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Cavity-enhanced photoionization of an ultracold rubidium beam for application
in focused ion beams
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A two-step photoionization strategy of an ultracold rubidium beam for application in a focused ion beam
instrument is analyzed and implemented. In this strategy the atomic beam is partly selected with an aperture after
which the transmitted atoms are ionized in the overlap of a tightly cylindrically focused excitation laser beam and
an ionization laser beam whose power is enhanced in a build-up cavity. The advantage of this strategy, as compared
to without the use of a build-up cavity, is that higher ionization degrees can be reached at higher currents. Optical
Bloch equations including the photoionization process are used to calculate what ionization degree and ionization
position distribution can be reached. Furthermore, the ionization strategy is tested on an ultracold beam of 85Rb
atoms. The beam current is measured as a function of the excitation and ionization laser beam intensity and the
selection aperture size. Although details are different, the global trends of the measurements agree well with the
calculation. With a selection aperture diameter of 52 μm, a current of (170 ± 4) pA is measured, which according
to calculations is 63% of the current equivalent of the transmitted atomic flux. Taking into account the ionization
degree the ion beam peak reduced brightness is estimated at 1 × 107 A/(m2 sr eV).
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I. INTRODUCTION

Photoionized ultracold atomic beams are promising to
be used as source for focused ion beam (FIB) instruments
for nanofabrication purposes [1]. Atomic equivalent reduced
brightnesses of the order of 107 A/(m2 sr eV) have been
reported [2,3], which are roughly an order of magnitude higher
than the industry standard liquid metal ion source (LMIS).
Furthermore, energy spreads of less than 1 eV full width at
half maximum (FWHM) are expected [2,3] as compared to
4.5 eV for the LMIS. Together with the aberrations of the
focusing column these two beam parameters determine the
resolution of a FIB instrument for a given current. With the
aforementioned beam parameters and realistic focusing optics,
a FIB probe size of 1 nm is expected [4].

Recently, two prototype ultracold cesium FIBs have been
realized. Viteau et al. constructed an ion microscope based on
the field ionization of Rydberg-level promoted cesium atoms
[5]. From the obtained resolution combined with simulations
an ion beam brightness of 2.8 × 105 A/(m2 sr eV) was
estimated. Furthermore, Steele et al. realized a FIB system
based on two-step but direct photoionization of cesium atoms
[6]. A direct measurement of the ion beam’s reduced brightness
resulted in 2.4 × 107 A/(m2 sr eV).

In this paper the ionization strategy that is applied in the
atomic beam laser-cooled ion source (ABLIS) [7] is intro-
duced. In the ABLIS setup a thermal beam of Rb atoms effuses
from a collimated Knudsen source [8] and is laser cooled
and compressed in the transverse direction. Subsequently the
atoms are ionized in a two-step photoionization process. This
process distinguishes itself from other cold ion beam sources
by the use of an aperture to select the atoms to be ionized
and a build-up cavity for the ionization laser, which can
bring advantages such as a higher ionization degree and faster
ionization. The ions are created inside an electric field, ranging
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from 10 kV/m to 1 MV/m, to suppress disorder-induced
heating [4]. Therefore, the energy spread of the ions will
be proportional to the range of positions at which they are
produced, so the faster the atoms are ionized the smaller
the energy spread will be. After ionization the ions can be
introduced in an electrostatic focusing column to focus them
to a small spot.

Analytical and numerical calculations of the ionization
scheme and experimental results to confirm these calculations
are presented. The basis of the calculations are the so-called
optical Bloch equations. They are extended to include the
ionization process and solved analytically (under idealized
circumstances) and numerically to provide expectations of
what ionized fraction can be reached and in what longitudinal
distance this happens as this distance determines the energy
spread of the ion beam. Measurements are performed of
the beam current as a function of the ionization laser beam
intensity, excitation laser beam intensity, and the selection
aperture size in order to verify some of the calculations.

Section II introduces the ionization strategy and discusses
its advantages and disadvantages in comparison with other
ionization schemes. In Sec. III the optical Bloch equations
including ionization are introduced. Section IV treats the
analytical solution to these equations under idealized circum-
stances, whereas Sec. V treats the numerical solution under
realistic experimental circumstances. The experimental setup
and results are discussed in Sec. VI. Finally, Sec. VII provides
the conclusion of this paper.

II. IONIZATION STRATEGY

A commonly used scheme for the ionization of ultracold
alkali atoms to form charged particle beams is two-step
photoionization [1]. An excitation laser beam excites the
atoms to an intermediate state, from which an ionization laser
beam can bring the electron above the ionization threshold.
Two lasers are used not only because direct photoionization
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from the ground state would require laser frequencies in the
UV region but also because this two-step photoionization
scheme offers the possibility to define the ionization region
by overlapping the foci of the laser beams. Defining the
ionization region serves two purposes. First, the longitudinal
size of the region determines the energy spread, because
the ionization usually takes place inside an electric field in
order to preserve the brightness. Second, the transverse size
of the region influences the transverse current distribution.
This ionization strategy was used in the UCIS [9] and MOTIS
[10] setups in which an ionization volume was created inside
a magneto-optical trap (MOT). Although in this way ion
beams could be created with extremely small energy spreads
[11], the current that could be extracted was limited by the
low diffusion rate into the ionization region. To overcome
this limitation, new-generation cold ion sources are based on
photoionization of cold atomic beams [2,3]. For example, a
current of 20 pA was produced from an ultracold cesium beam
by overlapping laser beams with rms sizes of 2.25 μm and
1.75 μm [2]. By defocusing the laser beam this current could
be increased, but at the cost of a lower transverse brightness
and higher energy spread due to the lower ionization laser
intensity.

Another strategy to ionize ultracold atoms is to not
photoionize the atoms by bringing the electron above the
ionization threshold, but to promote them to a high-lying
Rydberg state and subsequently let them travel into a high
electric field region in which they are field ionized [12]. The
advantage of this technique is the fact that the cross section
of Rydberg excitation is larger than direct photoionization,
which relieves the necessity of a high laser beam intensity.
However, a disadvantage is that a more complex laser system
is needed to lock the laser to the Rydberg transition. The energy
spread of the beam is in this case determined by the electric
field gradient, which determines the ionization probability
distribution. In the first realization an energy spread of 2 eV
was obtained [5].

