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Laser-induced deformation of triatomic molecules: Influence on tunnel ionization
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We consider a type of light-dressing effect in molecules which is due to laser-induced deformation of molecules.
We derive general formulas which describe the change of the equilibrium bond lengths, bending angles, and
vibration frequencies for a polyatomic molecule. Up to the second-order terms in the field strength, the normal
coordinates of the molecule are not changed. Explicit expressions for the change of the geometric parameters
and vibration frequencies are found for a nonlinear triatomic molecule of the A2B type. These results are applied
to calculation of the tunnel-ionization rates for H2O, H2O+, and SO2 molecules, both in ac and dc fields. The
main influence of the laser-induced deformation on the tunnel ionization is due to the changes in Franck-Condon
factors, which are determined by overlap of the nuclei wave function of the molecule and its residual ion. In a
laser field with an intensity of ∼1014 W/cm2, the contribution of the laser-dressing effect to the ionization rate is
within 5% for H2O and H2O+, while accounting for this effect changes the ionization rate of the SO2 molecule
by up to 20 times depending on the molecule’s orientation with respect to the electric-field vector. Such a large
difference is due to the electronic structures of these molecules.
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I. INTRODUCTION

Processes of the interaction of laser radiation with simple
molecules have been studied for several decades [1–9]. One of
the most important among these processes is the ionization of
molecules which, in particular, plays a determining role in the
gas filamentation phenomenon which has been under active
study in recent years [10–15].

For most of the currently available powerful laser sources,
the ionization takes place in the tunnel regime according to
Keldysh theory [16]. Developed originally for atoms, this the-
ory was directly generalized for tunnel ionization of molecules
in Refs. [17,18] and currently is known as Ammosov-Delone-
Krainov theory for molecular orbitals (MO-ADK). Never-
theless, unlike atoms, the ionization of molecules requires
substantial modifications of Keldysh theory.

Madsen et al. investigated an influence of the molecular
dipole moment on their tunnel-ionization rate in a dc electric
field. Their basic model (tunnel ionization of a simple molecule
with a structureless core) is considered in detail in Ref. [19].
In their further papers, these authors applied this theory to
the ionization of linear [20] and nonlinear (e.g., H2O [21])
molecules, where the overlap between the electron orbitals of
the molecular core and the formed ion was accounted for using
the Dyson orbital technique [22].

One of the important results of the above-mentioned works
is an essential role of the linear Stark effect, which arises
in some molecules due to a permanent dipole moment. In
Ref. [23], we showed that the permanent dipole moment
can be neglected for the multiphoton-ionization regime, but
it is important for the tunnel regime. Taking into account
the permanent dipole moment, the tunnel-ionization rate
calculated in Ref. [23] is changed by as much as ten times
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for the case of laser radiation linearly polarized along the
molecule axis.

Another important difference between molecules and atoms
is due to the vibrational degrees of freedom. In fact, the molec-
ular vibrations were not taken into account in Refs. [17,18]
where the ionization rate was calculated for the “frozen” nuclei
with subsequent averaging over the internuclear separation.
Such a method can be considered as a quasiclassical approach.
The quantum treatment of the molecular vibrations performed
in Refs. [15,24,25] involves Franck-Condon factors (FCFs)
which arise in the calculation of molecular oscillator strengths
(see, e.g., [26]). In Refs. [15,24,25], an anharmonic Morse
oscillator model was used to calculate FCFs for diatomic
molecules.

A more adequate quantum treatment of molecular nuclear
motion, which allows calculation of the tunnel-ionization rate
for vibrationally excited molecules, is the so-called inelastic
tunneling model. Developed for atoms in our earlier papers
[27–31], this approach has demonstrated a good agreement
with experimental results from Refs. [32,33], including the
experiment [34] stimulated by our inelastic tunneling theory.
In molecules, the inelastic tunneling appears as an anti-Stokes-
enhanced tunnel effect. It was demonstrated in Ref. [15] in the
calculation of tunnel ionization of a nitrogen molecule, which
is important for understanding the kinetics of filamentation in
the Earth’s atmosphere. Moreover, the anti-Stokes-enhanced
tunnel effect can be of interest for laser isotope separation. The
corresponding estimations were done for molecular hydrogen
[24] and hydrogen halides [25]. A quantum treatment of
nuclear motion was also done in Refs. [35–37].

In recent experiment [38] in laser-assisted electron-atom
scattering, an important role of the light-dressing effect in
atoms was demonstrated with a good agreement with the
theoretical model proposed by Zon [39]. The laser-assisted
modification of vibrational frequencies and equilibrium in-
ternuclear separation of a diatomic molecule (see [40]) can
be considered as a similar light-dressed effect in molecules
(LDEM). In application to the tunnel ionization, LDEM works
via changing FCF values in a laser field. The calculations
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taking into account the LDEM-induced change of vibrational
parameters of the H2 molecule result in a change of its
tunnel-ionization probability by two times under the laser-field
intensity of �1014 W/cm2 [24].

This research aims to generalize the LDEM theory to
polyatomic molecules. To calculate the changes in the vibra-
tional parameters of molecules in the laser field, we apply
the method proposed by Kern and Matcha [41] and developed
later by Pandey and Santry [42] for nonadiabatic molecular
susceptibilities in a dc electric field. The odd-order (in the
field strength) contributions to the molecular energy, which
arise in the dc field, are absent in the ac field at IR or optical
frequencies [43] and this is the main difference between the ac
and dc field-induced modification of molecular geometry. Note
the nonadiabatic study of the optical properties of the simplest
molecules performed in Ref. [44] with a variation method
using oscillator wave functions. Reference [45] contains
a review of further papers of these authors, for instance,
application of the modification of molecular geometry and
vibrational spectra (so-called vibrational Stark effect [46]) in
studies of the Kerr effect, and electric-field-induced second-
and third-harmonic generation.

A brief outline of the present paper is as follows. In
Sec. II, we give a brief sketch of Dyson orbitals for poly-
atomic molecules in the Born-Oppenheimer approximation.
Section III contains formulas for the tunnel-ionization rate
in a dc electric field and in monochromatic laser radiation.
A theoretical description of monochromatic laser-induced
modification of geometry and vibrational parameters of a
polyatomic molecule is given in Sec. IV. As an example, we
consider the deformation of a symmetric nonlinear molecule
of the A2B type. Section V contains the results of numerical
calculations for H2O, H2O+, and SO2 molecules. Some
formulas needed for intermediate calculations are given in the
Appendices. The transformation from the Cartesian to normal
coordinates is given in Appendix A. The explicit formulas
accounting for the influence of molecular deformation on FCFs
are presented in Appendix B.

