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Adiabatic theory of strong-field photoelectron momentum distributions
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We present a comprehensive treatise on the derivation of the factorization formula describing strong-field
photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic
theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses
of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The
convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained
by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively
in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with
a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In
particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to
extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental
photoelectron momentum distributions.
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I. INTRODUCTION

Photoelectron momentum distributions (PEMDs) resulting
from the ionization of atoms and molecules by intense low-
frequency laser pulses contain valuable information about the
electronic and nuclear structure of the target. The development
of methods of extracting this information, potentially in a
time-resolved manner, is one of the fundamental tasks of
strong-field physics [1]. The different parts of a strong-field
PEMD reflect different aspects of the ionization dynamics
and encode different target structure information. Here, we
focus on one particular feature specific to PEMDs generated by
linearly polarized pulses and related to rescattering. The region
of localization of such PEMDs in photoelectron momentum
space in directions close to the polarization axis has a well-
defined classical boundary determined by the coalescence of
a pair of long and short trajectories originating from the same
half-cycle of the laser field and undergoing one near-backward
rescattering after the field changes sign [2]. Each half-cycle
produces a pair of such trajectories; the surface in their final
momentum space where the trajectories coalesce we call the
backward rescattering caustic (BRC). The classical boundary
of a PEMD is given by the outermost BRC. In directions
closer to the normal to the polarization axis this BRC may
enter the region where the contribution from direct electrons,
which have not experienced rescattering, dominates. In this
case, the boundary of the PEMD becomes more diffuse and
its location is determined by properties of the initial quantum
state. The feature we are interested in consists in the property
of factorization of strong-field PEMDs in the vicinity of the
outermost BRC into the differential cross section (DCS) for
elastic scattering of a photoelectron on the parent ion and a
returning photoelectron wave packet (RWP) [3]. This property
lays the foundation for a method of extracting DCSs from
experimental PEMDs, which has attracted much attention in
recent years [4–25].

In the original paper [3], the factorization formula (FF) was
inferred on physical grounds from the results of numerical

calculations. The notion of RWP introduced there was defined
by the FF itself; no explicit form of the RWP was given.
Some additional arguments and calculations in support of the
factorization presented in a followup paper [4] did not change
the situation. At the same time, in order to extract a DCS,
one obviously needs to know the RWP. Two approaches to
resolving this issue exist in the literature.

One approach aims at obtaining an explicit form of the RWP
by deriving the FF analytically. This was done for several
models under different theoretical assumptions. In Ref. [5],
the FF was derived heuristically (as stated in Ref. [6]) within
the strong-field approximation. In Refs. [7,8], it was derived
for a short-range potential treated using the effective range
theory and then phenomenologically generalized (as stated in
Ref. [9]) to realistic atomic potentials. In Ref. [10], it was
derived for a one-dimensional zero-range potential model in
the adiabatic approximation. The FF was shown to hold for
sufficiently low frequency and high intensity of the laser field
near the outermost BRC, where only one pair of coalescing
rescattering trajectories contributes to the PEMD. Its validity
was confirmed by comparison with accurate PEMDs obtained
by solving the time-dependent Schrödinger equation (TDSE)
[7–10]. These studies made an important contribution to the
development of the method: they justified the conjecture of
factorization [3] and uncovered the analytical structure of the
RWP for the models considered. However, they did not affect
the way how the method is currently used in applications.

In the majority of studies where the FF was actually
used for extracting DCSs [11–17] and related target structure
information such as charge density [18,19] and molecular bond
lengths [20–24] from experimental PEMDs, another more
pragmatic approach was adopted. In this approach, the need
of an explicit form of the RWP is eliminated by making some
plausible assumptions regarding its dependence on kinematic
characteristics of the rescattering event. Thus, in Refs. [11–18]
the extraction procedure was based on the following approxi-
mations: (a) the experimental information was extracted from
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a sphere approximating the outermost BRC near the backward
rescattering direction, (b) the incident momentum of rescatter-
ing at the sphere was assumed to be constant, and (c) the RWP
was assumed to be independent of the scattering angle. These
approximations indeed hold near the backward rescattering
direction, but incur errors which grow as the scattering
angle decreases. Anyway, under these approximations one can
extract the dependence of a DCS on the scattering angle at
a fixed incident momentum without knowing the RWP, but
only up to an unknown incident-momentum-dependent factor.
The extracted DCSs were shown to be in good agreement
with the results of independent scattering calculations within
the single-active-electron approximation [11–13,18] and using
a configuration interaction approach [15–17], which was a
success in demonstrating the potentiality of the method. In the
absence of a firmly recognized relation between the origin
of this success and the analytical justification of the FF,
applications of the method were extended to situations where
the formula does not hold. For example, in Refs. [19–24], in
addition to the approximations listed above, the sphere from
which the experimental information is extracted was chosen
in an ad hoc way somewhere at intermediate photoelectron
energies far from the outermost BRC. Although the results
turned out to be consistent with scattering calculations per-
formed for their analysis, in this case the extraction procedure
lacks analytical support.

As far as we know, there is only one paper [25] where an
analytically derived RWP was used for extracting DCSs from
experimental PEMDs, and this was done as prescribed by the
theory, without any additional approximations. In this paper,
the method was developed in two directions. Experimentally,
it was shown that the use of few-cycle pulses with carrier-
envelope phase control provides access to the dependence of a
DCS on the incident momentum, which is extremely difficult to
achieve by other experimental techniques [17]. Theoretically,
an analytical form of the RWP was derived from the adiabatic
theory [26] and used in the extraction procedure. As a result,
the DCS for elastic scattering of an electron on an ion of
xenon was for the first time extracted up to a constant factor
as a function of both the scattering angle and the incident
momentum in a wide range of these variables. The scheme
demonstrated in Ref. [25] is free from approximations and
ambiguities of previous studies. This elevates the method to
a quantitative level and opens new opportunities, e.g., may
enable one to detect multielectron effects in DCS.

In this paper, we elaborate the theoretical part of the scheme,
which is intended to pave the way for its future applications.
We present a comprehensive treatment of all issues related to
the derivation and validation of the FF within the adiabatic
theory [26]. The paper is organized as follows. In Sec. II, we
document the derivation of the FF, which was skipped in the
previous short paper [25]. The resulting formula generalizes
and corrects in several important ways the one reported earlier.
In particular, the derivation reveals a quantum shift of the
BRC as well as certain strong-field effects in the RWP which
for simplicity were disregarded in Ref. [25]. In Sec. III, the
analytical results are illustrated by calculations. We thoroughly
compare the predictions of the FF with accurate PEMDs
obtained by solving the TDSE for a number of target potentials
and laser pulses. Section IV concludes the paper.

