed optimal control techniques
in quantum control [4–6]. This optimal fingerprinting process
(OFP) allows us to maximize the efficiency of the identification
and to minimize the errors made in the parameter estimation.
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As an illustrative example, this method will be used to
identify the relaxation parameters of a spin-1/2 particle. In this
case, the estimation is made from a series of free-induction
decay signals induced by impulsive excitations of different
intensities. Note also that the measurements we consider are
classical as they result from a continuous measurement of
a large number of quantum systems. Nevertheless, the same
type of processes [7,8] could be carried out with quantum
measurements in quantum metrology [9,10]. Closely related
but different concepts using external fields to estimate the
parameters of quantum systems have also been developed in
the past few years [11–18]. The combination of optimization
and fingerprinting techniques has been explored in recent
works in MRI [3,19].

The paper is organized as follows. Section II describes the
theoretical framework of the method. The technique is applied
in Sec. III to estimate the relaxation parameters of a spin
system. The stability of the estimation in the presence of noise
is discussed and analyzed numerically. The efficiency of the
optimal fingerprinting process is demonstrated experimentally
in Sec. IV on a spin-1/2 particle by using techniques of nuclear
magnetic resonance. Conclusion and prospective views are
given in Sec. V. A mathematical description of the method and
numerical results are reported respectively in Appendixes A,
B, and C.

II. THEORETICAL FRAMEWORK

We start the analysis with a general presentation of the
method on an abstract system. We refer the reader to Appendix
A for a detailed mathematical description of this technique.
The state of the system is given at a time t by �(t) ∈ H (H is
generally a Hilbert space), whose dynamics are governed by
the following differential equation:

�̇ = Ĥ (�S,u(t))�, (1)

where Ĥ is a linear operator (the Hamiltonian for quantum
systems), �S ∈ Rp defines the p unknown parameters to
estimate, and u(t) is the control field. For a generic control
field, the resulting time evolution �(t) will be different for each
system characterized by different �S. The experimental system
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FIG. 1. Fingerprinting principle: a physical system is identified
by using a pattern recognition between a fingerprint measurement
and the elements of a database.

returns a specific response g(�S0,t). This response defines the
fingerprint of the system and is assumed to be unique for
a given vector �S0. In this measurement process, note that
experimental noise has to be accounted for. This point will
be investigated in the section about the case study in NMR.

The database is built from numerical simulations of the time
evolution of N systems characterized by specific values of the
�S parameters, denoted {�Sn}n=1,...,N . The database is defined as
a set {fn(t)}n=1,...,N of N real functions associated with each
�Sn. The vector �S0 is determined from the best match between
g(t) and one of the elements fn(t) of the dictionary. This leads
to the estimation �S0 � �Sk for the experimental system, where
k ∈ {1, . . . ,N}. The match is performed by minimizing the
functional D (called the recognition map) over the elements
of the dictionary. D is defined as follows:

D[fn,g] =
∥∥∥∥ fn

||fn|| − g

||g||
∥∥∥∥

2

. (2)

In Eq. (2), the two vectors are divided by their norm to
eliminate a possible scaling factor between the experimental
data and the theoretical model.

At this point, the method can be performed for any control
field that distinguishes the elements of the dictionary. OFP
is defined by introducing a figure of merit which is aimed
at maximizing the distance between the elements of the
dictionary, and thus improving the recognition process and the
precision of the method. This functional C can be expressed
as

CN = 1

2N2

∑
m,n

μmnD[fm,fn], (3)

where the μmn are some weight factors. The parameter CN is
the normalized average distance between the N elements of
the dictionary. The normalization factor ensures that CN � 1
when all weights μmn = 1 (see Appendix A). Maximizing
this quantity allows the minimization of the overlap of g with
the other functions of the dictionary and thus the error made
in the estimation procedure. As described in Appendix B, a
generalized version of the optimal control GRAPE algorithm
[6,20] can be used to numerically generate the control field. We
stress that this extension is not trivial since the maximization of
the distance between the different systems is not made at one

Gradient Ascent
Algorithm

FIG. 2. OFP is composed of two different loops. The first loop
(yellow or light gray arrows) is the standard fingerprinting process.
A control field u(t) is designed at the starting point of the loop.
This field is applied to a physical system which returns a specific
response g(t). On the other side, the response is computed numerically
for an ensemble of physical systems with different values of the
parameters. These simulations define a dictionary of functions fn(t).
The recognition process allows us to find the best match between
elements of the dictionary fn and the result of the measurement g (see
the text for details). The second loop (orange or dark gray arrows)
describes the dictionary optimization. The optimization is performed
for an ensemble of N systems with different values of the parameters.
An optimal control algorithm is used to maximize numerically the
figure of merit CN .

point but for the whole time evolution. OFP is schematically
described in Fig. 2.