The atomic units (h̄ = me = e = 1) are used hereafter,
except in specified cases.

II. DYSON ORBITAL IN POLYATOMIC MOLECULES

The Born-Oppenheimer approximation (BOA) is widely
used in the study of interactions between molecules and
electromagnetic radiation. However, dissociative ionization
and Coulomb explosion are exceptional cases for which BOA
does not apply (see, e.g., [47–51]). These cases are not
considered in the present paper. For a complete description
of the molecular stationary states in the BOA framework, the
many-electron wave functions should be multiplied by the
wave functions of nuclear vibrational motion,

�μ,{vμ}({r},{R}) = χμ,{vμ}({R})�μ({r}; {R}). (1)

Here, μ = i denotes the initial state which corresponds to the
neutral molecule, while μ = f denotes the final state which
corresponds to its residual ion. The compound subscript {vμ}
stands for all vibrational quantum numbers of the molecule; {r}
corresponds to all electron coordinates and {R} to all nuclear
coordinates. The vibrational state of the molecule is given

by the χ function, and the electronic state is described by
the � function which depends parametrically on the nuclear
positions, {R}.

In the traditional ADK and MO-ADK models, the atomic
or molecular ionic core is considered to be “frozen”, i.e.,
the core state remains unchanged after the departure of the
tunneling electron. However, both the core electron and nuclear
motion wave functions in a neutral molecule are generally
different from those of the residual ion. To take into account
this difference, we use the Dyson orbital which is an overlap
between the core configurations of the neutral molecule in the
initial state and its ion in the final state. According to Eq. (1),
in the single active electron (SAE) approximation, the Dyson
orbital is

�
(Dyson)
{vf vi } (r) =

∫
{d3R} χ∗

f,{vf }({R}) χi,{vi }({R})

×
∫

{d3r ′} �∗
f ({r ′}; {R})�i({r ′},r; {R}). (2)

Here, r is the active (tunneling) electron coordinate, while
{r ′} stands for the coordinates of the electrons in the neutral
molecule core or in its residual ion. The following notation for
the volume elements are used in the integration:

{d3r ′} ≡
Ne∏
i=1

d3ri, {d3R} ≡
Na∏
j=1

d3Rj ,

where Ne is the number of electrons in the residual molecular
ion and Na is the number of atoms in the molecule.

The first integral in Eq. (2) extends the common Dyson
electronic orbital with an additional account for the nuclear
degrees of freedom. For small vibration amplitudes, this
integral determines the FCF (see below). For the further use
of Eq. (2), it should be simplified under the following three
assumptions: (i) We take into account the small amplitude of
classical vibrations as compared to the equilibrium internu-
clear separation. (ii) We neglect the change of the orientation
(i.e., rotation) of the molecule during the tunneling process.
(iii) We use the single-electron (Hartree-Fock) approximation
for the electron configuration.

Under the assumptions listed above, Eq. (2) is simplified
(for details, see Ref. [25]),

�
(Dyson)
{vf vi } (r) ≈ I (v)

f i I
(e)
f i �({Rei},r). (3)

Here,

I (v)
f i =

∫
χ∗

f,{vf }({Ref },{ξ}) χi,{vi }({Rei},{ξ}){dξ} (4)

is the overlap between the vibrational wave functions; the
structure of this integral will be discussed below. The equlib-
rium nuclear coordinates {Rei,ef } are related to the neutral
molecule or its ion, respectively, in their local coordinate
frames. The integration is made over the set of internal
vibrational coordinates, {ξ}, with the volume element,

{dξ} ≡
n∏

j=1

dξj ,

where n = 3Na − β is the number of vibrational degrees of
freedom, and β = 6 for nonlinear and 5 for linear molecules.
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The integral I (e)
f i represents the overlap between the elec-

tronic wave functions of the residual molecular ion and those of
the neutral molecule core. In the Hartree-Fock approximation,
I (e)

f i is reduced to the product of one-electron wave functions,
ψi , of the neutral molecule and the wave functions, ψf , of its
residual ion: ∫

ψ∗
f ({Ref },r ′)ψi({Rei},r ′) d3r ′.

This integral can be calculated analytically using the Gaussian
orbital method (see the Appendix in Ref. [15]). The last
multiplier in Eq. (3), �({Rei},r), represents the wave function
of the tunneling electron. As a rule, this is the highest-occupied
molecular orbital (HOMO).

The tunnel-ionization theory requires knowledge of the
asymptotic form of the HOMO wave function. For an arbitrary
polyatomic molecule, this form is [18]

�({Rei},r) ≈ κ3/2(κr)ν−1e−κr
∑
lm

ClmYlm(r̂), (5)

where κ = (2Ip)1/2, Ip is the ionization potential of the
molecule, ν = κ−1 is the effective principal quantum number,
r̂ = r/r , and {Clm} is a dimensionless structure HOMO factor
accounting for the noncentral potential of the molecular core
which influences the active electron’s motion.

In linear molecules, the projection of the electron’s orbital
angular momentum onto the molecular axis m is conserved, so
the molecular axis can be chosen as the quantization axis. In
this case, the sum in Eq. (5) contains the terms with a fixed m

value only. In the case of nonlinear molecules, m is not a good
quantum number and terms with different m values will enter
in the sum in Eq. (5). It is convenient to choose the quantization
axis for the nonlinear molecules so that the maximal number of
the Clm coefficients turns to zero. In particular, for symmetric
A2B (or, more exactly, ABA) molecules, the quantization axis
can be chosen along the molecule’s symmetry axis, which is
the bisectrix of the equilibrium bending angle.

III. TUNNEL IONIZATION OF
A POLYATOMIC MOLECULE

A theory of tunnel ionization by dc field F, proposed for
polyatomic molecules in Refs. [18,19], is based on the model
of a single active electron bound by a structureless core’s field.
There exist three types of the many-body effects due to the
core structure:

(i) Overlap between the electron shells of the residual ion
and the neutral molecule core. This effect can be taken into
account with the help of the Dyson orbital which has the form
of (3) in BOA.

(ii) Excitation of the internal degrees of freedom of the
molecule. The electron configuration of the residual atomic
ion excited due to tunnel ionization can be taken into account
by the “inelastic tunneling” model proposed in Ref. [27]. In
Ref. [24], this model was adapted for molecules accounting
for the excitation and deexcitation of the vibrational degrees
of freedom due to tunneling of the active electron.

(iii) Stark shift. The bound electrons’ energy undergoes a
Stark shift under a dc field. For polar molecules, this shift is

linear in the electric-field strength F and it can have a strong
influence on the tunnel-ionization rate [19,23].