II. THEORY

A. Basic equations

We consider an atom or molecule treated in the single-
active-electron and frozen-nuclei approximations interacting
with a linearly polarized intense low-frequency laser pulse.
The interaction of the active electron with the parent ion is
described by the potential V (r). To comply with the condition
of applicability of the adiabatic theory [26], we assume that
this potential vanishes sufficiently rapidly beyond a finite
radius r = a. The argumentation and calculations presented
below show that the adiabatic theory holds for describing
near-backward rescattered electrons, which we focus on here,
even if the potential has a Coulomb tail; however, to stay on
solid mathematical grounds, in the derivation we assume it
to have a finite range. The electric field of the laser pulse is
represented by F(t) = F (t)ez, where F (±∞) = 0. The TDSE
for the active electron in the dipole approximation and length
gauge reads (atomic units are used throughout)

i
∂ψ(r,t)

∂t
=

[
−1

2
� + V (r) + F (t)z

]
ψ(r,t). (1)

We are interested in the solution satisfying the initial
condition

ψ(r,t → −∞) = φ0(r)e−iE0t , (2)

where E0 < 0 and φ0(r) are the energy and normalized wave
function of a bound state of the unperturbed system[− 1

2� + V (r) − E0
]
φ0(r) = 0. (3)

The observable to be discussed is the PEMD P (k)
defined by

P (k) = |I (k)|2, Pion =
∫

P (k)
dk

(2π )3
, (4)

where I (k) is the ionization amplitude

I (k) = eik2t/2
∫

ϕ(r; −k)ψ(r,t) dr

∣∣∣∣
t→∞

, (5)

and Pion is the total ionization probability. Here, ϕ(r; k) is
the scattering state of the unperturbed system with incident
momentum k,

[− 1
2� + V (r) − 1

2 k2
]
ϕ(r; k) = 0, (6a)

ϕ(r; k)|r→∞ = eikr + f (k,�)
eikr

r
, (6b)

where f (k,�) is the scattering amplitude and � = (θ,ϕ)
denotes scattering angles which in the present case it is
convenient to choose as spherical angles defining the direction
of r in a coordinate frame with the z axis pointing along k.
For atoms, the potential V (r) is spherically symmetric and
f (k,�) depends only on the absolute value k of the incident
momentum and the angle θ between k and r. For molecules,
the potential reflects the shape of the internuclear configuration
and its orientation with respect to the polarization axis and does
not generally have any symmetry. In this case, f (k,�) depends
on all five of its arguments. The DCS is given by |f (k,�)|2
[27].
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B. Adiabatic theory

The adiabatic theory [26] amounts to the asymptotic
solution of the problem for ε → 0, where ε is the adiabatic
parameter giving the ratio of the target and laser field time
scales. This parameter can be estimated as ε ∼ ω/�E, where
ω is the laser frequency and �E is the energy spacing between
the initial and neighboring states of the unperturbed system.
Formally, the asymptotics can be derived by introducing ε into
Eq. (1) explicitly via the substitution F (t) → F (εt). Here, we
briefly summarize the results needed for the following.

The asymptotics of the solution to Eqs. (1) and (2) consists
of two parts:

ψ(r,t) = ψa(r,t) + ψr (r,t). (7)

The adiabatic part ψa(r,t) describes the initial state distorted
by the instantaneous laser field and adiabatically following its
variation in time. In the presence of a static electric field equal
to F(t) the initial bound state turns into a Siegert state (SS)
satisfying[− 1

2� + V (r) + F (t)z − E0(t)
]
φ0(r; t) = 0 (8)

subject to regularity and outgoing-wave boundary conditions
[28–30]. The SS we need is the solution to Eq. (8) which,
being considered as a function of time, coincides with the
initial bound state at zeros of F (t), particularly at t → ±∞.
The SS eigenvalue E0(t) is complex,

E0(t) = E0(t) − i

2
�0(t), (9)

its real and imaginary parts defining the Stark-shifted energy
and ionization rate of the state. The outgoing-wave part of the
SS eigenfunction φ0(r; t) describes electrons released from
the system by either tunneling or over-the-barrier ionization
in the field F(t). The flux of the outgoing electrons is directed
opposite to the field, that is, toward z → ∓∞, where the signs
− and + correspond to the cases F (t) > 0 and F (t) < 0,
respectively. In this asymptotic region, φ0(r; t) takes the form
[28–30]

φ0(r; t)|z→∓∞ =
∫

A0(k⊥; t)eik⊥r⊥g(z,k⊥; t)
dk⊥

(2π )2
, (10)

where r⊥ = (x,y), k⊥ = (kx,ky) is the transverse momentum
of outgoing electrons, A0(k⊥; t) is the amplitude of the
transverse momentum distribution (TMD) in the outgoing flux,
and the function g(z,k⊥; t) represents an outgoing wave at
|z| → ∞:

g(z,k⊥; t)||z|→∞ = 1

|2F (t)z|1/4
exp

(
i|F (t)|1/2|2z|3/2

3

+ i
[
E0(t) − 1

2k2
⊥
]|2z|1/2

|F (t)|1/2

)
. (11)

Since the eigenvalue E0(t) has a negative imaginary part [see
Eq. (9)], the eigenfunction φ0(r; t) exponentially diverges in
the asymptotic region. However, its normalization integral can
be regularized by rotating the asymptotic part of the integration
path in z into the complex z plane [28]. We assume that φ0(r; t)
is normalized to unity in this sense at all t . This defines the
normalization of the TMD amplitude A0(k⊥; t). We will need
this function taken at zero transverse momentum,

A0(t) = A0(k⊥ = 0; t). (12)

Note that this quantity turns to zero if the polarization axis
points along a nodal line of the unperturbed initial state φ0(r).
This is the case, e.g., for a linear molecule in a π state aligned
along the polarization axis. Such specific symmetry cases
require special treatment and are excluded from the present
consideration. In other words, we assume that A0(t) does not
vanish identically. Then, in the weak-field limit the amplitude
(12) is related to the ionization rate [31]

|A0(t)|2 = 4π�0(t)

|F (t)| , |F (t)| → 0, (13)

where  = √
2|E0|. The adiabatic part in Eq. (7) is given in

terms of the SS by [26]

ψa(r,t) = φ0(r; t)e−is0(t), (14)

where

s0(t) = E0t +
∫ t

−∞
[E0(t ′) − E0] dt ′. (15)

The exponent in Eq. (14) accounts for both the accumulation
of an additional phase caused by the Stark shift of the initial
state and its depletion due to ionization.

The adiabatic state (14) serves as a source of electrons. The
rescattering part ψr (r,t) in Eq. (7) describes electrons which,
after a journey driven by the field, return to the parent ion for
rescattering. Let us introduce a reference classical trajectory
defined by

v̇(t) = −F (t), ż(t) = v(t), (16a)

v(t → −∞) = z(t → −∞) = 0. (16b)

In the limit ε → 0, the velocity v(t) and coordinate z(t)
scale as O(ε−1) and O(ε−2), respectively, and the same holds
for any trajectory satisfying Eqs. (16a) with different initial
conditions. An electron released by the field begins its journey
at a distance O(ε0) from the origin. The range of the potential
a is also O(ε0). The spatial extent of the electron’s trajectory,
on the other hand, is O(ε−2). This means that the electron
must return to the origin for rescattering to occur, that is, its
trajectory must be closed. Closed trajectories in the present
linear polarization case are collinear with the z axis. Consider
a trajectory beginning at time t ′ and ending at time t . If
this trajectory is closed, its initial and final velocities are
determined by the moments t ′ and t and equal to

ui(t,t
′) = v(t ′) − z(t) − z(t ′)

t − t ′
, (17a)

uf (t,t ′) = v(t) − z(t) − z(t ′)
t − t ′

, (17b)

respectively. The classical action accumulated along the
trajectory in this case is

S(t,t ′) = [z(t) − z(t ′)]2

2(t − t ′)
− 1

2

∫ t

t ′
v2(t ′′)dt ′′. (18)

The initial velocity that an electron released from the
system may have is O(ε0), whereas in the general case
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ui(t,t ′) = O(ε−1). This means that the moment t ′ when
ionization can occur for a given t must satisfy

ui(t,t
′) = 0 → t ′ = ti(t). (19)

We will need the derivatives of the function ti(t),

dti(t)

dt
= −uf (t)

(t − ti)F (ti)
, (20a)

d2ti(t)

dt2
= F (t)

(t − ti)F (ti)
+ 2uf (t)