III. CASE STUDY IN NUCLEAR MAGNETIC RESONANCE

As an illustrative example, we investigate the estimation of
the relaxation parameters of a spin system by OFP in NMR
[21,22]. We consider an inhomogeneous ensemble of spin-
1/2 particles with different resonance offsets ω and radio-
frequency inhomogeneities α whose dynamics are ruled by
the Bloch equations. In the rotating frame, the equation of
motion for each isochromat is given by [21,23]

d

dt
�M =

⎛
⎜⎜⎜⎝

1 0 0 0

0 − 1
T2

−ω αωy(t)

0 ω − 1
T2

−αωx(t)
1
T1

−αωy(t) αωx(t) − 1
T1

⎞
⎟⎟⎟⎠ �M, (4)

where �M = (1,Mx,My,Mz)t is the extended Bloch vector (the
radius of the Bloch ball is normalized to 1) and M (ω)

x,y,z its
coordinates along the x,y,z directions. In this case, note that
H = R4. The relaxation times T1 and T2 are assumed to be
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the same for all the isochromats of the sample. The control
amplitudes are given by ωx(t) and ωy(t). ω is the resonance
offset and the parameter α describes the experimental scaling
of the radio-frequency field applied to the sample [23]. In this
example, OFP is used to estimate the parameters T1 and T2, and
the measured signal results from the average magnetization of
the spins with different values of ω and α. The functions of
the dictionary are given by

fn(t) = (
M̄ (n)

x (t),M̄ (n)
y (t)

)
, (5)

where M̄μ, μ = x,y, is the average of Mμ over the sample.
The averaging procedure is defined by using a probability
distribution in ω and α which can either be known before the
optimization of the database or adjusted during the recognition
process (see below for an example).

The control field is a sequence of short pulses (with respect
to T1 and T2), modeled by Dirac distributions:

ωμ(t) =
Np∑
k=1

ωμ,kδ(t − kT ), μ = x,y, (6)

where ωμ,k is the amplitude of the kth pulse, Np the
number of pulses, and T the time between each pulse. This
approximation leads to a straightforward time discretization of
the dynamics of the system. The measured signal corresponds
to the average magnetization just after each δ pulse, (M̄ (n)

x (t =
kT ),M̄ (n)

y (kT )) with k = 1, . . . ,Np.
We first analyze the ideal situation of a homogeneous

ensemble of spin-1/2 particles irradiated on resonance, which
is described by Eq. (4) with ω = 0 and α = 1. We assume
that T2 = 0.2 s is perfectly known, the goal being to estimate
the value of T1 = 0.3 s. To simplify the presentation of the
results, we consider a simple database associated with four
values of T1: 0.1, 0.233, 0.366, and 0.5 s. Following the
general procedure of OFP, we compute the optimal field for
this dictionary in the case where all the coefficients μmn are
set to 1. The time T is set to 10 ms. The efficiency of the
optimal solution is benchmarked against a time-dependant
random field as shown in Fig. 3, which displays the recognition
map (T1(m),T1(n)) �→ D[fm,fn] for the two databases and
the time evolution of the different elements of the dictionary.
The contrast of Fig. 3 gives a first quantitative measure of
the precision of the recognition process. In this example, CN

is equal to 0.06 for the optimal fields and 0.03 under the
random fields. The minimum values of the recognition maps
are respectively 0.019 and 0.001.