The many-body effects of types (i) and (ii) above are
accounted for by the following substitution:

Ip → Ip + 

(v)
f i + 


(1)
f i + 


(2)
f i . (6)

Here,



(v)
f i = E

{vf }
f − E

{0}
f − E

{vi }
i + E

{0}
i , (7)

where E{0}
μ is the vibrational energy in the ground vibrational

state and E
{vμ}
μ is the vibrational energy in the initial (μ = i)

and final (μ = f ) states characterized by the set of vibrational
quantum numbers, {vμ}. The other quantities entering Eq. (6)
have the following meaning:



(1)
f i = ( pi − pf )F (8)

is the difference between the linear Stark shift of the neutral
molecule (i) and that of its residual ion (f ); pμ is the
permanent dipole moment with respect to the center of the
charge of the molecule or ion;



(2)
f i = 1

2 (αi − αf )ijFiFj (9)

is the difference between quadratic Stark shifts of the energies
of the neutral molecule and its ion; and α̂μ = (αμ)ij is the
dipole polarizability tensor. Summation over the repeated
tensor indices (i, j = x, y, z) is applied in Eq. (9) and hereafter.

Accounting for (3) and (6), the tunneling rate changes to
the following form:

W
(dc)
tot (θ,φ,F ) =

∑
{vf }

∑
m′

W
(dc)
m′,f i(θ,φ,F ). (10)

Here,

W
(dc)
m′,f i(θ,φ,F ) = I (v)2

f i I (e)2
f i κ2

f i exp[−2(piz − pf z)κf i]

× |Bm′(θ,φ)|2
2|m′||m′|!

(
2κ3

f i

F

)2νf i−|m′|−1

× exp

(
−2κ3

f i

3F

)
; (11)

pμz is the projection of pμ onto the direction of the electric-
field vector F; and

κf i = ν−1
f i = [

2
(
Ip + 


(v)
f i + 


(1)
f i + 


(2)
f i

)]1/2
. (12)

The (θ,φ) angles define the spatial orientation of the
molecule with respect to the electric-field vector F, as follows.
The rotation of the “molecular” reference frame by the
angle θ about the “laboratory” y axis transfers the molecular
quantization z′ axis into the laboratory z axis directed along the
F vector. After a subsequent rotation along the z = z′ axis by
the angle φ, the molecular frame coincides with the laboratory
one.

Equation (11) contains the angular factor

Bm(θ,φ) =
∑
lm′

Clm′Dl
m′m(0,θ,φ)Qlm′ , (13)
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where

Qlm = (−1)(|m|−m)/2

[(
l + 1

2

)
(l + |m|)!
(l − |m|)!

]1/2

.

The first argument of the Wigner D function in (13) is
zero because the tunneling rate remains unchanged upon any
rotation of the molecule about the direction of the electric-field
vector.

The I (v)2
f i quantities in Eq. (11) are the FCFs. Their values

are determined not only by the vibrational quantum numbers,
but also by other molecular vibrational parameters such as
molecular geometry, normal vibration frequencies, potential
energy surfaces, etc.

Formula (11) is derived in quasiclassical approximation
which implies the following condition:

κ3 � F. (14)

Therefore, due to the exp[−2κ3/(3F )] factor in Eq. (11), the
tunnel-ionization rate is very sensitive to small changes of κ

given by Eq. (12).
Due to the preexponential factor, (2κ3/F )−|m′|, the

tunneling-ionization rate also depends strongly on the projec-
tion, m′, onto the electric force. Namely, the ionization from
the states with |m′| 	= 0 will be suppressed as compared to
that from the state with m′ = 0. Therefore, in Eq. (10), it is
sufficient to hold the terms with m′ = 0 only, as was done in
Ref. [19],

W (dc)(θ,φ; F ) ≈
∑
{vf }

W
(dc)
m′=0,f i(θ,φ; F ). (15)

In this case, the expression (13) for B0 is simplified:

B0(θ,φ) =
√

2π
∑
lm

(−1)lCl,−mYlm(θ,φ). (16)

Let us now consider a linearly polarized monochromatic
laser field,

F(t) = F0 sin �t, (17)

with the polarization vector u = F0/F0. Under the condition

�κf i/F0 < 1, (18)

the ionization goes in the tunnel regime. The condition (18),
as a rule, is satisfied for a laser radiation in the NIR range
with an intensity of ∼1014 W/cm2, which can be generated
by the available powerful laser facilities. It is well known
(see Refs. [52,53]) that in this case, the Born-Fock adiabatic
approximation can be used. This approximation consists of the
following substitution in Eq. (10):

F → F0 sin �t. (19)

The current ionization rate, W (sin �t), obtained from
Eq. (10) under the substitution (19), should be averaged over
the optical cycle of laser radiation,

W (ac)(θ,φ; F0)= 1

2π

[∫ π

0
W (sin ξ ) dξ+

∫ 2π

π

W (sin ξ ) dξ

]
.

(20)

In Eq. (20), the orientation of the molecule is defined with
respect to the polarization vector u. The integral over the

optical cycle of laser radiation is represented as a sum of two
integrals over half cycles corresponding to two antiparallel
directions of the electric-field vector. The projections of the
permanent dipole moment, pμz, have opposite signs for two
subsequent half cycles.

The condition (14) permits using the saddle-point method
in calculating the integral in Eq. (20):

W (ac)(θ,φ; F0) ≈ 1

2

∑
{vf }

[
W

(dc)
0,f i(θ,φ; F0)

+W
(dc)
0,f i(π − θ,π + φ; F0)

]√ 3F0

πκ3
f i

. (21)

Each term in the sum in Eq. (21) is given by the expression
(11). For the molecules with an inversion center, Eq. (21) turns
into the form used in MO-ADK theory [17] under neglect of
the internal degrees of freedom.

Equation (21) is the key formula in this section. It can
be used not only for monochromatic radiation, but also for a
laser pulse with � 5 cycles. For such a pulse, the following
substitution should be made in Eq. (21):

F0 → F0f (t),

where f (t) is the electric-field envelope in the laser pulse. To
obtain the total ion yield in the laser pulse (i.e., ionization
signal), an integration should be performed over the focal
volume of the laser beam. A method of such an integration
proposed in Ref. [54] was adapted for molecules in Ref. [24].

IV. DEFORMATION OF AN A2 B MOLECULE
IN A LASER FIELD

In this section, we consider deformation of a symmetric
A2B molecule under the influence of an ionizing laser field.

A. Normal vibrations

First, we find the normal coordinates and reduced masses of
a symmetric nonlinear triatomic A2B molecule in the absence
of internal fields. Our analysis of vibrational motion is based
on Refs. [55–57].