(t − ti)2F (ti)

+ [F (ti) − (t − ti)Ḟ (ti)]u2
f (t)

(t − ti)3F 3(ti)
, (20b)

where ti = ti(t) and
uf (t) ≡ uf (t,ti(t)) = v(t) − v(ti(t)). (21)

Closed trajectories with zero initial velocity [see Eq. (19)] are
called closed rescattering trajectories (CRTs) [10]. Equation
(21) gives the final velocity on a CRT, with which an electron
arrives for rescattering. The above consideration shows that
CRTs are the trajectories responsible for rescattering in the
adiabatic regime. This classical picture indeed emerges in the
derivation of the asymptotics of the rescattering part in Eq. (7)
for ε → 0 from Eq. (1). The asymptotics is given by [26]

ψr (r,t) = −i

2π

∑
i

A0(ti)

|(t − ti)3F (ti)|1/2
ϕ(r; uf )

× exp [iS(t,ti) − is0(ti)]. (22)

Here, ti = ti(t), A0(ti) is the TMD amplitude from Eq. (12),
ϕ(r; uf ) is the scattering state from Eqs. (6) taken at k =
uf , where uf = uf (t)ez, and the summation runs over the
different solutions to Eq. (19) for a given t . The second term
in the exponent in Eq. (22) describes the quantum evolution
of an electron in the adiabatic state (14) until the moment of
ionization ti , and the first term is the classical action (18) which
the electron accumulates along a CRT after its release from the
system.

The adiabatic theory [26] also yields the asymptotics of the
ionization amplitude (5) for ε → 0. However, before turning to
observables, we need to discuss the kinematics of rescattering.

C. Backward rescattering caustic

Consider an electron which is released from the system at
time ti , travels along a CRT, undergoes rescattering at time tr ,
and then flies away with a final momentum k. The momentum
is represented by k = (k⊥,kz), where k⊥ = k⊥(cos ϕk, sin ϕk).
To end up with a given momentum k, the initial velocity of the
electron after rescattering must be equal to ui(tr ,k), where

ui(t,k) = k − [v∞ − v(t)]ez (23)

and v∞ = v(∞). Thus, the moments ti and tr must satisfy

ui(tr ,ti) = 0, (24a)

u2
f (tr ,ti) = u2

i (tr ,k). (24b)

The first of these equations amounts to the condition (19)
for the CRT under consideration and the second one ensures
conservation of energy in the rescattering event. The final

velocity on the CRT, which is also the incident velocity of
rescattering, is uf = uf ez, where

uf = v(tr ) − v(ti). (25)

Note that uf has a sign which determines the direction of uf

with respect to the laboratory z axis. The scattering angles
� = (θ,ϕ) [see Eq. (6b)] are determined by

cos θ = kz − v∞ + v(tr )

uf

, ϕ = ϕk. (26)

Equations (24)–(26) define the quantities ti , tr , uf , and uf

characterizing the CRT and angles � characterizing the
rescattering event as functions of k; for brevity, we do not
show this argument explicitly.

Equations (24) may have multiple solutions for ti and tr
corresponding to the different CRTs leading to the same final
momentum k. As k varies, the CRTs may coalesce. The sets in
the k space where this happens are called caustics. Consider
one particular pair of long and short CRTs originating from
the same half-cycle of the laser field [10]. They coalesce at a
two-dimensional caustic which in the present case is a surface
of revolution about the kz axis. In the following, we consider a
half-plane ϕk = const with coordinates (k⊥,kz). The section of
the caustic by this half-plane is a curve k(θ ) = (k⊥(θ ),kz(θ ))
which we parametrize by the scattering angle θ characterizing
the coalesced CRTs. This curve will be somewhat loosely also
called the caustic. At the caustic, the moments of ionization ti
and rescattering tr defined by Eqs. (24) satisfy an additional
equation which can be obtained by differentiating Eq. (24b) in
tr while treating ti as a function of tr defined by Eq. (24a):

2F (tr ) sin2(θ/2) + uf

tr − ti
= 0. (27)

To find the caustic, one needs to solve a system of equations
(24a) and (27) with respect to ti and tr for a given θ using
Eqs. (16), (17a), and (25). This defines functions ti(θ ), tr (θ ),
and uf (θ ) giving the corresponding quantities at the caustic
and the caustic itself,

k⊥(θ ) = |uf (θ )| sin θ, (28a)

kz(θ ) = uf (θ ) cos θ + v∞ − v(tr (θ )). (28b)

At the caustic, the final velocity on the CRT (the incident
velocity of rescattering) is uf (θ ) = uf (θ )ez and the initial
velocity with which an electron flies away after rescattering
is ui(θ ) = ui(tr (θ ),k(θ )). These velocities have equal absolute
values, |uf (θ )| = |ui(θ )|, and the angle between them is θ .
Let us emphasize that the caustic k(θ ) is a classical object
completely determined by the field F (t) and independent of
the target. We will consider only a part of the caustic adjacent
to the backward rescattering direction θ = 180◦; this part we
call the BRC. The shape of a BRC for a typical few-cycle
pulse to be considered in the calculations below is shown by
the solid (black) line in Fig. 1.

Depending on the shape of the pulse F (t), there may
exist many different BRCs in the (k⊥,kz) plane. We are
interested in the vicinity of the outermost one, where the
factorization of the PEMD occurs. For a monochromatic field
of amplitude F and frequency ω, each half-cycle with positive
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FIG. 1. Solid (black) line shows a classical BRC k(θ )
parametrized by the scattering angle θ [see Eqs. (28)]. The inset
illustrates the incident velocity of rescattering uf (θ ) = uf (θ )ez

and the velocity after rescattering ui(θ ) at the BRC. Curvilinear
coordinates (θ,�k) are introduced in the shaded strip near the BRC,
with �k measured along the external unit normal vector ν(θ ) to the
BRC. Dashed (red) line shows the projection of the corresponding
quantum caustic k̃(θ ) [see Eqs. (42)] onto the real (k⊥,kz) plane. The
results are calculated for a pulse (46) with F0 = 0.1 and T = 200 in
the model considered in Sec. III A.

(negative) values of F (ti(θ )) produces the same BRC located
at kz < 0 (kz > 0). In this case, the maximum of |k(θ )| is
attained at θ = 180◦ and corresponds to the photoelectron
energy k2(180◦)/2 = 10.007 × Up, where Up = F 2/4ω2 is
the ponderomotive potential [2]. For few-cycle pulses, the
outermost BRC in the positive and negative kz directions is
produced by half-cycles containing the main maximum of the
field of the corresponding sign. For definiteness, we consider
this BRC in the interval 90◦ ≤ θ ≤ 180◦, where PEMDs
generated by typical pulses are determined by rescattered
electrons; at smaller θ , it enters the region where direct
electrons described by the adiabatic part in Eq. (7) dominate.
Consider a narrow strip near the BRC shown by the shaded
area in Fig. 1. Let ν(θ ) = (ν⊥(θ ),νz(θ )), ν2(θ ) = 1 denote the
external unit normal vector to the BRC, that is,

ν(θ )
dk(θ )

dθ
= 0, ν(θ )

d2k(θ )

dθ2
≤ 0. (29)

It can be shown using Eq. (27) that

ν(θ )uf (θ ) = |uf (θ )| cos θ. (30)

This means that the angle between the normal ν(θ ) and the
positive direction of the kz axis coincides with θ , if uf (θ ) > 0,
and with π − θ , if uf (θ ) < 0; in both cases ν⊥ = sin θ . Any
k located in the strip can be represented as

k = k(θ ) + �kν(θ ), (31)

which amounts to

k⊥ = k⊥(θ ) + �kν⊥(θ ), (32a)

kz = kz(θ ) + �kνz(θ ). (32b)