A first estimation of the value of T1 can be made directly
with the color bars of Fig. 3 and leads to T1 � 0.366 s. Better
accuracy of the fingerprinting process can be obtained by
increasing the size of the dictionary. However, this procedure
has a limit in terms of computational time, in particular to find
the global optimum of the problem since the complexity of the
control landscape increases rapidly with N . These numerical
difficulties inherent to OFP can be avoided by using curve fit-
ting in the postmeasurement lookup stage. The fit is made with
a minimization of D based on a descent gradient algorithm
with respect to the parameters �S (here T1 and T2). In this case,
the control field is fixed and a discrete derivative is used to
compute the gradient (∂T1D[f (T1,T2),g],∂T2D[f (T1,T2),g]).
Numerical simulations reveal that this approach converges

FIG. 3. Dictionary is composed of four elements regularly dis-
tributed in the interval T1 ∈ [0.1,0.5] s. Giving an optimal (d) and
a random (h) control field [the black and the red (dark gray) lines
represent respectively ωx and ωy], we can compute the associate
square modulus of dictionary functions (c) and (g). The dictionary
functions are dimensionless. The efficiency can be checked with
the recognition maps (T1(m),T1(n)) �→ D[fm,fn] in (b) and (f). The
panels (a) and (e) show the distance between the elements of the
dictionary and the system to identify (T1 = 0.3 s). The parameter k

refers to the pulse number in the control process.

after 50 or 100 iterations. Note that this concept is close to
the Levenberg-Marquardt method [24], which is included in
most of the curve fitting codes. For the ideal system, we obtain
T1 = 0.3 s both for the optimal and the random fields.

We investigate the stability in the presence of noise of this
approach. An experimental example is displayed in Fig. 4,
where we observe the fluctuations of the signal around a mean
value. The experimental setup is modeled by considering a
simulated noise added to the response of the system:

g(t) = ḡ + εN (t), (7)

where ḡ is the mean value of g over many measurements,
ε the standard deviation, and N a Gaussian noise centered
in zero with a variance of 1. Since the radius of the Bloch
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FIG. 4. Time evolution of the experimental signal (in the y

direction) during a sequence of 500 δ pulses. The signal is expressed
in arbitrary units. The inset is a zoom showing the fluctuations of
the signal. The parameter k refers to the number of the pulse in the
control process.

ball is normalized to 1, ε can be interpreted as a percent
deviation. Using the optimal and random fields of Fig. 3, we
optimize the parameter T1 for different responses g(t). The
algorithm converges towards different values of T1 for each
response of the system. Figure 5 displays the mean value and
the width of the T1 distribution (denoted �T OPT

1 and �T RAND
1

for the optimal and random fields, respectively) as a function
of ε. For each value of ε, we consider 30 measurements
g(t) and the widths are determined by assuming a Gaussian
distribution. This width can be interpreted as the accuracy of
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FIG. 5. (Top) Width of the distribution of the estimated T1 values
by the fingerprinting process (dark gray or blue, optimal; light gray
or red, random) as a function of the noise amplitude ε, which is
dimensionless. The dashed lines depict the mean values of the two
distributions. The horizontal solid line is the value of the T1 parameter.
(Bottom) Plot of the ratio �T RAND

1 /�T OPT
1 of the width of the two

distributions as a function of ε.

the corresponding estimation process. We observe in Fig. 5 that
the gain can be very large with the optimization procedure;
a factor of the order of 100 for ε = 0.001 is obtained. The
random field fails to predict T1 accurately, even for low noise
amplitude. In a standard experiment, the amplitude of the noise
is generally of the order of 1% of the maximum of the signal.
This correspond here to ε = 0.01. Similar results have been
obtained for the parameter T2.

IV. EXPERIMENTAL RESULTS

We study experimentally the simultaneous estimation of
the relaxation time T2 and the distribution parameters of the
offset inhomogeneities, while the α parameter can be set to 1
with good accuracy [see Eq. (4)]. The offset distribution ρ(ω)
is assumed to be Lorentzian:

ρ(ω) ∝
(

1 + 4(ω − ω̄)2

�ω2

)−1

, (8)

where �ω is the full width at half maximum (FWHM)
and ω̄ the center of the distribution. The parameter T1 was
previously estimated to be 87 ms by inversion recovery [21].
The estimation of the parameter T2 is a challenging issue
because T2 and �ω are both responsible for the decay of the
measured transverse magnetization. An effective transverse
relaxation time T ∗

2 defined by the relation

1

T ∗
2

= 1

T2
+ �ω

2
(9)

is usually introduced in magnetic resonance to account for the
two physical effects [21].