Here, an alternative strategy to ionize an ultracold atomic
beam is evaluated, which is schematically depicted in Fig. 1.
First of all, a selection aperture is used to select the part of
the atomic beam that is intended to be ionized. The atoms
are then ionized in the crossover of an excitation laser beam
and an ionization laser beam. Because the cross section σi

for direct photoionization from the 5 2P 3/2 state is low, a high
laser intensity is needed to ionize this large fraction. As will
be shown in Sec. V B an ionization laser intensity of more
than 109 W/m2 is needed in order to ionize more than 50%
of the incoming atoms. One option to realize this intensity
is to focus the ionization laser beam very tightly, as was
done by Knuffman et al. to ionize their cesium beam [2].
However, this tight waist also limits the transverse size of the
ionization region and therefore the maximum current that can
be produced. An other option is to increase the laser power
by ionizing the atoms inside the ionization laser cavity [13]
or an external build-up cavity to which the ionization light
is coupled, the latter of which is done here. In this way the
ionization laser beam can be focused less tightly to get the
same laser beam intensity, which enables a larger current at
the optimal achievable brightness and energy spread. In order
to limit the longitudinal dimension of the ionization region
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FIG. 1. The strategy to ionize a beam ultracold 85Rb atoms. On
the left a schematic energy level scheme is shown with the excitation
and ionization transition indicated. On the right a schematic side view
of the ionization of atomic beam is shown. The ultracold rubidium
atoms are selected with an aperture to set the ion beam current, excited
by a tightly cylindrically focused excitation laser beam that travels
in the y direction and ionized by the overlapping ionization laser
beam that travels in the x direction, whose power is enhanced in a
build-up cavity and which is focused less tightly than the excitation
beam.

the excitation beam is focused cylindrically and as tight as
practically possible.

As mentioned, an advantage of the alternative strategy is
the ability to create larger currents without sacrificing beam
brightness. A more practical advantage is that the current can
be changed by simply using a different selection aperture as
is also done in LMIS-based FIBs. Furthermore, when this
selection aperture is placed close enough to the ionization
laser beam, it will define the transverse size of the ionization
region. In that case ion beams with sharp edges can be made, as
compared to distributions with Gaussian-like tails. However,
note that in the experiments discussed in Sec. VI A this is not
yet the case as the aperture is placed too far from the ionization
position so that the transverse distribution is dominated by
the temperature of the atoms. The main disadvantage of
the ionization strategy is the need for a build-up cavity and
therefore a more complex design.

III. OPTICAL BLOCH EQUATIONS

In this section optical Bloch equations (OBEs) are intro-
duced that include the photoionization process in a standard
way [14–17]. These equations are used in Sec. V to predict the
ionization degree and the range over which ionization takes
place in the ABLIS setup. The OBE are derived from the
so-called master equation given by [18],

∂ρ

∂t
= i

h̄
[ρ,H ] + L(ρ), (1)

in which h̄ is the reduced Planck constant, H is the
Hamiltonian of the system under consideration, L(ρ) is
the Lindblad superoperator and ρ is the density operator.
The atom is approximated by a three-level system. The di-
agonal matrix elements ρgg, ρee, and ρii of the density operator
are the populations of the ground, excited, and ionized state,
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respectively, whereas the off-diagonal elements give the
coherences between these states. By approximating the atom
as a three-level system, the magnetic sublevel structures of the
ground and excited state as well as states with a different total
angular momentum are not taken into account. The validity of
this approximation is further discussed in Sec. V C.

The Hamiltonian accounts for the dynamics of the atom
driven by the resonant excitation radiation field. In a rotating
frame and under the rotating wave approximation and the
electric dipole approximation, it can be written as [19],

H = h̄

⎛
⎝ 0 �/2 0

�/2 0 0
0 0 0

⎞
⎠, (2)

in which � is the Rabi frequency, which is given by,

� = −〈e|E · d|g〉
h̄

=
√

s

2
γ, (3)

in which E is the excitation electric field amplitude, d is the
electric dipole operator, s = Ie

IS
is the saturation parameter in

which Ie is the intensity of the excitation radiation field, and
IS is the saturation intensity of the excitation transition. γ is
the linewidth of the excitation transition, which in the case
of rubidium from the 5 2S1/2 state to the 5 2P3/2 state is 2π ×
6.06 MHz [20].

The Lindblad superoperator takes into account all interac-
tions of the system with the environment and is given by [18],

L(ρ) = 1

2

∑
j

([Vjρ,V
†

j ] + [Vj,ρV
†

j ]), (4)

in which the summation is performed over all environment-
induced transition operators Vj. In the problem described
here there are two relevant transition operators, namely
the operators describing spontaneous emission Veg and the
ionizing transition Vei, which are given by

Veg = √
γ |g〉〈e|, Vei = √

γi|i〉〈e|, (5)

in which γi is the ionization rate from the excited state given
by,

γi = σiIi

h̄ωi
, (6)

where ωi and Ii are the angular frequency and intensity of the
ionization light and σi is the ionization cross section, which
in the case of rubidium in the 5 2P3/2 state is 1.48 × 10−21 m2

[21]. Note that dephasing due to the linewidth of the light
field is not included in the model. This is valid as long as this
linewidth is much smaller than γ .