Let mA and mB be the nuclei masses, with l being the
equilibrium A–B bond length and 2γ being the bending angle.
We choose the Cartesian reference frame with the origin at the
B atom and z axis directed along the molecular symmetry
axis so that the molecule is placed in the yz plane. It is
convenient to define the deformation of the molecule by its
nuclei displacement vectors, u1,3 = {y1,3,z1,3} for A nuclei and
u2 = {y2,z2} for B nucleus (see Fig. 1). These displacements
are assumed to be small compared with the bond length. Note
that the molecule remains planar for any deformation.

After the translational and rotational motions of the
molecule as a whole are excluded, the Lagrangian of the
molecule’s vibrational motion takes the form

L(0)
A2B

= Ls + Lb + La, (22)

where

Lj = 1
2MjQ̇

2
j − 1

2Mjω
2
jQ

2
j , j = s,b,a.
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l32
l12

FIG. 1. Deformation of an A2B molecule in Cartesian coordinates.

The Lagrangian (22) corresponds to three independent
linear harmonic oscillators, or normal modes, with the frequen-
cies ωs,b,a and with the corresponding reduced masses Ms,b,a .
The first two terms of Eq. (22) describe the symmetric stretch
(s) and bending (b) vibrations, which have A1 symmetry (see
Fig. 2). The last term of Eq. (22) corresponds to antisymmetric
(a) stretch vibration, which has B2 symmetry (see Fig. 3).

The Cartesian components of the u1,2,3 vectors are ex-
pressed in terms of the normal coordinates Qs,b,a as follows:

y1 = 1

2
(Qa + Qs + Qb),

z1 = 1

2
(fsQs + fbQb + Qa cot γ ),

y2 = −mA

mB

Qa, z2 = −mA

mB

(Qs + Qb),

y3 = 1

2
(Qa − Qs − Qb),

z3 = 1

2
(fsQs + fbQb − Qa cot γ ). (23)

B

АA

ll

sq q

B

АA

ll

b

FIG. 2. Symmetric—stretch s and bending b—normal vibrations
of an A2B molecule.

B

АA

ll
l32

l12

a

FIG. 3. Antisymmetric, a, stretch normal vibration of an A2B

molecule.

The analytic expression of the fs,b factor is rather complicated
and is given in Appendix A.

The reduced masses Ms,b,a are given by

Ms = 1

2
mA

(
1 + f 2

s

M

mB

)
,

Mb = 1

2
mA

(
1 + f 2

b

M

mB

)
,

Ma = 1

2
mA

(
2mA

mB

+ 1

sin2 γ

)
, (24)

where

M = 2mA + mB (25)

is the mass of the molecule.
Note that the choice of the normal coordinates is not unique:

indeed, the Lagrangian (27) is invariant to a simultaneous
scaling of a reduced mass Mj and the corresponding normal
coordinate Qj :

Qj → Qj/β, Mj → β2Mj, (26)

where β is an arbitrary positive constant.

B. Laser-induced modification of vibrational parameters:
General formalism

In this section, we consider modification of geometric
parameters of polyatomic molecules in an ac electric field.
This modification is due to the molecular polarizability which
determines the potential energy of the molecule in the field.
Therefore, the equilibrium configuration of the molecule in
the field should differ from the equilibrium configuration of a
free molecule. Our consideration uses the results of Ref. [58].

We denote the molecular normal coordinates as Q =
{Q1,Q2, . . . ,Qn}, where n is the number of the vibrational
degrees of freedom. In these coordinates, the Lagrangian of
classical vibrational motion is the sum of the Lagrangians of
independent harmonic oscillators [56,59]:

L0 = 1

2

n∑
k=1

MkQ̇
2
k − 1

2

n∑
k=1

Mkω
2
0k(Qk − Qek)2. (27)

Here, ω0k is the frequency of the kth normal vibrational mode,
Qek is the equilibrium value of the normal coordinate Qk , and
Mk is the reduced mass corresponding to the kth mode. We
assume the absence of degenerate oscillations (it is the case
for nonlinear A2B).
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The further consideration is based on the method proposed
by Kern and Matcha [41] and developed by Pandey and Santry
[42] to account for nonadiabatic effects in the optical properties
of molecules.

The change of the vibrational parameters in an external
linearly polarized field (17) is due to the transformation of the
potential energy surface (PES) because of the ac Stark shift.
To the second-order terms ∼F 2

0 , this shift is determined by the
molecular dynamic dipole polarizability, αij (�):


EStark = − 1
4αijF0iF0j . (28)

The polarizability αij depends on the normal coordinates
{Qk} and the laser-field frequency �. Therefore, with the use
of (28), the PES equation can be expanded in the Taylor series
(up to quadratic terms),

U(Q) ≈ 1

2

∑
k

Mkω
2
0k(Qk − Qek)2

− 1

4
F0iF0j

[
α

(0)
ij +

∑
k

α
(1k)
ij (Qk − Qek)

+ 1

2

∑
kk′

α
(2kk′)
ij (Qk − Qek)(Qk′ − Qek′)

]
. (29)

Here, α
(0)
ij is the polarizability at the equilibrium values of the

normal coordinates {Qek},

α
(1k)
ij = ∂αij

∂Qk

∣∣∣∣
Ql=Qel

, α
(2kk′)
ij = ∂2αij

∂Qk∂Qk′

∣∣∣∣
Ql=Qel

,

l = 1,2, . . . ,n.

Unlike Eq. (27), the laser-modified Lagrangian include
linear terms ∼(Qi − Qei) and the Hessian of the potential
energy (29),

∂2U
∂Qk∂Qk′

∣∣∣∣
Ql=Qel

= Mkω
2
0kδkk′ + 1

4
α

(2kk′)
ij F0iF0j ,

is not a diagonal quadratic form. However, its off-diagonal
elements have the smallness of ∼F 2

0 , and therefore after a
proper shift ∼F 2

0 of the equilibrium coordinates,

QEk ≈ Qek + α
(1k)
ij F0iF0j

4Mkω
2
0k

, (30)

the Lagrangian with (29) can be diagonalized and

ω2
k ≈ ω2

0k − α
(2kk)
ij

4Mk

F0iF0j . (31)

Equations (31) and (30) solve the problem imposed in this
section. The field-modified frequencies differ from those of a
free molecule by small corrections. The molecular normal co-
ordinates in the laser field differ from the free-molecular ones
by small shifts of the equilibrium positions. The expressions
(31) and (30) are the counterparts of those obtained in [40] for
diatomics. They show that the field-induced changes in normal
modes of polyatomics with nondegenerated normal modes are
independent provided that only the lowest (quadratic) order of
the Stark effect is considered.