These equations define a transformation from Cartesian
(k⊥,kz) to curvilinear (θ,�k) coordinates in the strip. The
scattering angle θ is a coordinate along the BRC and the
�k is a coordinate across the BRC, the BRC coinciding

with the coordinate line �k = 0. Near θ = 180◦, the BRC
k(θ ) can be approximated by a circle of radius |uf (180◦)|
with the center at k = [v∞ − v(tr (180◦))]ez. Note that for a
monochromatic field |uf (180◦)| = 1.247 × F/ω and |v∞ −
v(tr (180◦))| = 0.989 × F/ω. This approximation implies that
ti(θ ), tr (θ ), and uf (θ ) do not depend on θ and are substituted
by their values at θ = 180◦. We will call it the circular
approximation below. This approximation was discussed in
the Introduction; it was introduced in Ref. [3] and used in
the extraction procedure in Refs. [11–18]. We mention that
a similar kinematical approximation was used earlier for
analyzing the momentum space wave function in a rescattering
process [32]. However, the actual shape of the BRC differs
from the circle and the quantities ti(θ ), tr (θ ), and uf (θ ) do
depend on θ .

D. Factorization formula

In Ref. [26], we obtained another representation for the
exact ionization amplitude (5) in terms of the exact solution to
Eqs. (1) and (2),

I (k) =
∫ ∞

−∞
dt

∫
�

j(r,t)d�, (33)

where

j(r,t) = −i

2
[e−iS(r,t ;k)∇ψ(r,t) − ψ(r,t)∇e−iS(r,t ;k)] (34)

and

S(r,t ; k) = ui(t,k)r − 1

2

∫ t

0
u2

i (t ′,k) dt ′. (35)

Here, ui(t,k) is defined by Eq. (23), the spatial integration
in Eq. (33) goes over any surface r ∈ � enclosing the region
where the potential differs from zero, d� is the surface area
element multiplied by the external unit normal vector to �,
and we have omitted an unessential phase factor which does
not modify the PEMD (4). Equation (33) is more convenient
for calculating the ionization amplitude within the adiabatic
theory. Substituting Eq. (7) into Eq. (34), one obtains I (k) =
Ia(k) + Ir (k), where the two terms correspond to the two terms
in Eq. (7), respectively. The adiabatic part Ia(k) describes
direct electrons which do not interact with the parent ion after
ionization, and the rescattering part Ir (k) describes electrons
which experience rescattering before arriving at a detector.
The asymptotics of these two terms for ε → 0 were obtained
in Ref. [26]. However, the formula for Ir (k) presented therein
was derived by treating the contributions from the different
CRTs leading to the same final k separately, and hence it
does not hold near a caustic. Here, we derive the uniform
asymptotics of Ir (k) which holds near a caustic.

We consider a pair of coalescing CRTs discussed in
Sec. II C. Their joint contribution to Ir (k) is denoted by Ic(k).
Substituting Eq. (22) into Eq. (34) and integrating over � in
Eq. (33) using Eq. (6b), we obtain

Ic(k) =
∫ ∞

−∞

A0(ti)f (uf ,�)

|(t − ti)3F (ti)|1/2
eiSr (t,k) dt, (36)
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where

Sr (t,k) = 1

2

∫ t

0
u2

i (t ′,k) dt ′ + S(t,ti) − s0(ti). (37)

Here, ti = ti(t), uf = uf (t)ez, and the angles � define the di-
rection of ui(t,k) with respect to uf , namely, θ = arccos{[kz −
v∞ + v(t)]/uf (t)} and ϕ = ϕk . The action (37) has two saddle
points located near the moments of rescattering for the two
coalescing CRTs. If k is far away from the caustic k(θ ),
in calculating the integral in Eq. (36) using the steepest
descent method the contributions from these saddle points
can be treated separately. The result in this case reduces
to the asymptotics obtained in Ref. [26]. If k is near the
caustic, the saddle points are located close to each other
near the moment of rescattering tr (θ ) at the caustic, and their
contribution to the integral must be treated as a whole. We
wish to calculate the uniform asymptotics of the integral (36)
which holds in a strip near the caustic k(θ ) whose width in
the direction of ν(θ ) is specified below. The position of k in
the strip is determined by coordinates (θ,�k) (see Fig. 1).
Let the caustic be characterized by the kinematic quantities
ti(θ ), tr (θ ), uf (θ ), uf (θ ), and ui(θ ) defined in Sec. II C; for
brevity, in the rest of this section we omit their argument. The
action (37) as a function of t can be expanded near t = tr .
Using Eqs. (20), we obtain

Sr (t,k) = Sr (tr ,k) + S ′
r (θ,�k)δ

+ 1
2S ′′

r (θ,�k)δ2 + 1
6S ′′′

r (θ )δ3, (38)

where δ = t − tr and

S ′
r (θ,�k) = |uf |�k + E0(ti)uf

(tr − ti)F (ti)
, (39a)

S ′′
r (θ,�k) = −νz(θ )F (tr )�k, (39b)

S ′′′
r (θ ) = uf

[
2Ḟ (tr ) sin2(θ/2) − 3F (tr )

tr − ti

− 3uf

(tr − ti)2
− u2

f

(tr − ti)3F (ti)

]
. (39c)

Here, we have consistently neglected terms of the order O(ε1)
and higher. Note that at the caustic �k = 0, so the first term
in the first derivative (39a) and the second derivative (39b)
vanish. These vanishing terms originate from the first two
classical terms in Eq. (37). The second term in Eq. (39a), which
originates from the last quantum term in Eq. (37), does not
vanish, and this has consequences. We mention that a different
form of S ′′′

r (θ ) given by Eq. (6) in Ref. [25] can be reduced to
Eq. (39c) using Eqs. (20). Substituting the expansion (38) into
Eq. (36) and calculating the integral, we obtain

Ic(k) = Ai(α(θ )[k − k̃(θ )]ν(θ ))

×
(

2

S ′′′
r (θ )

)1/3 2πA0(ti)f (uf ,�)

|(tr − ti)3F (ti)|1/2
eiSr (t̃r ,k). (40)

Here, Ai(z) is the Airy function [33], its argument is defined
by

α(θ ) =
(

2

S ′′′
r (θ )

)1/3

|uf | (41)

and

k̃(θ ) = k(θ ) + q(θ )ν(θ ), (42a)

q(θ ) = −E0(ti)

(tr − ti)|F (ti)| , (42b)

the scattering angles are � = (θ,ϕk), and t̃r = t̃r (θ,�k), where

t̃r (θ,�k) = tr − S ′′
r (θ,�k)

S ′′′
r (θ )

(43)

is the point where the second derivative of Eq. (38) in t

vanishes. The two saddle points of the action (38) coalesce
along the curve k = k̃(θ ), where the argument of the Airy
function in Eq. (40) turns to zero. We call k̃(θ ) the quantum
caustic because the shift of this curve with respect to the
classical caustic k(θ ) given by Eqs. (42) is caused by the last
quantum term in Eq. (37). Note that the shift (42b) depends
on the SS eigenvalue E0(ti), so the quantum caustic is target
dependent. Also note that it is complex because the eigenvalue
(9) is complex, so the quantum caustic k̃(θ ) does not belong
to the real (k⊥,kz) plane; its projection onto this plane is
illustrated in Fig. 1. The real part of q(θ ) is positive, so k̃(θ ) lies
outside k(θ ). We have q(θ ) = O(ε1), so the shift disappears in
the limit ε → 0, and in this sense it represents a nonadiabatic
effect. However, the period of oscillations of the Airy factor
in Eq. (40) as a function of �k near the BRC is also O(ε1)
because α(θ ) = O(ε−1), so the shift can never be neglected.
Equations (42) generalize our previous result obtained for a
one-dimensional model [10] to the three-dimensional case,
that is, to arbitrary scattering angles θ . In the weak-field
limit E0(ti) ≈ E0; in this approximation, the shift (42b) for
a monochromatic pulse at θ = 180◦ agrees with a shift in the
energy domain obtained in Ref. [34]. Equation (40) is the main
analytical result of this work. This asymptotics holds provided
that the distance between the two saddle points of the action
(38) is o(ε−1), which is the case in a strip of width �k = o(ε−1)
including both classical k(θ ) and quantum k̃(θ ) caustics.