Combining Eqs. (1)–(6) results in a set of coupled linear
differential equations for ρgg, ρee, u = 1/2(ρge + ρeg), and
v = i/2(ρeg − ρge). Equations for the coherences involving
the ionized state can also be derived, but since these only
influence each other and not the populations they are not of
interest here. With the introduction of y = (ρgg,ρee,u,v)T the

set of differential equations can be written as,

∂y
∂t

= My, (7)

in which M is a matrix given by

M =

⎛
⎜⎜⎝

0 γ 0 −�

0 −(γ + γi) 0 �

0 0 − γ+γi

2 0
�
2 −�

2 0 − γ+γi

2

⎞
⎟⎟⎠. (8)

When Eqs. (7)–(8) are solved, ρii can be calculated with

ρii = 1 − ρgg − ρee. (9)

IV. ANALYTICAL SOLUTIONS OPTICAL BLOCH
EQUATIONS

There have been several reports on the analytical solutions
of the optical Bloch equations or their magnetic counter-
part, describing nuclear magnetization dynamics under the
influence of an external driving field [22]. Although the
latter describe a completely different physical system, the
equations describing their dynamics have the same structure.
Reference [23] provides an implicit solution to the original
magnetic Bloch equations, which was later rederived explicitly
[24] to give solutions to the optical Bloch equations. A
solution was also found to the generalized magnetic Bloch
equations describing the nuclear magnetization dynamics of
a decaying system [25], which is a similar set of equations
as Eq. (7).

An analytical solution to Eq. (7) is derived in the Appendix.
The form of the solution depends on the value of γi . Figure 2
shows the solution for three cases: γi < γi,cr, γi = γi,cr and
γi > γi,cr, where the critical value γi,cr is given by,

γi,cr = 2

√
�2 + 3

(
γ�2

4

) 2
3

− γ. (10)

For each of these cases the populations of the ground state,
excited state and ionized state are shown. In the first case,
Rabi oscillations between the ground and excited state can
be seen, which are also characteristic for the solutions to the
original OBE. However, different in this case is that the Rabi
oscillations are not only damped by spontaneous emission,
but also due to ionization, which damps the oscillation to a
zero equilibrium value of the excited-state population. In this
regime the total ionization rate, which is the product of ρee and
γi, becomes higher for larger γi. In the second case the atom
is almost completely in the ionized state within the first Rabi
period. The ionization is quenched within this time due to the
fact that the ionized-state population is simply reaching 1. This
is the situation in which the atom is ionized the fastest, because
when γi is increased more, as shown in the third case, the total
ionization rate becomes smaller. This is caused by the fact that
the Rabi oscillation is damped so fast that there is no reasonable
excited-state population being developed and therefore also the
ionized state is being populated slower. Therefore the larger
the value of γi in this case, the longer it will take to reach the
equilibrium ionized population ρii = 1.

The paradoxical behavior that when γi > γi,cr, ionization
happens slower for increasing γi can be explained as dissipative
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FIG. 2. Analytical solutions to the OBE including ionization
[Eq. (7)] in the case that γ = �

10 and γi = γi,cr
10 , γi,cr and 10γi,cr, where

γi,cr is the critical value for the ionization rate given by Eq. (10).
The solutions are given by Eqs. (A12) and (A13). For the case that
γi = 10γi,cr, a plot is also shown of the predicted ionized population by
looking at the ionization as a continuous measurement of the excited
state population which suppresses the excitation from happening by
the quantum Zeno effect.

quantum Zeno dynamics [26]. The quantum Zeno effect is the
suppression of a transition between two quantum states due
to the continuous measurement of one of the states [27]. Each
time the occupation of one of the states is measured, the wave
function collapses and if the time between measurements is
short enough the collapse is onto the original state. For the
system described here, the ionization process can be viewed
as a continuous measurement of the excited-state population.
For continuous measurements, at a rate γi � � this leads to an
effective decay from the original state with a rate �2

γi
[28,29].

That means that in this case the ionized population will grow

as ρii(t) ≈ 1 − e
− �2 t

γi , which is indeed the case as can be seen
in the bottom panel of Fig. 2.

For a given � and γ ionization happens fastest when
γi = γi,cr as discussed above. As can be seen in Fig. 2,
approximately 90% is then ionized within a single Rabi period.
However, for a given γi, ionization will happen fastest for
� → ∞. Taking this limit in the analytical solution results in
ρii(t) = 1 − e− γi t

2 , in which the factor 1
2 in the exponent can be

explained by the fact that on average only half of the atoms is
in the excited state. With this equation and Eq. (6) the time it
takes to get a certain ionized population can be calculated for
the case the excitation field is switched on instantaneously.
However, in the experiment discussed here this is not the
case as the atoms travel through an excitation laser beam
with a finite waist at a finite velocity. In order to find the
solution in this case a numerical approach is taken in the next
section.

V. NUMERICAL SOLUTION OPTICAL BLOCH
EQUATIONS

In the previous section an analytical solution is found to
the optical Bloch equations including ionization in the case
that the radiation fields are constant and switched on instanta-
neously. However, the atom travels through a Gaussian-shaped
excitation laser beam, meaning that this field will change in
amplitude gradually. To solve the optical Bloch equations
in this case a numerical approach is taken. Particularly of
interest in the solutions are the probability that an atom of the
incoming beam is ionized after passing through the crossover
of the excitation beam and ionization beam and if the atom is
ionized also the position at which this happens since this will
determine the energy the atom will gain from the acceleration
field.

A. Simulation setup

The optical Bloch equations solve the population dynamics
as a function of time. However, here the interest is in the
dynamics as a function of the longitudinal position, since
this will determine the electric potential at which an ion is
made and thus the energy it will gain from the acceleration
field. Furthermore the radiation field is dependent on the
position of the particle rather than on time. Therefore the time
dependence in Eq. (7) is changed to a position dependence
by the transformation t = z/vz, in which z is the longitudinal
position of the atom measured with respect to the center of the
excitation laser beam and vz is the longitudinal velocity of the
atom.

For simplicity it is assumed the atoms are only moving
in the z direction, which is realistic as the atoms are laser
cooled in the transverse direction. The longitudinal velocity
is assumed to be distributed according a Maxwell-Boltzmann
distribution. Measurements have shown this is not completely
true [3]. However, a Maxwell-Boltzmann distribution provides
correct asymptotic behavior and can be tuned to give the
correct average velocity, which is the case for a temperature
of 22 K. The velocity distribution is discretized and for each
of the discretization steps the OBE are solved and the final
solutions are weighted averages over these steps according the
velocity distribution.