C. Laser-induced modification of vibrational
parameters: A2 B molecule

For the case of a triatomic nonlinear symmetric molecule,
one should assume k = a, s, b in the expressions (30) and
(31). For simplicity, the origins of the normal coordinates are
convenient to be chosen in the equilibrium positions of the
nuclei: Qes = Qeb = Qea = 0.

For the antisymmetric stretch (a) vibrations, we have

∂α̂

∂Qa

∣∣∣∣
0

= 0

due to the symmetry of the A2B molecule with respect
to the bisectrix of the bending angle. Therefore, to the
first approximation in the radiation intensity, laser-induced
deformations of a molecule are possible only due to a shift of
the equilibrium positions of the symmetric (s, b) vibrations. In
particular, the modification of the A–B bond length is


l ≈ 1

2

[(
sin γ + fs

M

mB

cos γ

)
QEs

+
(

sin γ + fb

M

mB

cos γ

)
QEb

]
, (32)

and the modification of the bending angle is


 cos 2γ ≈ − sin 2γ

l

[(
cos γ − fs

M

mB

sin γ

)
QEs

+
(

cos γ − fb

M

mB

sin γ

)
QEb

]
. (33)

Formulas (32) and (33) are derived from Eqs. (23) assuming
that the modifications are small.

The laser-induced shifts QEk allow one to obtain the laser-
modified values of the Franck-Condon factors. For details, see
Appendix B.

V. NUMERICAL RESULTS

The rate of tunnel ionization of a molecule by monochro-
matic laser radiation is calculated with the help of Eq. (21)
taking into account Eq. (12). The vibrational overlap integrals
I (v) and FCFs are calculated using Eq. (B8). The electronic
overlap integrals are calculated according to the formulas of
the Appendix to Ref. [15].

As examples, we considered symmetric nonlinear
molecules H2O, SO2 and the H2O+ ion. Table I lists the
vibrational parameters of all the considered molecules and
ions. The normal vibration frequencies are given, e.g., in
Ref. [60]. The other vibrational parameters were calculated us-
ing the GAUSSIAN package. In their study of the CO2 molecule,
Kono et al. [61] proposed to use configuration-interaction
methods with Pople’s 6-311G(d) basis set. In the present paper,
we use the quadratic configuration-interaction single-double
excitation (QCISD) method with an equivalent cc-pVQZ basis
set, which can be used for the polarizability calculation unlike
the Pople’s sets. The electromagnetic parameters (dipole
moments and polarizabilities) of the considered molecules and
ions are given in Table II.

The modifications of the molecular vibrational param-
eters (normal frequencies and equilibrium positions) in a
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TABLE I. The frequencies of the normal coordinates, bond
lengths l, and bending angles 2γ , in symmetric triatomic molecules
and their ions.

Molecule ωa (cm−1) ωs (cm−1) ωb (cm−1) l (Å) 2γ

H2Oa 3942.5 3832.2 1648.5 0.958 104.4776◦

H2Ob 3984.4 3879.8 1670.4 0.956 104.3637◦

H2O+b 3472.7 3418.7 1483.7 0.997 109.4566◦

H2O2+b 1862.2 1462.3 815.6 1.177 125.2367◦

SO2
a 1380.91 1167.6 526.27 1.432 119.5◦

SO2
b 1409.76 1209.3 536.59 1.432 118.8225◦

SO2
a 1227.73 1074.3 409.15 none none

SO2
b 1253.38 1112.7 417.17 1.423 131.9789◦

aFrom Ref. [60].
bFrom GAUSSIAN with QCISD/cc-pVQZ.

monochromatic linearly polarized laser field are calculated
using Eqs. (30) and (31). The modifications of the bond lengths
and bending angles are calculated using Eqs. (32) and (33),
respectively. In the calculations, we used the static values
of the polarizabilities which differ little from their dynamic
values in the NIR range of the radiation. The differentiation
of the polarizability, α̂, with respect to the normal coordinates
is performed using five sample points with a step of 0.005 Å.
The results of these calculations by formulas (31)–(33) for the
laser radiation intensity of 1014 W/cm2 and several directions
of its polarization vector u are presented in Table III for
H2O, H2O+, and SO2 molecules. The GAUSSIAN package
with QCISD/cc-pVQZ was used in these calculations. As
seen from Table III, the most significant modification of
the vibrational parameters takes place when the polarization
vector lies in the molecular plane. It is also seen that the
most significant laser-induced bent of the molecules (i.e.,
decrease of the bending angle) corresponds to the case when
the polarization vector is parallel to the molecular symmetry
axis. The other directions of the polarization vector result, as
a rule, in “straightening” of the molecules.

The structure factors Clm [see Eq. (5)] are needed to study
the tunnel ionization of molecules. Their values are known
[18,21] but should be recalculated to the dimensionless form
(5) for the orientation according to Fig. 1. The dimensionless

TABLE II. The components (in the major axes) of polarizability
tensor α̂ (in Bohr3) and the permanent dipole moment vector p (in
D) for symmetric triatomic molecules and its ions, calculated by
GAUSSIAN with QCISD/cc-pVQZ. The molecular orientation is shown
in Fig. 1 (with z directed along the bisectrix of the bending angle, and
the x axis perpendicular to the molecule’s plane). The origin of the
reference frame is placed in the center of nuclear charge.

H2O H2O+ H2O2+ SO2 SO+
2

pz
a 1.855 none none −1.630 none

pz 1.905287 2.114637 2.927798 −1.745838 −1.294614
αxx 6.605699 3.965230 2.982851 16.896724 14.225520
αyy 8.767866 6.184936 5.713475 31.730373 31.972589
αzz 7.916490 4.940379 3.914259 20.357304 17.026385

aFrom Ref. [60].

TABLE III. Relative changes of the normal vibration frequencies

(ωi) = 
ωi/ωi , bond lengths 
(l) = 
l/l, and bending angles

(γ ) = 
γ/γ (in %) for symmetric nonlinear triatomic molecules
and their ions in a monochromatic linearly polarized laser field with
an intensity of 1014 W/cm2.