The following comment regarding the technique of the
derivation may be in order here. The appearance of the Airy
function in the evaluation of an integral with two coalescing
saddle points by the steepest descent method is well known in
mathematics [35]. In physics, this technique is used, e.g., in the
standard textbook treatment of caustics in optics [36]. In the
context of strong-field physics, to the best of our knowledge,
the technique was first applied in Ref. [37]. More recently, the
appearance of the Airy function was mentioned in passing in
the analysis of the cutoff region of the spectrum of high-order
harmonics [38]; the issue was pedagogically discussed in the
Appendix C of Ref. [39]. In the description of the contribution
to the PEMD from backward rescattered electrons, the Airy
function first appeared in Ref. [40]. Not surprisingly, it has
also appeared in all subsequent analytical treatments of the
subject [5,7–10]. However, we emphasize that its argument in
all previous treatments differs from that in Eq. (40).

Equation (40) describes joined contribution of any pair of
coalescing CRTs near the corresponding caustic. Consider the
vicinity of the outermost BRC. As discussed above, in this
region the contribution to the total ionization amplitude I (k)
from direct electrons represented by Ia(k) can be neglected.
The amplitude (40) quickly decays outside the corresponding

053416-6



ADIABATIC THEORY OF STRONG-FIELD . . . PHYSICAL REVIEW A 96, 053416 (2017)

caustic because of the Airy function factor. Hence, near the
outermost BRC one can also neglect all contributions to Ir (k)
except for the only one term Ic(k) representing the coalescing
CRTs. The PEMD P (k) in this region can be approximated by
Pc(k) = |Ic(k)|2. Using Eq. (40), we obtain

Pc(k) = |f (uf ,�)|2W (θ,�k), (44)

where

W (θ,�k) = |Ai (α(θ )[�k − q(θ )])|2
∣∣∣∣ 2

S ′′′
r (θ )

∣∣∣∣
2/3

× 4π2|A0(ti)|2
(tr − ti)3|F (ti)| exp

[
−

∫ ti

−∞
�0(t) dt

]
. (45)

This is the FF foreseen in Ref. [3]. The first factor in Eq. (44)
is the DCS for rescattering at the BRC; let us recall that
uf = uf (θ )ez and � = (θ,ϕk). The second factor is the RWP;
we recall that in Eq. (45), as well as in Eqs. (39c), (41),
and (42b) defining the notation therein, we have omitted the
argument of ti(θ ), tr (θ ), and uf (θ ). The last exponential factor
in Eq. (45) accounts for the depletion of the adiabatic state
(14) before the moment of ionization ti , the ionization step is
represented by the TMD amplitude (12) squared, and the other
factors describe propagation along the CRT. Equation (44)
defines the PEMD as a function of coordinates (θ,�k,ϕk) in
the vicinity of the outermost BRC in the k space. Note that only
the Airy function in the RWP (45) depends on the transverse
with respect to the BRC coordinate �k. This formula is derived
in the adiabatic approximation, that is, it becomes exact as the
adiabatic parameter ε tends to zero, assuming that the other
parameters characterizing the target and pulse are kept fixed.

To close this section, let us indicate the differences between
Eq. (44) and the previous version of the FF given in Ref. [25]:
(a) Equation (44) describes the PEMD in a strip near the BRC,
the dependence of the PEMD on the transverse coordinate �k

in the strip being described by the RWP (45), while in Ref. [25]
the FF was given only at the BRC. (b) Equation (44) accounts
for a quantum shift of the caustic, which is represented by the
term q(θ ) in the argument of the Airy function in Eq. (45). This
shift was not discussed in Ref. [25]. (c) Equation (44) does not
rely on the weak-field approximation (13) used in Ref. [25],
and hence applies to really strong over-the-barrier fields. The
importance of this strong-field effect is illustrated in Sec. III D.
(d) Equation (44) holds for general finite-range potentials
without any symmetry, while in Ref. [25] only spherically
symmetric potentials were considered. This generalization
enables one to extract the dependence of the DCS for molecular
targets on both scattering angles θ and ϕ.

III. ILLUSTRATIVE CALCULATIONS AND DISCUSSION

In this section we illustrate the quantitative performance of
the FF by calculations. The results obtained from Eq. (44)
will be referred to as AA, which stands for the adiabatic
approximation. We compare them with the TDSE results
obtained by solving Eqs. (1) and (2). We consider two-cycle
pulses of the form

F (t) = −F0 cos(4πt/T ) exp[−(2t/T )2] (46)

characterized by the amplitude F0 and duration T . Typical
values of these parameters F0 = 0.1 and T = 200 considered
below correspond to the intensity 3.5 × 1014 W/cm2 and
wavelength 725 nm, respectively. The adiabatic parameter ε

for such pulses is inversely proportional to T . One of the goals
is to confirm that the AA results converge to the TDSE results
as T grows while F0 is kept fixed, and this holds in both
tunneling and over-the-barrier regimes of ionization. Another
goal is to illustrate the convergence for the different potentials,
including potentials with a Coulomb tail. In the calculations
we consider only spherically symmetric potentials. The PEMD
P (k) in this case is axially symmetric about the kz axis and
will be denoted by P (k⊥,kz). The SS information needed to
implement Eq. (44) is calculated using the method developed
in Ref. [28]. The TDSE results are obtained using a program
described in Ref. [41].

The BRC discussed below results from the coalescence
of CRTs originating from the central cycle of the field (46)
containing t = 0. For this BRC, the moment of ionization
ti(θ ) lies slightly to the right of t = −T/4 and the moment of
rescattering tr (θ ) lies near t = +T/8. The actual values of ti(θ )
and tr (θ ) as functions of θ can be found by solving Eqs. (24a)
and (27) using the Newton method. Then, the coordinates of
the BRC k(θ ) = (k⊥(θ ),kz(θ )) can be obtained from Eqs. (28).
Since in the present case F (ti(θ )) > 0, the curve k(θ ) lies
in the region kz < 0. This curve calculated for a pulse with
F0 = 0.1 and T = 200 is shown in Fig. 1. The FF (44) applies
in the vicinity of the BRC: this is the region we focus on
in the following discussion. This region is parametrized by
coordinates (θ,�k) defined by Eqs. (32). We will discuss
cuts of the PEMD P (k⊥,kz) across the BRC at several fixed
values of θ as functions of �k and cuts along the BRC, at
�k = 0, as functions of θ . The cuts obtained from the TDSE
results are denoted by P (�k) and P (θ ), respectively, and the
corresponding cuts obtained from Eq. (44) are denoted by
Pc(�k) and Pc(θ ). For the given pulse shape (46), the functions
k⊥(θ ) and kz(θ ) depend on the pulse parameters F0 and T only
via a common factor F0T , that is, being divided by this factor
they become independent of F0 and T . Table I presents such
scaled coordinates of the four points at the BRC corresponding
to the four values of θ considered in the calculations. In the
present case, the shape of the BRC is rather close to a circle
at θ > 90◦, the departure from the circular approximation
becomes more prominent only at smaller θ . Since uf (θ ) > 0
(see Fig. 1), the angle between the normal ν(θ ) to the BRC
and the positive direction of the kz axis coincides with θ [see
Eq. (30)]. The �k coordinate is measured along the normal
ν(θ ), so the information presented in the table enables one to

TABLE I. Scaled coordinates of the four points at the BRC k(θ )
corresponding to the four values of θ considered in the present
calculations.