As explained in Sec. II, the ionization laser beam has a
larger waist than the excitation beam. In order to simplify the
simulation and make it more comprehensible, since it releases
the ionization laser beam position as an extra simulation
parameter, the ionization laser beam intensity distribution is
assumed to be independent of z. For simplicity, it is also
assumed to be independent of y. The validity of this approach
is discussed in Sec. V C. As stated in Sec. II the ionization laser
power is enhanced with a build-up cavity. In the simplest case
of a linear cavity this means the light field of the ionization
laser constitutes a standing wave in which the ionization light
intensity I (x) is given by

I (x) = 4Ii sin2

(
2πx

λ

)
, (11)

in which λ is the wavelength of the ionization light and Ii

represents the intensity of the running wave inside the cavity.
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FIG. 3. The ground-state population (ρgg), excited-state popula-
tion (ρee), and ionized-state population (ρii) as a function of position
for four different situations: for a single atom traveling at 91 m/s
and without ionization, for a single atom traveling at 91 m/s and
with ionization, for all atoms averaged over the longitudinal velocity
distribution, and for all atoms averaged over the longitudinal velocity
distribution and averaged over a standing wave of ionization light
intensity.

To take this effect into account one period of the standing wave
pattern is discretized. For each of the intensities a simulation
is performed and weighted averaging takes place over this
intensity distribution. Note that this is only valid if the size of
the atomic beam is much larger than λ/2, which is usually the
case in realistic situations.

For the excitation laser beam a Gaussian intensity pro-
file with a 1/e2 diameter of 4σexc = 12μm is assumed
in the longitudinal direction. It is assumed to be uniform
in the transverse direction which is a valid approximation since
it will be formed by cylindrically focusing the excitation beam.

B. Simulation results

Figure 3 shows the results of four simulations in which
one by one several effects are taken into account. The first
plot shows simulation results in which an atom that travels
through a Gaussian-shaped excitation beam with 91 m/s, but
in which there is no ionization (Ii = 0). The excited state
population ρee undergoes a damped Rabi oscillation towards
ρee = 0.5 in which the Rabi frequency � first increases for
z < 0 and then decreases for z > 0. As soon as � becomes
smaller than the spontaneous damping rate γ the excited-state

population undergoes an exponential decay. In the second plot
Ii = 1010 W/m2. Now an ionized-state population starts to
develop as soon as there is an excited-state population. There
are still Rabi oscillations in the excited state, but they are
damped faster due to the additional damping by the ionization.
Since the atom gets ionized this damping is towards ρee = 0.
In the third plot the same simulation is averaged over the
longitudinal velocity distribution. The trend of the simulations
is very similar and the state populations in each atom still
undergo Rabi oscillations, even with the same frequency at
each position. However, the difference is that each atom travels
with a different velocity and thus has acquired a different phase
at each point. Therefore, the averaging washes out the Rabi
oscillations in the final result. The final plot shows the effect
of the standing wave of ionization light. At the antinodes of
the standing wave the populations will develop as in the third
plot, but with a slightly higher ionization rate due to the four
times higher intensity as compared to a single running wave.
However, exactly at the nodes the populations will develop as
in the first plot, i.e., no ionization will happen. Furthermore, at
points near the nodes the ionization will happen much slower.
The average effect of this is that the final ionized population
is lower.

The two most interesting properties to look at in this
research are the total ionized population after passing through
the laser beams and the ionization position distribution.
These properties will influence the brightness and energy
spread of the ion beam. To find the ionization position
distribution the ionized population as a function of position
that is found in the numerical calculation is differentiated
with respect to the position. To further quantify the results
a full width at half maximum (FWHM) and a full width
containing 90% of the particles (FW90) is calculated from this
distribution.

Figure 4 shows the dependence of the ionization process
on the ionization laser intensity. Figure 4(a) shows some
examples of the ionized population and the ionization position
distribution as a function of position. At very low ionization
laser intensities no significant ionized population develops. In
this regime the ionization position distribution is completely
determined by the shape of the excitation laser and the lifetime
of the excited state. At what position the ionization starts is
determined by the intensity of the excitation light in combi-
nation with the shape of the laser beam. When �(z) becomes
larger than γ , a significant excited-state distribution starts to
develop and thus ionization starts to occur. Then if �(z) again
drops below γ there is an exponential decay in excited-state
population and thus also in the ionization position distribution.
As can be seen in Fig. 4(b) this results in an ionization position
distribution width of roughly 22 μm (FW90).

A significant ionized population develops when 1/γi is
of the same order as the average transit time of an atom
through the length in which there is a a significant excited-state
population. Dividing the average velocity by a length of 22 μm
gives an inverse transit time of 3 MHz. As can be seen in
Fig. 4(b) this agrees with the value for γi at which the ionization
degree grows the fastest. From this value of γi the ionization
position distribution also starts to become narrower because
ionization is quenched due to the fact that most of the atoms
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FIG. 4. Simulation results, which show the dependence of the
ionization process on the ionization laser intensity: (a) The ionized
population and the ionization position distribution as a function of the
longitudinal position at several different ionization laser intensities,
indicated in the plots. (b) The ionization degree (corresponding to
the left axis) and the FWHM and FW90 width of the ionization
position distribution (corresponding to the right axis) as a function
of the ionization laser intensity. Shown on the top axis is also the
corresponding ionization rate. All simulations in this figure are done
with s = 3000 and σe = 3 μm.

get ionized instead of the fact that there is no excitation from
the ground state anymore.