A specific optimal pulse sequence sensitive to T2 for an
ensemble of spins with an average value of �ω = 20 rad s−1

was designed. Note that only one control field along the
x direction was used to improve the convergence of the
algorithm. Experiments were performed at room temperature
on a Bruker Avance 600 MHz spectrometer. We used the 1H
spins of H2O with D2O (99.9%) as a solvent in a Shigemi
tube. CuSO4 was added as a T1-shortening agent. The control
field is a sequence of Np = 500 δ pulses separated by a time
T = 10 ms. The control field and the time evolution of the
transverse magnetization are plotted in Fig. 6. A reasonable
match is found between the theoretical and the experimental
results, which can be compared with the experimental error
made in the measurement of the Bloch vector, as shown
in Fig. 6. Independent measurement based on a spin echo
sequence leads to T2 = 60.5 ± 0.5 ms and �ω = 28.5 rad s−1.
If we assume that the value of �ω is known then OFP gives
T2 = 60.4 ± 3.6 ms and ω̄ = 0.1 ± 0.6 rad s−1. In the general
case, due to the correlations between �ω and T2, it was not
possible to estimate precisely the two parameters. As displayed
in Fig. 7, we observe that the figure of merit D is almost the
same for �ω ∈ [20,38] rad s−1. On this interval, the value
of T ∗

2 is constant and in agreement with the experiment.
Additional information would be required to estimate T2

independent of �ω. From a computational point of view, it
seems difficult to include different values of the bandwidth in
the definition of the dictionary for improving the accuracy of
the estimation. The same analysis was performed with several
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FIG. 6. (Top) Optimized control field along the x direction (ωy =
0) to estimate the parameter T2. (Bottom) Time evolution of the
simulated trajectories Mx(t) (red or light gray) and My(t) (blue or
dark gray). The experimental data correspond to the gray areas around
the numerical solutions, which give an estimation of the accuracy of
the measurement (see the text for details).

random sequences and we were not able to recover the right
values of T2 or T ∗

2 , showing thus the efficiency of OFP.

V. CONCLUSION

We have introduced in this work the principles of OFP with
an application to spin dynamics. The optimization procedure
provides a method to approach the physical limits of the
protocol in terms of sensitivity. FP has several advantages over
the conventional methods. It allows a quantitative estimation
of multiple parameters at the same time (e.g., the times T1

and T2), while only information about a single parameter
is traditionally achieved. This advantage must be tempered
if several parameters are correlated. This aspect has been
illustrated in Sec. IV with the offset terms and the T2 relaxation
time. The repeated acquisitions of data for the standard
techniques are replaced by a single-shot measurement process
in FP, which can drastically reduce the overall time of the
experiment [1]. Finally, FP is expected to be less sensitive
to experimental imperfections and to the presence of noise.
All these aspects are improved by the optimization procedure
proposed in this paper. As shown in Sec. III, the better
stability of OFP against noise perturbation is illustrated in a
model example. A quantitative comparison with the standard
inversion recovery approach [21] is also made in Appendix
C for the estimation of the T1 parameter. This theoretical
comparison shows the better accuracy of OFP in this case.
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FIG. 7. (Top) Minimum distance D [defined in Eq. (2); D is
dimensionless] between the simulated and the experimental curves
as a function of �ω. The dashed rectangle indicates the interval where
D is minimum. (Middle) Evolution of T2 and ω̄ as a function of �ω.
In the different panels, the blue (black) and the red and yellow (dark
gray and light gray) curves represent respectively the mean value of
the signal and the upper and lower bounds of uncertainty. (Bottom)
Plot of 1/T2 as a function of �ω. In the interval [20,38] rad s−1, the
parameter T ∗

2 is constant as shown by the dotted line.

This analysis paves the way for further investigations in
MRI and realistic in vivo experiments [25–27] in which the
standard version of the fingerprinting process with random
pulses has been applied with success [1]. The concept of OFP
could also be transferred to other domains such as quantum
optics and atomic and molecular physics. An example is
given by the control of molecular alignment and orientation
in which pulse shaping techniques have been applied with
success [28,29]. The measure of the alignment could be used
to estimate molecular parameters such as, e.g., the collisional
relaxation rates [30–32]. Another aspect could be to explore
the applicability of this approach in a dynamical feedback
framework where the control field would be adjusted in real
time according to the results of the measurements. Finally, it
seems promising to combine this technique with other methods
of data analysis such as filter diagonalization [33], Bayesian
estimation [14], or Fisher information [3].
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APPENDIX A: MATHEMATICAL DESCRIPTION OF THE
OPTIMAL FINGERPRINTING PROCESS