θ (F0T )−1k⊥(θ ) (F0T )−1kz(θ )

90◦ 0.09989 −0.0748
120◦ 0.08613 −0.1268
150◦ 0.04953 −0.1635
180◦ 0 −0.1767
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reconstruct the (k⊥,kz) coordinates of the cuts at fixed θ to be
considered below.

A. Validation of the factorization formula for a
finite-range potential

We begin with the validation of the FF for a finite-range
potential, that is, in the situation for which it was derived. We
consider a screened Coulomb potential

V (r) = −exp[−(r/a)2]

r
. (47)

In this section the screening parameter is set to a = 10. As the
initial state we use the 1s state; its energy is E0 ≈ −0.485 483.
The same potential and initial state were used in the illustrative
calculations in Ref. [26]. The critical field indicating a
boundary between the tunneling and over-the-barrier regimes
of ionization in the present case is Fc ≈ 0.12.

We first consider three pulses with the same amplitude
F0 = 0.1 < Fc belonging to the tunneling regime and growing
duration T . The results for these pulses are shown in the three
columns in Fig. 2. The PEMDs obtained by solving the TDSE
are shown in the top row of the figure. They have a sharp
boundary in the region kz < 0 which is determined by the BRC
under consideration. This BRC for the pulse with T = 200
(the right column in Fig. 2) is shown in Fig. 1. The other
rows in Fig. 2 show cuts of the PEMDs across the BRC at
four values of the scattering angle θ as functions of �k. The
solid (black) lines show the TDSE results and the dashed (red)
lines show the AA results. To bring the results in the different
panels to a common scale, the TDSE and AA results in each
panel are divided by the same factor P0 = Pc(�k = 0) giving
the corresponding value of the AA cut at �k = 0, so that
the AA curve always passes through unity at �k = 0. The
main conclusion to be drawn from the figure is that the AA
results do converge to the TDSE results as T grows. Note,
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FIG. 2. PEMDs for ionization from the 1s state in a finite-range potential (47) with a = 10 generated by pulses (46) with the same amplitude
F0 = 0.1 belonging to the tunneling regime and three durations T indicated in the titles of the columns. The top row shows TDSE results for
P (k⊥,kz) obtained by solving Eqs. (1) and (2). The BRC we are interested in goes along the boundary of the PEMDs in the region kz < 0
(compare with Fig. 1). Solid (black) lines in the other rows show cuts P (�k) of the TDSE PEMDs across the BRC at four values of θ indicated
in the left column as functions of �k. Dashed (red) lines show the cuts Pc(�k) obtained in the adiabatic approximation from the FF (44).
The TDSE and AA results in each panel are divided by the same factor P0 = Pc(�k = 0) giving the corresponding value of the AA cut. The
vertical dotted lines at �k = 0 show the position of the BRC. The arrows located at �k = Re[q(θ )] indicate the position of the real part of the
quantum caustic defined by Eqs. (42). The total ionization probability Pion for these pulses is (a) 0.20, (b) 0.22, and (c) 0.23.
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FIG. 3. Same as in Fig. 2, but for pulses with an over-the-barrier amplitude F0 = 0.2. The total ionization probability Pion for these pulses
is (a) 0.90, (b) 0.95, and (c) 0.96.

importantly, that the cuts of the PEMDs in Fig. 2 are shown
on a linear scale, so the level of agreement between numerical
and analytical results is really impressive. As expected, the
agreement becomes better near the BRC located at �k = 0.
For example, for T = 200, the difference between the TDSE
and AA results at �k = 0 varies from 8% at θ = 180◦ to 2%
at θ = 90◦. The arrows indicate the position of the real part of
the quantum caustic defined by Eqs. (42); this caustic for the
pulse with T = 200 is shown in Fig. 1. The quantum shift q(θ )
in the argument of the Airy function in Eq. (45) decreases as
T grows, but remains of the same order O(ε1) as the width of
the rightmost maximum in the oscillatory dependence of the
cuts P (�k) on �k. It is clear that accounting for this shift is
essential for achieving the agreement seen in Fig. 2.

Figure 3 presents similar results, but for pulses with an
amplitude F0 = 0.2 > Fc belonging to the over-the-barrier
regime. Because of technical difficulties in the calculations,
in this case we consider somewhat smaller values of T . For
T = 140, the difference between the TDSE and AA results
at �k = 0 varies from 20% at θ = 180◦ to 12% at θ = 90◦.
Although this difference is larger than in the previous case,
because of the smaller values of T considered, the results
are again seen to converge as T grows, and this is the main

feature we wish to demonstrate. Note that the total ionization
probability for the present pulses exceeds 90%, and even for
such a violent field-atom interaction Eq. (44) works well. We
recall that the adiabatic theory [26] in general, and Eq. (44) in
particular, apply to arbitrary field amplitudes, provided that
the adiabatic parameter ε is sufficiently small, and this is
confirmed by the results shown in Figs. 2 and 3. These results
validate the FF (44) for finite-range potentials.

B. Toward potentials with a Coulomb tail

Realistic potentials modeling the interaction of an active
electron with the parent ion in neutral atoms and molecules
have a Coulomb tail. So, for applications it is important to
demonstrate that Eq. (44) applies in this case too. We first
give analytical arguments supporting the possibility to extend
Eq. (44) to Coulomb-tail potentials and then confirm this by
calculations.

The asymptotics of the adiabatic part in Eq. (7) given
by Eq. (14) holds for finite-range as well as Coulomb-tail
potentials [26]. But, the asymptotics of the rescattering part
in Eq. (7) given by Eq. (22) and formula (33) for the exact
ionization amplitude were derived in Ref. [26] relying on
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the assumption that the potential has a finite range. The
problem with Eq. (22) in the case of Coulomb-tail potentials
stems from the divergence of the scattering amplitude in the
forward direction; this prevents the step from Eq. (99) to
(103) in Ref. [26]. However, this problem does not arise if
one considers only near-backward rescattered electrons. The
problem with Eq. (33) is that this formula does not account
for the logarithmic Coulomb phase of the final state in the
Coulomb-tail case. However, this phase is the same for both
contributions to Ic(k) from coalescing CRTs near the BRC, so
it disappears in Eq. (44). These arguments suggest that Eq. (44)
should hold also for Coulomb-tail potentials.