When the Ii is so high that γi becomes of the same order
as the maximum Rabi frequency, which is 1.5 GHz in this
simulation, the ionization position distribution width reaches
its smallest value. If Ii is increased more at this point the
distribution becomes wider as a result of the fact that the
Rabi oscillation becomes overdamped as was also witnessed
in the analytical solution. The smallest distribution width is,
with a FWHM value of 3 μm, even smaller than the FWHM
width of excitation laser beam, being 7 μm. Also note that
ρii does not get any higher than roughly 0.95 as a result of
the standing wave distribution of ionization light. Because of
the standing wave, no matter how high the intensity becomes
there are always atoms that experience a zero light intensity
at the nodes of the standing wave. This effect, in combination
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FIG. 5. Simulation results, which show the dependence of the
ionization process on the excitation laser intensity: (a) Ionized
population and the ionization distribution as a function of the
longitudinal position at several different maximum excitation laser
saturation parameters, indicated in the plots. (b) The ionization degree
(corresponding to the left axis) and the FWHM and FW90 width of
the ionization position distribution (corresponding to the right axis)
as a function of the excitation laser saturation parameter. Shown on
the top axis is also the corresponding Rabi frequency. All simulations
in this figure are done with Ii = 1010 W/m2 and σe = 3 μm.

with the limited time an atom is excited, causes the ionized
population not to reach 1.

Figure 5 shows similar plots as in Fig. 4, but in which s is
varied instead of Ii. There is no significant ionization at low s,
since there is no excited-state population being developed. This
changes when s becomes so large that �/2π becomes larger
than γ /2π and of the order of the average inverse transit time
of the atom through the laser beam. With a 1/e2 laser beam
diameter of 12 μm this average inverse transit time becomes
6 MHz, which is indeed where a significant ionized populations
starts to appear. When �/2π is a few times the value of this
inverse transit time, the total ionization degree does not grow
much anymore with an increase in intensity. What does happen
is that the ions are created earlier since the local Rabi frequency
becomes larger than γ earlier. As can be seen in Fig. 5(b) this
is accompanied by a decrease in the FWHM of the ionization
position distribution. Besides practical limitations, the limit to
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this decrease in ionization position distribution width is that
the ionization also has a finite rate. This is also the reason that
the FW90 value of the ionization position distribution is little
affected. The reason why it increases is as follows. As the Rabi
frequency becomes larger the region in which there are excited
atoms becomes larger and therefore, in the low-intensity part
of the standing wave of ionization light, more atoms are
ionized. These atoms are, however, ionized over a larger
range thus increasing the width of the ionization position
distribution, which is mostly visible in the FW90 of the
distribution.

C. Simulation discussion

Figure 5(b) shows that increasing the Rabi frequency
decreases the FWHM of the ionization position distribution.
However, this will only be true if the shape of the excitation
field is perfectly Gaussian, i.e., if the excitation beam also
resembles a Gaussian far off axis, since the ionization takes
place further off axis when the excitation intensity is increased.
In practice this is not the case. Even if the incoming excitation
laser beam will be perfectly Gaussian, the limited size of the
focusing lens [30] and aberrations of the lens will deform
the Gaussian intensity pattern far from its center. Therefore,
care should be taken in interpreting the results in Fig. 5 where
the ionization takes place far from the center of the excitation
laser beam.

Another aspect to keep in mind is that in reality the
system is not a real three-level system. First of all, the
ground and excited state are in reality a multitude of magnetic
substates, which each have a different transition strength
and thus a different saturation intensity. The distribution of
the atoms over the magnetic sublevels can be influenced by
optical pumping. For the results shown in Figs. 4 and 5 the
average time an excited state exists is roughly in the range
30–200 ns, depending on the values of s and Ii . Since the
lifetime of the excited state is 26 ns this short interaction
time means that only limited redistribution of the magnetic
sublevels might occur, in contrast to Ref. [31]. Furthermore,
for the F = 3 → F = 4 excitation transition discussed here,
for which there are no dark magnetic sublevels, the only
effect will be that the effective saturation intensity will be
different and there will be some additional dephasing of the
Rabi oscillations in the total amount of population in an excited
state.

Another approximation of the three-level atom is that there
are no other angular momentum states, whereas in reality there
exist multiple hyperfine levels. If the saturation parameter
of the excitation laser beam becomes so high that the Rabi
frequency is of the same order as the detuning of the laser with
respect to some other excited state, excitation might also occur
to this other state. However, if the ionization laser frequency
is high enough so that ionization also happens from this state,
this will only add additional dephasing of Rabi oscillations.
Furthermore, in the parameter regime, which is most suitable
for practical application, most of the atoms are already ionized
at the point where the Rabi frequency is still smaller than
the level splitting between the intended excited level and
the nearest other one. For example, the ionization position
distribution for Ii = 4 × 1010 W/m2 in Fig. 4(a) peaks at the

point where the local Rabi frequency is about 25 MHz. This
is still significantly smaller than the hyperfine splitting of
120 MHz between the F = 3 and F = 4 state of the 5 2P3/2

level in 85Rb.
In the numerical calculations the ionization intensity was

assumed to be constant. However, in practice it will also have
a Gaussian beam shape. The effects of this ionization beam
shape will be minor as long as the excitation and ionization
beam are overlapping well and the waist size of the ionization
laser beam is significantly larger than the region over which a
significant excited-state population exists.

VI. EXPERIMENTAL VERIFICATION

In order to verify some of the model calculations, measure-
ments have been performed of the beam current as a function
of the excitation laser beam intensity, ionization laser beam
intensity and the selection aperture size. These measurements
are compared with numerical calculations under the same
conditions. In the next two sections the experimental setup
and the results are discussed.

A. Experimental setup

The beam of 85Rb atoms that is ionized in this experiment
is the same as was described in previous work [3]. The
measurements described here are performed at a magnetic field
gradient of 1.1 T/m in the 2D MOT and optimal laser cooling
detuning. In the measurements as a function of laser beam
intensities the temperature of the Knudsen source was 393 K, in
the measurement as a function of aperture size the temperature
was 433 K. From the previous work a total incoming flux
equivalent to (0.3+0.1

−0.1) nA and (0.6+0.3
−0.2) nA is expected at these

conditions, respectively. After the atomic beam formation, the
beam drifts 40 mm to the selection aperture. After the aperture
the beam drifts for another 30 mm before it reaches the laser
beams and is ionized.