Molecule 
(ωa) 
(ωs) 
(ωb) 
(l) 
(γ )

u = ex

H2O −0.0044 +0.018 −0.028 +0.090 +0.012
H2O+ −2.553 −.3742 −.8737 +0.5077 −0.0372
H2O2+a +1.081 −0.2773 −1.157 +1.734 −0.1717
SO2 −0.1020 −0.1733 −0.4133 +0.0560 +0.1660
SO+

2 −0.2045 +0.0077 −0.6855 +0.1191 +0.0070
u = ey

H2O −0.37 −0.73 −1.33 +0.61 +0.53
H2O+ −2.332 −5.195 −8.947 +4.820 +4.640
H2O2+a +5.223 −18.09 −11.05 +27.68 +8.013
SO2 −2.689 −0.6280 −0.4133 +0.7295 +0.8999
SO+

2 −5.112 −1.438 −10.88 −0.2573 +0.6316
u = ez

H2O −0.26 −0.26 −0.87 +0.37 +0.012
H2O+ −1.266 −1.870 −7.529 +2.439 −5.802
H2O2+a +1.153 −5.173 −10.59 +10.03 −12.74
SO2 −0.66646 −0.3259 −1.031 +0.1751 −0.6804
SO+

2 −0.2364 +0.4528 −0.8767 +0.1609 −0.9900

aFor an intensity of 1015 W/cm2.

structure factors Clm obtained in the present paper are given in
Tables IV and V.

In spite of the geometric similarity of the H2O and SO2

molecules, they have principally different electronic structures.
First, all the electronic orbitals in the H2O molecule have
odd projections � of the orbital angular momentum onto the
symmetry axis. On the contrary, all of the electronic orbitals of
the SO2 molecule are characterized by even � (see Tables IV
and V). It means that all of the orbitals of the water molecule
lack a contribution from the electronic σ states.

Second, due to the high electronegativity of oxygen, this
atom carries an excess negative Mulliken charge in both
molecules. Therefore, their permanent dipole moments pi

have opposite directions. In the water molecule, pi is directed
from the O atom to the center of the H–H line. On the contrary,
in the sulfur dioxide molecule, pi is directed from the center
of the O–O line to the S atom (see Table II).

The tunnel-ionization rate is calculated with the help of
Eq. (21). It is interesting to show an example of electronic

TABLE IV. The structure factors Clm for the H2O molecule
extracted from Ref. [21] and recalculated to the dimensionless form
(5) for the orientation according to Fig. 1.

l m = 1 m = 3 m = 5

1 1.984
2 1.476×10−1

3 −1.211×10−2 3.602×10−2

4 −3.096×10−4 −7.053×10−3

5 7.430×10−5 5.212×10−4 −2.602×10−4
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TABLE V. Same as in Table IV, but for an SO2 molecule. The
data are extracted from Ref. [18].

l m = 0 m = 2 m = 4

0 3.19
1 0.80
2 1.38 −0.06
3 −0.91 −0.76
4 −0.35 −0.31 0.05
5 0.05 0.08 0.13
6 0.08 0.06 0.05

overlap integrals I (e)
f i in the Dyson orbitals (3),

I (e)
f i [H2O] = 0.997, I (e)

f i [SO2] = 0.653.

Such a significant difference is due to the large difference in
bending angles between the SO2 molecule and its ion SO+

2
(see Table I).

The algorithm of the calculation of the vibrational overlap
integrals, I (v)

f i , for a symmetric nonlinear A2B molecule is
given in Appendix B. This algorithm uses the laser-modified
vibrational parameters as input data.

For simplicity, we restrict ourselves to the tunnel transitions
between the ground vibrational states (vai = vsi = vbi = vaf =
vsf = vbf = 0). The further considerations are convenient to
be performed separately for each molecule.

A. Ionization of H2O molecule

Here we consider tunnel ionization of a neutral H2O
molecule with a prescribed orientation with respect to the
linear polarization vector of a monochromatic laser radiation
(the definition of this orientation is described in Sec. III). Our
calculations show that the most significant influence of the
laser-induced deformation on tunnel ionization via FCFs will
be attained when the polarization vector lies in the molecule
plane, i.e., when φ = 90◦. We calculated the ratio between
the ionization rates of laser-field deformed and nondeformed
molecules as a function of the intensity of the monochromatic
laser radiation for several values of the θ angle (recall that θ

is the angle between the molecular axis and the polarization
vector).

The results of the calculation are presented in Fig. 4. In
spite of the increasing influence of the ωb modification with
the decrease of θ , the contribution of this modification into the
tunnel-ionization rate is less than 3% for the H2O molecule.

B. Ionization of H2O+ ion

The calculation of the structural factors, Clm, is a nontrivial
task. To perform it, as a rule, one should first simulate
the molecular electronic structure with “frozen” nuclei, i.e.,
using the Gaussian orbital method. Then one can use density
functional theory with B splines [18] or direct calculation
with the polarization-consistent basis sets adopted for each
molecule individually [21]. The calculation of structural
factors is beyond the scope of the present work, and thus we
use the known results for Clm when available.

4
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FIG. 4. The ratio between the ionization rates of laser-field
deformed and nondeformed H2O molecules. The polarization vector
of the monochromatic laser radiation is parallel to the molecule plane.
The curves are labeled by the angle θ between the molecular axis and
the polarization vector.

Since the structure factors Clm are unknown for the H2O+
ion, we calculated the ratio between FCFs of a laser-field
deformed and nondeformed H2O+ ion. The results are shown
in Fig. 5.

The difference between the vibrational parameters of the
H2O+ and H2O2+ ions is greater than that between the
parameters of the neutral H2O molecule and H2O+ ion (see
Table I). Higher intensities are required for tunnel ionization of
H2O+ as compared to the neutral H2O molecule. Therefore, the
laser-induced deformation of the H2O+ ion is more significant
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FIG. 5. The ratio between the Franck-Condon factors of a laser-
field deformed and nondeformed H2O+ ion. The polarization vector
of the monochromatic laser radiation is parallel to the molecular ion
plane. The curves are labeled by the angle θ between the molecular
axis and the polarization vector.
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FIG. 6. Same as in Fig. 4, but for an SO2 molecule.

compared to that of the neutral molecule (see Table III), and
the relative change in FCFs attains ±5%.

C. Ionization of SO2 molecule

The ionization of the SO2 molecule was considered at the
same conditions as for H2O. The results for the ratios between
the ionization rates of laser-field deformed and nondeformed
SO2 molecules are given in Fig. 6. Unlike the case of the
water molecule, accounting for the laser-induced deformation
of sulfur dioxide can change the tunnel-ionization rate by up
to ∼20 times. We suppose that such a sharp distinction is due
to significant differences in the electronic structure of these
molecules (see the discussion of Tables II, IV, and V), as
well as to nonmonotonic FCF dependence on the molecular
geometry and vibrational frequencies [62].

The influence of the permanent dipole moment on the
ionization via the linear Stark effect will be maximal when
the polarization vector is parallel to the permanent dipole
moment vector [see Eqs. (11) and (21)]. For the sulfur
dioxide, the permanent dipole moment results in an increase
of the tunnel-ionization rate by 16%. For the water molecule
of the same orientation, the tunnel ionization is suppressed
due to nonzero projections of the orbital angular momentum
onto the symmetry axis (see Table V). The most effective
tunnel ionization of the water molecule takes place when the
polarization vector is perpendicular to the symmetry axis so
that the influence of the permanent dipole moment is absent.