Optimal fingerprinting process (OFP) is not a standard
problem in optimal control theory. The originality lies in the
fact that the goal of the control procedure is not to bring a
system from an initial state to a target state while minimizing
a cost function. OFP is aimed at improving the characteristics
of a dictionary in order to accurately estimate the physical
parameters of a given system. The optimization in OFP is
based on the maximization of a figure of merit, which is chosen
in relation to the recognition process, i.e., the procedure used
to find the best match between the measurements and the
dictionary entries.

1. Recognition process

We consider three different sets:
(i) A space of real square integrable functions g, with

g : [0,T ] �→ Rd . This space is the set of all the possible
measurements and d the number of components of g.

(ii) A set S of N elements �Sn. Each �Sn is a p-tuple
of values of the p physical parameters to estimate, �Sn =
(S1(n), . . . ,Sp(n)).

(iii) A set of N time-dependent functions fn: {fn}n=1,...,N

and fn : [0,T ] �→ Rd . This set is the dictionary used in a
fingerprinting process.

The space of possible measurements is partitioned into N

different subsets, {σn}n=1,...,N . A function fn of the dictionary
is associated with each element σn. Ideally, the partitioning
satisfies the constraints as follows:

(1) fn ∈ σn and ∀k 
= n, fn 
∈ σk .
(2) ∀g ∈ σn, D[fn,g] < D[fk,g]. If D[fn,g] = D[fk,g],

then g belongs to the common boundary between σn and σk .
The functional D is defined by

D[fn,g] =
∥∥∥∥ fn

‖fn‖ − g

‖g‖
∥∥∥∥

2

. (A1)

D is the square of the distance between two normalized
functions. The first function, fn, belongs to the dictionary
and g is the result of a measurement. ‖f ‖ refers to the norm of
f , defined by ‖f ‖ = √

(f,f ), (·,·) being the scalar product. In
the continuous case, the scalar product of two functions f (t)
and g(t) can be defined as (f (t),g(t)) = ∫ T

0 f (t)g(t)dt .
Definition 1. The recognition process consists in associat-

ing a function g to an element σn of the partition. To each σn

is attached a set of values of the physical parameters �Sn. A
bijection can thus be defined between a partition and a specific
physical system.

The recognition process can be mathematically defined as
follows:

fm = arg
[

min
n=1,...,N

(D[fn,g])
]
. (A2)

Equation (A2) means that the function fm associated with g

is the one minimizing D[fn,g] over all the possible functions
fn. Note that the functional D can also be written as

D[fn,g] = 2

(
1 − (fn,g)

‖fn‖ · ‖g‖
)

. (A3)

2. Figure of merit and optimization

It is worth noting that normalized functions are used in
the definition of the functional D. This point is due to the
fact that the measurement process is defined up to a scaling
factor. From a mathematical point of view, this means that
we do not consider a function but a class of functions. This
paragraph is aimed at giving a rigorous framework to this
issue. The main result is the simplification of the figure of
merit from a functional to a real function of one real variable.
This geometric description gives also an upper bound on the
values of the figure of merit. We first define the equivalence
classes of the functional D.

Definition 2. Two functions g and g′ are said to be equiva-
lent and denoted g ∼n g′ if and only if D[fn,g] = D[fn,g

′].
The equivalence class is given by Cα

n = {g,D[fn,g] =
2(1 − cos αn)}, where αn is the angle between g and fn, with
(g,fn) = ‖g‖‖fn‖ cos αn [see Eq. (A3)].

Note that the use of equivalence classes transforms the
functional D[fn,g] defined over an infinite dimensional space
into a simple function D(αn) over R and the only relevant
parameter is the angle αn.

The main difficulty from the optimization point of view is to
define the concept of a good dictionary. In particular, the size
of the dictionary is arbitrary and depends on the discretization
used for the physical parameters. Since the parameters take
their values in a continuous set, it is possible to consider a
dictionary of arbitrarily large size. Furthermore, the dictionary
must be independent of experimental imperfections because it
is computed before the measurement process. We solve this
problem with the following proposition: the best dictionary is
the one which optimizes the recognition process. We introduce
the following figure of merit CN to measure the quality of the
dictionary.