As explained in Sec. I, a build-up cavity is used to enhance
the power in the ionization laser beam. The build-up cavity
consists of two concave mirrors placed inside the vacuum
system. The 1/e2 diameter of the beam waist inside the cavity
is 68 μm. The mirror substrate is coated with a dielectric
interference coating with a 99.7% reflection coefficient at
480 nm, which gives a maximum theoretical laser beam power
enhancement in the cavity of 333×. The ionization light is
created by a Coherent Genesis MX 480 optically pumped
semiconductor laser, which produces a single mode beam
of 481 nm light. The build-up cavity is locked to this laser
with a piezo actuator on one of the cavity mirrors by means
of Pound-Drever-Hall frequency stabilization [32]. The laser
beam is mode matched to the cavity with two lenses. The power
enhancement in the cavity was determined by measuring the
power of the light transmitted through one of the mirrors. The
maximum power enhancement measured is (2.0 ± 0.2) × 102.
When the power in the ionization laser beam is varied this is
done by changing the power output of the laser.

The excitation light comes from a diode laser that is
frequency stabilized with a frequency offset servo with
respect to the laser cooling laser which was stabilized to the
5 2S1/2(F = 3) to 5 2P3/2(F = 4) transition. The excitation

053412-7



TEN HAAF, WOUTERS, MUTSAERS, AND VREDENBREGT PHYSICAL REVIEW A 96, 053412 (2017)

light is focused cylindrically with an acylindrical lens with a
focal length of 18 mm that was positioned inside the vacuum
system. The waist position of the excitation laser beam is
overlapped with the atomic beam by adjusting the position
of a one meter focal length lens outside the vacuum in the
direction of travel of the laser beam, while looking at the
atomic beam’s laser-induced fluorescence imaged onto a CCD
camera. The laser beam has a 1/e2 diameter of 5.4 mm before
focusing, this would lead to a diffraction limited 1/e2 waist
diameter of 3.3 μm. However, waist measurements outside
the vacuum to test the effect of shifting the beam’s waist
on the waist size, in which the beam was perfectly centered
on the lens, resulted in 1/e2 waist diameters of 7–12 μm,
depending on the lens position. This dependence and the fact
that the beam might have traveled through the lens off center
make it difficult to know the exact size of the waist in the
measurements. Therefore, the size of the Gaussian excitation
waist is varied in the simulation to find the best fit with the
measured data.

The photoionization takes place in the middle between two
electrodes, which are separated by a 3 mm gap. The potential
on first electrode is set at 1 kV while the second is grounded,
thus creating a field of 3 × 105 V/m. A commercial Faraday
cup is placed approximately 50 mm further. The collected
current is measured with an electrometer. Each data point
shown is averaged over 50 measurements. At currents above
0.1 pA the average one standard deviation relative fluctuation
is 5%. Below this current value the fluctuations are sometimes
higher due to noise by other causes than fluctuations in the
beam.

B. Experimental results

Figure 6 shows a measurement of the beam current as a
function of the excitation beam maximum saturation parameter
s for four different maximum ionization beam intensities Ii. In
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I
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A
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FIG. 6. Experimental data (markers) of the beam current plotted
against the excitation laser beam maximum saturation parameter for
several different maximum ionization laser beam intensities. The
atomic beam is selected with an aperture with a diameter of 52 μm.
The lines represent simulation data under the same conditions as the
measurement, which were fitted to the measurement. The fit resulted
in a maximum incoming flux equivalent to 81 pA and a saturation
intensity of 52 W/m2. The χ 2 value of the fit is 11.

order to visualize the dependence at low saturation parameters
as well, the data is plotted on a double logarithmic scale. As
can be seen the current is proportional to s when s < 1. For
s � 1 the current saturates at a value, which is higher for
higher Ii.

The saturation intensity used to calculate s in Fig. 6 is
found by comparing the experimental results to the numerical
calculations. The calculations are performed under the same
conditions as the experiment is done. In contrast to the
simulations performed in Sec. V also the limited spatial
extent of the ionization laser beam is included. This means
that not only � is dependent on the longitudinal position of
the atom, but also γi. To include the dependence of γi on
the transverse position in the beam, an additional weighted
averaging step is included in the simulation over the transverse
position, and corresponding Ii, in which the weights are given
by the transverse position distribution of the atoms. With
the drift distance of the beam after the selection aperture in
this experiment (30 mm) this transverse position distribution
is not determined fully by the selection aperture, but by a
combination of this aperture and the velocity distribution
of the atoms. In order to find out this distribution a Monte
Carlo simulation is performed in which initial positions and
velocities after the laser-cooling section are chosen according
their known probability distributions. These particles are then
tracked to the selection aperture after which the selected
particles are further tracked to the ionization position. Also
in contrast to the other simulations the results were averaged
over the longitudinal velocity distribution that was measured
in Ref. [3] instead of a Maxwell-Boltzmann distribution.
Furthermore, the 1/e2 diameter of the excitation laser beam is
varied to find the value that resulted in the lowest χ2 value of
the fit with the data.

The numerical calculations and experimental results are
fitted to each other by finding the saturation intensity (to fit
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FIG. 7. Experimental data (markers) of the beam current plotted
against the ionization laser beam maximum intensity for several
different maximum excitation laser beam saturation parameters. The
atomic beam is selected with an aperture with a diameter of 52 μm.
The lines represent simulation data under the same conditions as the
measurement, which were performed using the saturation intensity
found from the data plotted in Fig. 6 and is also scaled with the same
maximum incoming flux equivalent is found from that data.
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FIG. 8. Transverse atom distribution just before ionization (solid curves) and transverse ion distribution just after ionization (dashed curves)
as a function of y (for orientation see Fig. 1) for two different aperture diameters (see legend) and in the situation that the aperture is positioned
at z = −30 mm (top) and z = −5 mm (bottom). The distributions are normalized such that the integral results in the fraction of incoming
atoms that is transmitted by the aperture or ionized.

the experimental data horizontally to the numerical data) and
the current equivalent of the selected incoming flux (to fit the
numerical data vertically to the experimental data) that give
the lowest χ2 value. The uncertainties that are used to calculate
this χ2 are the statistical fluctuations mentioned in Sec. VI A,
systematic uncertainties are not taken into account. Since these
fluctuations are smaller than the markers of the experimental
data in the figures in this section they are not displayed.