We demonstrate that this is indeed the case by considering
potentials (47) with growing value of the screening parameter
a. We begin with a = 10 treated in the previous subsection and
proceed to a = ∞, which corresponds to the pure Coulomb
potential. As the initial state we again use the 1s state. To
confirm that the Coulomb tail does not affect the shape of the
PEMD in the vicinity of the BRC, where Eq. (44) applies, we
need to show that the accurate PEMD obtained by solving the
TDSE converges in this region as a grows. We first consider a
pulse in the tunneling regime with F0 = 0.1 and T = 200, as
in the right column in Fig. 2. The upper panel in Fig. 4 shows
TDSE results for the cuts of PEMDs calculated for several
values of a as functions of �k at a representative value of the
scattering angle θ = 150◦, as in the third row in Fig. 2. The
results clearly converge. For the present pulse, the convergence
is achieved at a = 50, which means that the tail of the Coulomb
potential extending beyond r ∼ 50 does not affect the shape of
the PEMD in the region under consideration. The AA results
obtained from Eq. (44) are shown in the lower panel of the
figure. They demonstrate a very similar convergence behavior.
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FIG. 4. Cuts of the PEMDs for ionization from the 1s state in
potentials (47) with different values of the screening parameter a. The
Coulomb potential corresponds to a = ∞. The PEMDs are generated
by pulses (46) with the amplitude F0 = 0.1 and duration T = 200, as
in the right column in Fig. 2. The cuts are shown as functions of �k

at θ = 150◦, as in the third row in Fig. 2. The upper and lower panels
show the TDSE and AA results, respectively. Note that here absolute
(not divided by any factor) results are shown.
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FIG. 5. Same as in Fig. 4, but for pulses with F0 = 0.2 and T =
140, as in the right column in Fig. 3. The cuts are shown as functions
of �k at θ = 150◦, as in the third row in Fig. 3.

The Coulomb results in this case are obtained by using the
Coulomb DCS. The AA and TDSE results for the same a are
close to each other, the difference between them is similar to
that seen in the right column in Fig. 2, and it was shown to
decrease as the pulse duration T grows.

Figure 5 shows similar results for a pulse in the over-the-
barrier regime with F0 = 0.2 and T = 140, as in the right
column in Fig. 3. In this case, the finite-range and Coulomb
results converge already for a = 10. The slower convergence
for weaker fields is explained as follows. The main dependence
on the screening parameter a in Eq. (44) comes from the factor
|A0(ti)|2 in Eq. (45), which describes the ionization step. In
the weak-field limit this factor is related to the ionization rate
[see Eq. (13)]. The weak-field asymptotics of the rates of
ionization from finite-range and Coulomb-tail potentials have
different powers of the field in the preexponential factor [31],
which strongly affects their values. For stronger fields, the
ionization rate as well as the factor |A0(ti)|2 are less affected
by the long-range behavior of the potential.

Summarizing, the results in Figs. 4 and 5 confirm that
PEMDs near the outermost BRC are not sensitive to the
Coulomb tail of the potential and, therefore, Eq. (44) applies
also to potentials with a Coulomb tail. Note that in other
parts of the momentum space, PEMDs may be affected by
the Coulomb tail.

C. Realistic atomic potentials

We now consider realistic atomic potentials with a Coulomb
tail. We begin with the discussion of ionization from the 5p

state of Xe described by the potential defined in Ref. [42].
The results obtained for three pulses with the same amplitude
F0 = 0.06 belonging to the tunneling regime and growing
duration are shown in Fig. 6. The top row in the figure
shows PEMDs obtained by solving the TDSE. The middle
row shows cuts of the PEMDs across the BRC at θ = 180◦.
These results are similar to the cuts shown in Figs. 2 and
3. The TDSE and AA results in each panel are divided by

053416-10



ADIABATIC THEORY OF STRONG-FIELD . . . PHYSICAL REVIEW A 96, 053416 (2017)

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

042=T)b(061=T)a( (c) T=320

0-2 424-

kz (a.u.)
0-2 424-

kz (a.u.)
0-2 424-

kz (a.u.)

k _
 (

a.
u.

) 2

0

1

Δk (a.u.) Δk (a.u.) Δk (a.u.)

θ (deg) θ (deg) θ (deg)

P
(Δ

k)
/P

0
P

(θ
)/P

0

x0.7

0.0

0.5

1.0

90 120 150 180 120 150 180

DCS

TDSE
AA

TDSE
AA

90 90 120 150 180

10
-5

10
-8

10
-11

FIG. 6. PEMDs for ionization from the 5p state of Xe described by the potential from Ref. [42] generated by pulses (46) with the same
amplitude F0 = 0.06 belonging to the tunneling regime and three durations T indicated in the titles of the columns. The top row shows TDSE
results for P (k⊥,kz). In the middle row: solid (black) lines show cuts P (�k) of the TDSE PEMDs across the BRC at θ = 180◦ as functions
of �k and dashed (red) lines show the cuts Pc(�k) obtained from Eq. (44). The TDSE and AA results in each panel are divided by the same
factor P0 = Pc(�k = 0) giving the corresponding value of the AA cut, as in Figs. 2 and 3. Note that in the left panel the TDSE results are
additionally multiplied by 0.7. The vertical dotted lines show the position of the BRC and the arrows indicate the position of the real part of
the quantum caustic. In the bottom row: solid (black) lines show cuts P (θ ) of the TDSE PEMDs along the BRC, at �k = 0, as functions of
θ and dashed (red) lines show the cuts Pc(θ ) obtained from Eq. (44). The TDSE and AA results in each panel are divided by the same factor
P0 = Pc(θ = 180◦) giving the corresponding value of the AA cut. The dotted (blue) line in the right panel shows the DCS as a function of θ at
a constant incident momentum |uf (180◦)|. The DCS is multiplied by a factor which brings its value at θ = 180◦ in coincidence with the TDSE
curve. The total ionization probability Pion for these pulses is (a) 0.12, (b) 0.15, and (c) 0.18.

the same factor P0 = Pc(�k = 0) giving the corresponding
value of the AA cut at �k = 0, so that the AA curve always
passes through unity at �k = 0. The bottom row shows
cuts of the PEMDs along the BRC, that is, at �k = 0.
In this case, the TDSE and AA results in each panel are
divided by the same factor P0 = Pc(θ = 180◦) giving the
corresponding value of the AA cut at θ = 180◦, so that the
AA curve always passes through unity at θ = 180◦. Figure 7
shows similar results for pulses with an amplitude F0 = 0.2
belonging to the over-the-barrier regime. In both figures, the
AA and TDSE results are again seen to converge as T grows,
and this is the main feature we wish to emphasize. For the
weaker pulses in Fig. 6, the onset of the adiabatic regime is
passed near T = 240, which corresponds to the wavelength
of 870 nm. For the stronger pulses in Fig. 7, the adiabatic
regime is reached at smaller T . Note that good agreement
between the AA and TDSE results is achieved even though the
total ionization probability for the latter pulses exceeds 90%.
Figures 6 and 7 confirm that Eq. (44) applies to realistic atomic
potentials.

Having confirmed that Eq. (44) works quantitatively, we
now discuss its main virtue for applications in strong-field
physics. The FF (44) predicts that by dividing a PEMD taken
along the outermost BRC by the RWP (45) one obtains the
corresponding DCS. This is the extraction procedure resulting
from the present theory. Since the RWP at the BRC is a given
function of θ , the agreement between the DCSs extracted in
this way from the present PEMDs for Xe obtained by solving
the TDSE and the results of independent scattering calculations
is the same as the agreement between the TDSE and AA results
shown in the bottom rows in Figs. 6 and 7. This agreement is
good and becomes better as T grows. In Fig. 8 we show similar
cuts of PEMDs along the BRC calculated for different targets.
We consider ionization from the 1s state in H and the outer
shell of noble gas atoms, namely, 2p state in Ne, 3p state
in Ar, and 4p state in Kr, described by potentials defined in
Ref. [42]. The agreement for H is virtually perfect, while for
the other atoms some difference can still be seen for the present
pulses. These results illustrate the quantitative performance of
the extraction procedure based on Eqs. (44) and (45).
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FIG. 7. Same as in Fig. 6, but for pulses with an over-the-barrier amplitude F0 = 0.2. The total ionization probability Pion for these pulses
is (a) 0.94, (b) 0.94, and (c) 0.95.