Definition 3. The figure of merit CN for a dictionary of N

elements is given by the mean value of all possible square
distances between the functions fn and fk:

CN = 1

2N2

N∑
n,k=1

D[fn,fk]. (A4)

As shown below, the normalization factor 2N2 is chosen
so that the upper bound of CN is 1. Some properties of CN

can be established. Equivalent classes allow us to formulate
the problem into a simple geometric picture. The normalized
functions �fn = fn/‖fn‖ can be viewed as points belonging
to a (N − 1)-sphere SN−1 of radius 1, and consequently the
dictionary is a (N − 1) simplex. The distance between two

vertices �fn and �fk is given by
√

D[�fn,�fk]. We are interested in
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the shape of the simplex which maximizes CN (i.e., which
maximizes the sum of the lengths of the edges). For N = 2,
it is obvious that the maximum is reached when �f1 = −�f2. For
the case N = 3, it can be shown that the highest value of C3 is
obtained for an equilateral triangle where each angle αnk , with
(�fn,�fk) = cos(αnk), is equal to 2π/3,∀n,k. For higher values of
N , we get a regular simplex.

Theorem 1. The optimal simplex is given by the set of
functions {�fn}n=1,...,N corresponding to an (N − 1)-regular
simplex of radius 1. The upper bound of CN is equal to 1.

Proof. We consider �fn as a vector going from the center O

to a point of the hypersphere of radius 1. We have

N∑
n,k=1

‖�fn −�fk‖2 = 2N2 − 2
N∑

n,k=1

(�fn,�fk).

Since ∥∥∥∥∥
N∑

n=1

�fn
∥∥∥∥∥

2

=
N∑

n,k=1

(�fn,�fk),

we deduce that

N∑
n,k=1

‖�fn −�fk‖2 = 2N2 − 2

∥∥∥∥∥
N∑

n=1

�fn
∥∥∥∥∥

2

.

This expression shows that the maximum value of
∑

n,k ‖�fn −
�fk‖2 is 2N2, i.e., the inverse of the normalization factor of CN .
We obtain that CN � 1. The maximum value is reached for∑N

n=1
�fn = 0. This is the equation of the simplex barycenter,

which is equal to zero for a regular simplex [34]. �

APPENDIX B: NUMERICAL OPTIMAL
CONTROL ALGORITHM

This paragraph is aimed at briefly describing the extended
version of GRAPE used in the numerical simulations [6]. This
extension is closely related to the concept of optimal tracking
introduced in Ref. [20], where the goal of the control is to
steer the evolution of the system along a specified trajectory.
To simplify the description of the algorithm, we consider here
the dynamics of the spins in the (y,z) plane. We recall that the
dynamics can be integrated step by step as follows. We denote
by �M = (y,z) the state of the system. After a δ pulse and a
free relaxation, we have

�M1 = LT Rθ
�M0, (B1)

where

Rθ =
(

cos θ − sin θ

sin θ cos θ

)

and

LT
�M =

(
0

1 − e−T/T1

)
+

(
exp[−T/T2] 0

0 exp[−T/T1]

)
�M,

with θ the angle of the δ pulse and T the time between two δ

pulses.
After N processes, we get

�MN = LTN
RθN

LTN−1RθN−1 · · ·LT1Rθ1
�M0, (B2)

where the parameters θk have to be adjusted to maximize a
given figure of merit  and the times TN = TN−1 = · · · = T1

are fixed. We define the control field as �θ = (θ1,θ2, . . . ,θN ). A
standard GRAPE algorithm can then be used to maximize .

Let us assume for instance that  = ( �MN ). The gradient
can be written as follows:

∂ �MN

∂θk

= LTN
RθN

LTN−1RθN−1 · · · dRθk
· · ·LT1Rθ1

�M0, (B3)

where

dRθ =
(− sin θ − cos θ

cos θ − sin θ

)
.