The lowest χ2 value is found for a 1/e2 diameter of the
excitation laser beam of 16 μm, an incoming flux equivalent to
81 pA and a saturation intensity of 52 W/m2. The lines in Fig. 6
show the fitted simulation data. The simulation overlaps well
with the data points on the global scale. However, the χ2 value
of the fit is 11, which indicates the model is not fully correct.
Looking at the plots, this can be seen for example by the fact
that for Ii = 8.4 × 108 W/m2 all data points are higher than
the model, which suggests that ionization is more efficient than
predicted by the model at this ionization laser beam intensity.
A different ionization cross section can have been caused due
to a dependence of the frequency of the ionization laser on
its power output. When the data for Ii = 8.4 × 108 W/m2

is not taken into account a χ2 value of 5.6 is found, which
indicates that a dependence of the ionization cross section on
the ionization laser power can not solely explain the difference
between the calculation and the experimental data. A likely
deviation of the model with respect to the experiment is an
imperfect Gaussian shape of the excitation laser beam waist.
For low values of the saturation parameter only the shape of
the beam near the center is important, where the beam likely
resembles a Gaussian very well and the experimental data
would thus agree with the model. However, at high saturation
parameters, the ionization takes place far from the center of
the beam, as shown in Fig. 5(a). Here the beam might not
resemble a Gaussian shape very well, for example due to lens
aberrations and finite apertures.

Figure 7 shows experimental data of the beam current as
function of Ii for three different values of s. The lines also

show the corresponding calculation results. These results are
calculated with the same saturation intensity and scaled with
the same maximum current as the results in Fig. 6. As can be
seen the experimental data again overlaps well with the scaled
calculation on a global scale, which confirms the validity of
the scaling values found from Fig. 6. Note that, similarly as
in the data shown in Fig. 6, there is a slightly higher current
around 109 W/m2.

As said, a saturation intensity of 52 W/m2 gives the best
fit of the model to the experimental data. In the case that the
atoms are equally distributed over all magnetic sublevels mF

and are excited with linearly polarized light, the saturation
intensity would be 38.9 W/m2 [20]. The higher value found
can be caused by a magnetic sublevel distribution that has a
higher probability for higher |mF |, when excitation is done
with linearly polarized light.

The maximum measured current using the selection aper-
ture with a diameter of 52 μm is 51 pA. Therefore the
maximum achieved ionization degree is 63%. This is lower
than the ionization degree of 81% displayed in Fig. 4 at a laser
intensity of 5 × 109 W/m2. The reason for this difference is the
fact that the transverse ionization position distribution in the
experiment is wider than the 1/e2 ionization laser beam waist
of 68 μm. The transverse position distribution of the selected
atomic beam at the position of the ionization, as is found from
the Monte Carlo simulation introduced earlier, is shown in the
top panel of Fig. 8 for a selection aperture diameter of 52 μm
and 127 μm. The figure also shows y-position distribution of
the ions just after the ionization (see Fig. 1 for a orientation
reference). Note that the incoming flux was normalized to
1, and the distributions in Fig. 8 are scaled accordingly.
Therefore, the integral of the selected atom distribution results
in the probability that an atom in the incoming atomic
beam is transmitted by the aperture and the integral of the
ion distribution results the probability that an atom in this
incoming atomic beam is ionized. The ionization degree is
81% in the center, while it is almost zero at 60 μm from
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FIG. 9. Experimental data (markers) of the beam current plotted
against the area of the aperture used to select the atomic beam.
The data is taken at a Knudsen source temperature of 433 K,
with Ii = 6 × 109 W/m2 and s = 6000. The lines show simulation
data under the same conditions as the measurement. The solid line
shows the current equivalent of the atomic flux that is transmitted
through the selection aperture. The dashed line shows the current
that is actually created. A fit is performed to find the current
equivalent of the (unselected) incoming flux that matches the
calculation data best with the experimental data, which resulted
in 1.4 nA.

the center. As can be seen the distributions are significantly
wider than the respective selection aperture diameters. This
is caused by the finite temperature of the atoms and the fact
that they drift for 30 mm after the selection aperture in the
current configuration. This configuration can be improved on
by placing the aperture closer to the ionization position. The
bottom panel of Fig. 8 shows the results of a calculation of the
same distributions when the aperture is placed at z = −5 mm.
As can be seen the distributions are narrower and have a sharper
edge. If such a sharp-edged distribution could be imaged onto
the sample in a FIB instrument without artifacts, this will bring
an advantage concerning nanofabrication purposes. However,
since this makes the design more challenging this configuration
is not pursued in this proof-of-concept experiment.

Figure 9 shows the current as a function of the selection
aperture area. The markers show the experimental data, the
dashed line shows scaled calculation data of the ionization
degree and the solid line shows scaled calculation data of
the fraction of the incoming atomic flux that is transmitted
by the selection aperture. As this data is measured at a
different Knudsen source temperature than the data in Figs. 6
and 7 a new scaling is performed. The current equivalent
of the incoming flux resulting from this scaling is 1.4 nA,
which is significantly larger than the value of (0.6+0.3

−0.2 ) nA
found earlier by means of laser-induced fluorescence [3]. With
the new determined value of the current equivalent of the
incoming atomic flux, the ionization degree and the earlier
measured temperature [3] of the incoming atoms the peak
brightness of the produced ion beams is calculated to be
1 × 107 A/(m2 sr eV). By using a selection aperture with
a diameter of 300 μm, the maximum produced current is
(0.61 ± 0.01) nA.

VII. CONCLUSION

In this paper an alternative strategy to ionize an ultracold
atomic beam is analyzed. In this strategy an aperture is used
to select the part of the ultracold beam that is to be ionized.
This selection of atoms is ionized in two steps by a tightly
cylindrically focused excitation laser beam that is positioned
within an ionization laser beam whose intensity is enhanced by
a build-up cavity. With this strategy a high ionization degree
over a larger transverse area can be achieved as compared to
without a build-up cavity, due to the high intracavity power.
Therefore, higher ion beam currents can be reached at the
maximum available brightness, which is determined by the
incoming atomic beam parameters.