At intensities far from saturation, i.e., I � 1016 W/cm2,
the ionization probability for the SO2 molecule, taking into
account its laser-induced deformation, can be approximated,
within a ∼eq1% accuracy, by the following dependence:

W (I) = W0(I/I0)kfFC(I) exp
( −

√
I0/I

)
,

fFC(I) = 1

[1 + (I/I1)α]2
, I0 = 1.16×1016 W/cm2. (34)

The parameters k,α, and I1 are given in Table VI for several
angles. It is interesting to note that I1 � I0. It means that
the deformation becomes significant in sufficient low-intensity

TABLE VI. The values of W0, k, α, and I1 parameters in formula
(34) for some values of the orientation angle θ .

θ W0 k α I1 1014 (W/cm2)

0◦ 13.19 −0.35 1.07 3.75
45◦ 5.08 −0.33 1.10 2.54
90◦ 1.22×10−2 −0.29 1.14 1.70

field, i.e., when the tunnel ionization of the molecule has a low
probability.

Due to high sensitivity of the tunnel-ionization rate of SO2

to the laser-induced deformation, it is interesting to make some
estimations for the quantities measured in a real experiment.
We calculate the signal from a detector of SO+

2 ions in a focal
volume of a laser-beam pulse. There exists several methods for
controlling the molecular orientation in a gas phase (see, e.g.,
[63]). We choose a close-to-real model of a Gaussian beam
with a Gaussian time envelope having FWHM of about 100 fs.
For such a short pulse duration, the orientation of molecules
attained during the laser pulse remains unchanged after the
pulse has passed [17]. The results of the ion signal as a function
of the peak intensity in the focal volume are presented in Fig. 7.
Similarly to the ionization rate, the influence of the molecule
deformation on the ion yield increases monotonically with the
increase of θ . While accounting for the molecule deformation
by a laser radiation with the intensity of 3.16×1014 W/cm2

lowers the ion yield by 20% at θ = 0◦, such an account will
rise the ion yield by five times at θ = 90◦.

Note that after having performed an averaging on the spatial
orientations of the SO2 molecule, the contribution of the
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FIG. 7. Ionization signal from SO2 molecules oriented in a focal
volume of a laser beam. Here, n0 is the concentration of neutral-
oriented molecules, r0 is the radius of the beam “waist” in the focal
volume, and λ is the central wavelength of radiation on the laser
pulse. FWHM is chosen to be of 100 fs. Solid lines: the results
taking into account the laser-induced deformation of the molecules;
dashed lines: the results for nondeformed molecules. The curves are
labeled by the angle θ between the molecular axis and the polarization
vector.
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permanent dipole moment into the ionization signal will be
reduced to 5%, while for the case of the H2O molecule, this
contribution of the permanent dipole moment will not exceed
1%.

Given such an essential influence of the laser-induced
deformation of the SO2 molecule on its tunnel ionization,
it is advisable to estimate the contribution of fourth-order
Stark-shift terms ∼F 4 in the molecule deformation. According
to Maroulis [64], the second hyperpolarizability averaged
over the spatial orientations of the SO2 molecule is γ̄ =
2038 a.u. Then the corresponding Stark-shift term is 
E(4) =
(1/64)γ̄ F 4. The 
E(4)/
E(2) ratio is about 0.02 at an intensity
of 1014 W/cm2 and about 0.05 at an intensity of 3.16 ×
1014 W/cm2. Thus, it is the quadratic Stark term, 
E(2), which
play the leading role in the laser-induced deformation of the
SO2 molecule.

VI. CONCLUSION

Unlike atoms, the ionization of molecules requires sub-
stantial modifications of Keldysh theory at least in three ways,
to account for (i) a dependence of the ionization rate on the
molecular orientation, (ii) vibrational degrees of freedom, and
(iii) an essential role of the linear Stark effect which arise in
some molecules due to the permanent dipole moment. This
research aims to theoretically study the light-dressing effect
in molecules, in particular, of the laser-induced deformation
of polyatomic molecules, and to account for the influence of
this effect on the tunnel ionization of molecules. A theoretical
description of monochromatic laser-induced modification of
geometry and vibrational parameters of a polyatomic molecule
is given. As an example, we consider the deformation of
a symmetric nonlinear molecule of the A2B type with the
explicit formulas accounting for the influence of molecular
deformation on the Franck-Condon factors.

The numerical calculations are done for H2O, H2O+, and
SO2 molecules. For the H2O molecule, the contribution of
laser-induced deformation into the tunnel-ionization rate is
less than 3%. The deformation of the H2O+ ion is slightly more
significant, and the relative change in Franck-Condon factors
attains ±5%. But, unlike the case of a water molecule, taking
into account laser-induced deformation of SO2 can change
the tunnel-ionization rate by up to ∼20 times. Such a sharp
distinction is due to significant differences in the electronic
structure of these molecules as well as to the nonmonotonic
dependence of Franck-Condon factors on the molecular
geometry and vibrational frequencies.

We also calculate the signal from a detector of SO+
2 ions in

a focal volume of a Gaussian laser-beam pulse with a duration
of about 100 fs. The influence of laser-induced deformation
on the ion signal depends critically upon the angle θ between
the molecular axis and the polarization vector of the laser
radiation.
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APPENDIX A: EXPLICIT FORMULAS FOR fs,b FACTORS

The factors fs,b appearing in Eqs. (23) and (24) have the
following form:

fs = −mB

M

ω2
s − (λ1 sin2 γ + λ2 cos2 γ )

(λ2 − λ1) sin γ cos γ
,

fb = −mB/(Mfs). (A1)

Here, M is given by Eq. (25),

λ1 ≡ k1

mA

= ω2
s + ω2

b + λ2
0

2
(

1 + 2mA

mB
cos2 γ

) ,

λ2 ≡ 2k2

mA

= ω2
s + ω2

b − λ2
0

2
(

1 + 2mA

mB
sin2 γ

) ,

λ4
0 = (

ω2
s + ω2

b

)2 − 4mB

M
ω2

s ω
2
b

(
1 + 2mA

mB

cos2 γ

)

×
(

1 + 2mA

mB

sin2 γ

)
. (A2)

APPENDIX B: FRANCK-CONDON FACTORS

Accounting for the anharmonicity of vibrations in poly-
atomic molecules is quite a hard task because each normal
vibration displays not only its own anharmonicity, but also
mutual anharmonicity between different normal modes can
occur. For this reason, FCFs are calculated in the present paper
in harmonic approximation using the generating function
method proposed by Sharp and Rosenstock [62].