Introducing the adjoint state Nk such that

�Nk = L−1
Tk

· · ·R−1
θN−1

L−1
TN−1

R−1
θN
L−1

TN

�MN, (B4)

we get

∂ �MN

∂θk

= �NkdRθk
�Mk−1. (B5)

At each step of the algorithm, the field �θ is corrected as follows:

�θ → �θ + ε
∂

∂ �θ , (B6)

where ε is a small parameter chosen to ensure the increase of
the figure of merit and

∂

∂ �θ = ∂

∂ �MN

∂ �MN

∂ �θ . (B7)

In the fingerprinting procedure, we consider the case of two
spins to simplify the notations. The two spins are respectively
described by the coordinates y and ỹ, whose dynamics are
given by

�MN =
(

yN

zN

)
= UN · · ·U1

(
y0

z0

)
(B8)

and

�̃MN =
(

ỹN

z̃N

)
= UN · · · U1

(
ỹ0

z̃0

)
, (B9)

where Uk(θk) depends only on θk , the kth control parameter.
The figure of merit C to maximize is given by

C = 1

2

N∑
i=1

[yi − ỹi]
2, (B10)

where the vectors are not divided by their norms for clarity
purposes. The gradient of C with respect to θk can be written
as

∂C

∂θk

=
N∑

i�k

(yi − ỹi)

(
∂yi

∂θk

− ∂ỹi

∂θk

)
. (B11)

Since

∂yi

∂θk

= ∂kyi = Ui · · · Uk+1∂kUkUk−1 · · ·U1 �M0|y, (B12)

053419-7



Q. ANSEL, M. TESCH, S. J. GLASER, AND D. SUGNY PHYSICAL REVIEW A 96, 053419 (2017)

we have

∂kC =
N∑

i�k

(yi − ỹi)Ui · · ·Uk+1∂kUkUk−1 · · ·U1( �M0 − �̃M0)|y,
(B13)

which can also be written as

∂kC =
N∑

i�k

[(yi − ỹi)Ui · · · Uk+1]∂kUkUk−1 · · · U1

× ( �M0 − �̃M0)|y. (B14)

Introducing a generalized adjoint state P such that

Pk =
N∑

i�k

[
t

(
yi − ỹi

0

)
Ui · · · Uk+1

]
, (B15)

we obtain

∂kC = Pk∂kUk( �Mk−1 − �̃Mk−1)|y. (B16)

As in a standard GRAPE algorithm, the field �θ is corrected at
each step of the algorithm as follows:

�θ → �θ + ε
∂C

∂θk

. (B17)

APPENDIX C: COMPARISON WITH THE INVERSION
RECOVERY METHOD

We study in this paragraph the efficiency of OFP with
respect to the inversion recovery approach (IR), which is a
standard way to estimate the relaxation time T1 [21]. IR is
based on the successive application of a π pulse followed
by a series of π/2 pulses at different times to measure the
transverse magnetization. A fair comparison between the two
estimation techniques is difficult and heavily depends on the
features of the experimental setup. Here, we investigate the
example analyzed in Sec. III to avoid such a discussion. For
the IR, we consider a single-shot measurement process during
a relaxation towards the thermal equilibrium state in which the
longitudinal relaxation can be measured in an arbitrary short

0.00 0.01 0.02 0.03 0.04 0.05

0.28

0.30

0.32

0.34

T 1
(s

)

.

FIG. 8. Width of the distribution of the estimated T1 values by
OFP (dark gray or blue) and IR (light gray or red) as a function of the
noise amplitude ε, which is dimensionless. The dashed lines depict
the mean values of the two distributions. The horizontal solid line is
the value of the T1 parameter.

time with a noise added to the response of the system. Note
that the waiting time between each acquisition is not included
in this ideal approach, which overestimates the efficiency of a
realistic IR. The response of the system is described as follows:

g(tm) = Mz(tm) + εN (tm),

where the parameter ε and the Gaussian noise N (t) are
defined as in Sec. III. The time evolution of the longitudinal
magnetization is given by a perfect inversion dynamics
Mz(t) = 1 − 2 exp[−t/T1] with 120 times tm separated by
10 ms. The same noise and the same number of measurement
points are therefore used for OFP and IR, which ensures a fair
comparison. The results are displayed in Fig. 8 and show that
OFP has a better accuracy than IR. For a T1 value of 300 ms
and a noise amplitude ε = 0.05, OFP achieves a precision of
the order of ±0.05 ms, whereas the precision of IR is larger
than 2 ms. A gain of a factor of 4 in estimating T1 is obtained.
Since there is no steady state in OFP, this factor is expected to
increase for longer pulse sequences.
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