The optical Bloch equations are extended to include the
ionization process. These equations are solved analytically
with constant light fields. Although this analytical solution
provides important insight the ionization dynamics, especially
in the case that γi � �, a numerical solution is found with
the experimentally achievable laser fields taken into account.
These provide expectations for the ionization degree and
ionization position distribution. The calculations show that it is
possible to limit the longitudinal region of ionization by solely
focusing the excitation laser beam tightly. High ionization
degrees can be reached when �/2π and the γi are both of
the order of the inverse transit time of the atom through the
excitation laser beam. An ionization degree of 80% is possible
with an ionization intensity of 1010 W/m2.

Experiments are performed in which the beam current is
measured as a function of the excitation laser beam intensity
ionization laser beam intensity and the aperture size. Numer-
ical calculations are done under similar conditions and fitted
with the experimental results in order to determine the current
equivalent of the incoming flux of atoms and the saturation
intensity of the excitation transition. With the best fitting
parameters the overall trend of the measurement is reproduced.
However, the χ2 value of the fit is 11, which indicates the
model is not fully correct. A likely difference between modeled
and experimental situation is that the excitation laser beam
waist did not have a perfect Gaussian shape in the experiment.
Also, the χ2 value is calculated while only taking into account
the statistical fluctuations in the current and not systematic
uncertainties in for example the aperture size and ionization
cross section. With a selection aperture diameter of 52 μm,
a maximum current of (170 ± 4) pA is measured, which,
according to simulation data, is 63% of the current equivalent
of the transmitted atomic flux. Using a larger aperture the
maximum current produced is (0.61 ± 0.01) nA. Taking the
ionization degree into account the brightness of the produced
ion beam is estimated at 1 × 107 A/(m2 sr eV).
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APPENDIX: DERIVATION ANALYTICAL SOLUTION

To find a solution to Eq. (7) a trial solution of the form y =
yje

λjt is inserted, which reduces the equation to the eigenvalue
problem

Myj = λjyj. (A1)

In order to find a nontrivial solution to this equation the
following condition must hold:

det(M − λjI ) = 0, (A2)

in which I is the unity matrix. Substitution of Eq. (8) and
writing out the determinant results in(

λj + γ + γi

2

)(
λ3

j + 3(γ + γi)

2
λ2

j

+
(

(γ + γi)2

2
+ �2

)
λj + γi�

2

2

)
= 0. (A3)

This equation shows that the first eigenvalue is,

λ1 = −γ + γi

2
, (A4)

with its matching eigenvector,

y1 = (0,0,1,0)T . (A5)

The other eigenvalues are the roots of the third-order polyno-
mial given by the second part of the left-hand side of Eq. (A3).
These roots are given by,

λ2 = −α − 2p, λ3(4) = −α + p + (−)iq, (A6)

in which,

α = γ + γi

2
, p = 1

2

(
Q

S
+ S

)
,

q =
√

3

2

(
Q

S
+ S

)
, S = (R +

√
R2 − Q3)

1
3 ,

Q = 1

12
[(γ + γi)

2 − 4�2], R = −γ�2

4
. (A7)

The values of these eigenvalues, especially whether they are
purely real or complex, is important since they determine
the time evolution of the density matrix components. A real
eigenvalue means an exponential decay or growth, while a
complex eigenvalue indicates there is an oscillation in the
density matrix components. Therefore, the argument of the
square root in the equation for S plays an important role.
When R2 > Q3, p, q, and S are all purely real quantities,
which means that λ3 and λ4 have complex values. However, if
R2 < Q3 it turns out that λ3 and λ4 are purely real quantities,
although this is not immediately clear from Eqs. (A6) and (A7).
Therefore it is in this case better to work out the equations for
p and q, which results in,

p =
√

Q cos

[
1

3
arccos

(
R

Q
3
2

)]
=

√
Q cos φ,

(A8)

q = i
√

3Q sin

[
1

3
arccos

(
R

Q
3
2

)]
= i

√
3Q sin φ.

Inserting these values in Eqs. (A6) shows that all eigenvalues
become purely real.

The next step is to calculate the eigenvectors that match with
the eigenvalues from Eq. (A6), which is done by inserting
the eigenvalues back into Eq. (A1) and solving for the
eigenvectors. The results are given by,

yi =
(

1 + 2

�2
(λi + α)(λi + 2α),1,0, − 1

�
(λi + 2α)

)T

,

(A9)

which is valid for i = 2,3,4. The complete solution to Eq. (7)
is now given by

y(t) =
4∑

i=1

ciyie
λit , (A10)

in which the coefficients ci are determined by the begin
conditions. In the case the atom starts in the ground state,
i.e., y(0) = (1,0,0,0)T , the coefficients are given by

c1 = 0,

c2 = �2

2(9p2 + q2)
, (A11)

c3(4) = �2

4q[−q + (−)3ip]
.

Combining Eqs. (A6)–(A10) gives you the complete solution
to the problem. To make the solution as clear as possible it is
best to write down two solutions, one for R2 > Q3 and one for
R2 < Q3. In the first case, that can also be written as γi < γi,cr,

where γi,cr = 2
√

�2 + 3( γ�2

4 )
2/3 − γ , the solution is given by

y = c2y2e
−(α+2p)t

+ 2Re(c3y3) cos (qt)e−(α−p)t

− 2Im(c3y3) sin (qt)e−(α−p)t , (A12)

in which p and q are given by Eq. (A7) and for which is made
use of the fact that c3 = c∗

4 and y3 = y∗
4. In the other case all

eigenvalues are real and the solution may be written as

y = c2y2e
−(α+2

√
Q cos φ)t

+ c3y3e
(
√

3Q sin φ)t e−(α−√
Q cos φ)t

+ c4y4e
−(

√
3Q sin φ)t e−(α−√

Q cos φ)t , (A13)

in which φ is used, which is defined in Eq. (A8).
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