First we consider a general case of a molecule with n

nondegenerate vibrational degrees of freedom. It is convenient
to choose so called mass-weighted normal coordinates, i.e., to
choose the following scaling factor in Eq. (26):

βk = 1/
√

Mk, (B1)

which results in unity masses for all the normal oscillators in
the molecule.

Let the vector Q′ ≡ {Q′
1,Q

′
2, . . . ,Q

′
n} denote the set of all

of the mass-weighted normal coordinates of the molecule,
with v ≡ {v1,v2, . . . ,vn} being the corresponding vibrational
quantum numbers and �̂ ≡ diag(ω1,ω2, . . . ,ωn) being the
diagonal matrix of the normal frequencies.

The FCF I(v)f i(vf ,vi) is defined by the relation (4),
in which the integration should be done over the normal
coordinates. To this end, the normal coordinates Q′

i of the
initial state (neutral molecule) should be expressed in terms of
the normal coordinates Q′

f of the final state (residual molecular
ion). This linkage is linear and it has a form of

Q′
i = ĴQ′

f + K. (B2)

The Ĵ matrix and K vector entering Eq. (B2) are to be
obtained in terms of the variations of internal coordinates S
(bond lengths, bending, out-of-plane wagging, torsion angles,
etc.) with respect to their equilibrium positions Se. For
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sufficiently small variations, they are linearly related to the
normal coordinates,

Sμ = L̂μQ′
μ, μ = i,f, (B3)

where the matrix L̂μ gives the transition from the normal coor-
dinates to the internal ones. The L̂μ matrix is determined by the
equilibrium configuration of the molecule. The displacements
of atoms in the neutral molecule are linked to those in the
residual ion by the following simple relation:

Si = Sf + 
S, 
S = Sef − Sei , (B4)

where S is the displacement of the equilibrium positions of the
internal coordinates. The substitution (B4) in (B3) results in
the following formulas for Ĵ and K:

Ĵ = L̂−1
i L̂f , K = L̂−1

i 
S. (B5)

Under the influence of the laser radiation, the equilibrium
positions of the normal oscillators are displaced according to
Eq. (30). In this case, according to Eqs. (B3) and (B4), the

quantity


S = Sef − Sei + L̂f S′
Ef − L̂iS′

Ei (B6)

depends on the laser field strength and the molecule orientation
via the mass-weighted displacements of the equilibrium
positions, Q′

Eμ ≡ {Q′
Eμ,1,Q

′
Eμ,2, . . . ,Q

′
Eμ,n}, of the normal

oscillators:

Q′
Eμ,k = α

(1k)
μ,ijF0iF0j

4M
1/2
kμ ω2

0kμ

, μ = i,f. (B7)

A particular case, which is important for the present work,
is the excitation of only single, say, the kth normal vibration,

vki = vi, v1i = . . . vk−1,i = vk+1,i = · · · = vni = 0,

vkf = vf , v1f = . . . vk−1,f = vk+1,f = · · · = vnf = 0.

Using the notation Ivf vi
(v,k) for the corresponding overlap

integral, with the help of Refs. [62, Eqs.(20)–(22)] and [65],
we obtain (the sum running over all the allowed values)

Ivf vi
(v,k) =

[
vf !vi!

2vf 2vi

]1/2

I0

∑
f,h,q

A
f

kkB
vf −q−2f

k Ch
kkD

vi−q−2h

k E
q

kk

f !(vf − q − 2f )!h!(vi − q − 2h)!q!
, (B8)

where

I0 = [4n det(�̂f �̂i)]
1/4[det(Ĵ P̂ )]−1/2 exp

[− 1
2 KT�̂iK + 1

2 KT�̂i Ĵ P̂ −1Ĵ T�̂iK
]
, (B9)

P̂ = Ĵ T�̂i Ĵ + �̂f , Ĉ = 2�̂
1/2
f P̂ −1�̂

1/2
f − 1̂,

Â = 2�̂
1/2
i Ĵ P̂ −1Ĵ T�̂

1/2
i − 1̂, B = −2Â�̂

1/2
i K,

Ê = 4�̂
1/2
f P̂ −1Ĵ T�̂

1/2
i , D = − 1

2 Ê�̂
1/2
i K,

where 1̂ is a unity n × n matrix.
In the case of the A2B molecule, we have n = 3 and the numerator k of the normal modes takes the following values: k = 1

for the asymmetric stretch normal oscillator (a), k = 2 for the symmetric stretch (s), and k = 3 for the bending (b) normal
oscillators.
The internal coordinates S in the deformed A2B molecule are the A–B bond lengths, l12 and l13, and the A–B–A bending angle,
2α (see Fig. 1), or cos 2α which is more convenient to use. By analogy with the Q′ ≡ {Q′

a,Q
′
s ,Q

′
b} vector, it is convenient to

rename the components of S ≡ {S1,S3,Sα}.
Then the L̂μ matrix (μ = i,f ) introduced in Eq. (B3) has dimensions 3×3 for nonlinear molecules of A2B. Dropping the μ

subscript for brevity, we can write out this matrix explicitly:

L̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2
√

Ma

(
2mA

mB

sin γ + 1

sin γ

)
1

2
√

Ms

(
sin γ + fs

M

mB

cos γ

)
1

2
√

Mb

(
sin γ + fb

M

mB

cos γ

)

− 1

2
√

Ma

(
2mA

mB

sin γ + 1

sin γ

)
1

2
√

Ms

(
sin γ + fs

M

mB

cos γ

)
1

2
√

Mb

(
sin γ + fb

M

mB

cos γ

)

0 − sin 2γ

2l
√

Ms

(
cos γ − fs

M

mB

sin γ

)
− sin 2γ

2l
√

Mb

(
cos γ − fb

M

mB

sin γ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The rows of the L̂ matrix are enumerated by the “1,” “3,” and “α” symbols, while its rows are enumerated by “a,” “s,” and “b”.
According to Eq. (B7), the vector of the mass-weighted laser-induced displacements of the equilibrium positions of the normal
oscillators has the form

Q′
E = 1

4
F0iF0j

{
0,

α
(1s)
ij

M
1/2
s ω2

0v

,
α

(1b)
ij

M
1/2
b ω2

0d

}
, (B10)

where α̂(1k) matrices were introduced in Sec. IV B. The influence of laser-induced deformation of the molecule on FCFs is
accounted for by substituting Eq. (B10) into Eq. (B6).
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The �̂ matrix for an A2B molecule has the simple form

�̂ ≡ diag(ωa,ωs,ωb).
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