The AA results shown in the bottom rows in Figs. 6 and
7 and in Fig. 8 are obtained from Eq. (44) by taking into
account the correct dependence of the DCS and RWP on
both the incident momentum of rescattering |uf (θ )| and the
scattering angle θ along the BRC. In the circular approximation
discussed in the Introduction and in the end of Sec. II C, which
was used in the extraction procedure in Refs. [3,11–18], the
incident momentum is taken to be equal to |uf (θ = 180◦)|
and the RWP is assumed to be a constant. It is instructive to
compare this approximation with the present AA results. The
dotted (blue) lines in the bottom right panels in Figs. 6 and 7
and in Fig. 8 show the DCS at constant incident momentum
|uf (180◦)| as a function of the scattering angle θ . To make
the comparison with the TDSE and AA PEMDs possible,
the DCS in each case is multiplied by a factor which brings
its value at θ = 180◦ in coincidence with the TDSE curve:
this is what one would obtain in the circular approximation.
Although in all the cases the DCS curves look almost as
good as the AA results, which is partially explained by the
fact that the BRC for the present pulses is very close to a
circle, we would like to emphasize the following. First, the
circular approximation enables one to extract a DCS only up
to an unknown incident-momentum-dependent factor, while
Eq. (44) yields the correct absolute values of the DCS. Second,
Eq. (44) is shown to work quantitatively from the onset of
the adiabatic regime corresponding to the wavelength about
800 nm and to become more accurate as the wavelength
grows, while the errors incurred by the circular approximation
do not decrease at longer wavelengths. Third, although the

improvement of Eq. (44) over the circular approximation
demonstrated in Figs. 6–8 is not large quantitatively, there is a
definite improvement in each case, and this becomes essential
for current applications as experimental techniques progress
toward detecting fine multielectron effects in DCSs.

D. Strong-field effects

The RWP (45) depends on the target through three quanti-
ties: the energy E0(ti) of the adiabatic state (14) at the moment
of ionization ti = ti(θ ) at the BRC defining the quantum
shift (42b) of the caustic, the factor |A0(ti)|2 describing the
ionization step, and the ionization rate �0(t) defining the
exponential depletion factor. All these quantities are properties
of the adiabatic SS defined by Eq. (8), and therefore they
depend on the field. In the weak-field limit, the SS energy
E0(ti) in Eq. (42b) can be approximated by the energy E0 of the
unperturbed initial state, the factor |A0(ti)|2 can be expressed
in terms of the ionization rate using Eq. (13), and the rate �0(t)
as a function of the instantaneous field F (t) can be evaluated
using the weak-field asymptotic theory [31]. By strong-field
effects here we mean departures from these approximations.

The dependence of the quantum shift (42b) on the field
is important; however, this effect is small since the shift
itself is small, so we do not discuss it here. The weak-field
approximation for the rate in the present case of spherically
symmetric potentials was obtained in Ref. [43]. This approxi-
mation works well only in the deep tunneling regime. It grossly
overestimates the ionization rate even for fields in the tunneling
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FIG. 8. Cuts of the PEMDs for H(1s) and noble gas atoms Ne(2p), Ar(3p), and Kr(4p) described by potentials defined in Ref. [42] as
functions of θ along the BRC, as in the bottom rows in Figs. 6 and 7. The PEMDs are generated by pulses with F0 = 0.08 and T = 220 for H,
F0 = 0.17 and T = 160 for Ne, F0 = 0.1 and T = 220 for Ar, and F0 = 0.08 and T = 300 for Kr. The solid (black) lines show cuts P (θ ) of
the TDSE PEMDs. The dashed (red) lines show the cuts Pc(θ ) obtained from Eq. (44). The TDSE and AA results in each panel are divided by
the same factor P0 = Pc(θ = 180◦) giving the corresponding value of the AA cut. The dotted (blue) lines show the DCSs as functions of θ at
a constant incident momentum |uf (180◦)|. The DCS in each panel is multiplied by a factor which brings its value at θ = 180◦ in coincidence
with the TDSE curve.

regime considered above, let alone for over-the-barrier fields.
For example, it overestimates the ionization rate of Xe(5p) at
F = 0.06, which corresponds to the pulse amplitude in Fig. 6,
by more than a factor of 3 [42]. The error in the ionization rate
would be amplified by the exponential function in the depletion
factor in Eq. (45). Thus, the strong-field effects in the depletion
factor are extremely important: only using accurate ionization
rates calculated by the method developed in Ref. [28] were we
able to achieve the level of agreement between the TDSE and
AA results demonstrated above. This issue is rather trivial, so
we do not discuss it further here.

But, the issue related to Eq. (13) is less trivial and deserves
an illustration. One could intuitively expect that the ionization
step in Eq. (45) should be described by the instantaneous
ionization rate �0(ti) instead of the factor |A0(ti)|2. This is
indeed the case, e.g., in the theory presented in Ref. [8]. In the
adiabatic theory, this is the case only in the weak-field limit,
when Eq. (13) holds. For stronger fields, even in the tunneling
regime and more so in the over-the-barrier regime, the left-
and right-hand sides of Eq. (13) differ, and the difference
generally grows with the field. This is illustrated in Fig. 9.
The RWP (45) is defined by the TMD amplitude taken at zero
transverse momentum [see Eq. (12)], and this is also intuitively
clear because only electrons released with zero transverse
momentum can return for rescattering (see the discussion in
Sec. II C). Only in the weak-field limit this amplitude becomes
related to the ionization rate via Eq. (13). As seen from
Fig. 9, the difference between the left- and right-hand sides
of Eq. (13) in the interval of fields considered is rather large.

For example, for H(1s) at F = 0.08, which corresponds to
the field amplitude for H in Fig. 8, the difference is 13%,
while the difference between the AA and TDSE results in the
figure is within 2%. Without accounting for this difference,
we would not be able to obtain the agreement between the

FIG. 9. Ratio of the left-hand side to the right-hand side of
Eq. (13) as a function of F = |F (t)| calculated for the 1s state
of hydrogen and the highest occupied orbital in noble gas atoms
described in the single-active-electron approximation using potentials
from Ref. [42]. For F → 0, the ratio in all the cases approaches unity,
in agreement with Eq. (13).
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AA and TDSE results demonstrated above, especially for
over-the-barrier fields in Figs. 3, 5, and 7.

IV. CONCLUSIONS

In this paper, the factorization formula (44) describing
strong-field photoelectron momentum distributions near the
outermost backward rescattering caustic, which was originally
inferred on physical grounds in Ref. [3], is derived from the
adiabatic theory [26]. The formula accounts for a quantum
shift of the caustic and strong-field effects in the returning
photoelectron wave packet (45) not discussed previously. The
formula is validated by calculations. It is shown to work
quantitatively in the vicinity of the caustic in both tunneling
and over-the-barrier regimes of ionization for finite-range
as well as Coulomb-tail potentials and to become more
accurate as the adiabatic parameter giving the ratio of the
target and laser field time scales tends to zero. The explicit

analytical form of the returning wave packet (45) enables one
to extract DCSs for elastic scattering of a photoelectron on
the parent ion from experimental photoelectron momentum
distributions. The present theory in combination with the
experimental technique based on the use of few-cycle pulses
with carrier-envelope phase control demonstrated in Ref. [25]
establish a quantitative method of extracting the dependence
of DCSs on both the incident momentum and the scattering
angle.
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