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Variational treatment of electron–polyatomic-molecule scattering calculations
using adaptive overset grids
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The complex Kohn variational method for electron–polyatomic-molecule scattering is formulated using an
overset-grid representation of the scattering wave function. The overset grid consists of a central grid and
multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function
about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated
application of the free-particle Green’s function and potential Ĝ+

0 V̂ on the overset grid in a Born-Arnoldi solution
of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and
has rapid convergence properties, in both the number of numerical basis functions employed and the number of
partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and
CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical
Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the
free-particle Green’s function and exchange operators (to which no approximation is made) is also described.
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I. INTRODUCTION

In recent decades, three ab initio approaches to electron-
molecule collisions and molecular photoionization have been
developed and widely applied to polyatomic molecular targets:
(i) the complex Kohn variational method [1–8], (ii) the
Schwinger variational method [9,10], and (iii) the R-matrix
method [11]. The first two of these approaches are based
explicitly on variational principles and their accuracy and
applicability derives from the form of the trial functions
employed. The third, the R-matrix method, is an embedding
approach based on dividing space into an inner region contain-
ing the molecule and an outer region in which the interactions
are simpler. These approaches make different compromises in
their combined numerical treatments of electronic correlation,
the bound electronic states of the target molecules or ions,
and the solution of the highly nonspherical electron-molecule
scattering problem itself. Consequently, all three have well-
recognized limitations in the size of molecules that they
can treat practically. More importantly, the accuracy that
can be expected of these methods when they are applied
to molecules containing more than a few first-row atoms is
limited by practical restrictions on the quality of the treatment
of correlation and target response for larger systems, including
the number and accuracy of the target electronic states that can
be included.

Those limitations have their origin in the compromises
made to combine the target electronic structure and correlation
aspects of electron-molecule collisions with the specific
method used to solve the scattering problem. In this work
we demonstrate a different version of the complex Kohn
approach that solves the scattering problem entirely using
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adaptive grid-based methods and that substantially extends its
applicability to a wider range of physical problems, including
processes involving core excited states at very high energies
or diffuse Rydberg-like states of polyatomic molecules. It
offers a path to treat more extended systems without loss of
accuracy in the solution of the scattering equations. The funda-
mental idea combines properties of the numerical Schwinger
variational method, which has proved difficult to apply in
multichannel calculations on polyatomic molecules, and the
more straightforward interface with electronic-structure theory
for multichannel treatments of polyatomic molecules offered
by the complex Kohn approach.

Although the literature on the theory of electron-molecule
collision processes and molecular photoionization is now large
and well established, the results from recent experimental
methods, in particular attosecond molecular photoionization
[12,13] and momentum imaging measurements of dissociative
electron attachment processes [14–17], are challenging the
current capabilities of all existing ab initio methods. An
example is the problem of the physics of dissociative electron
attachment to DNA bases [18–20], in which the molecules
are of medium size and for which the more correlated
treatments currently possible for small molecules are out of the
practical reach of present methods. It is becoming increasingly
urgent for theory to address the highly correlated electronic
continuum processes revealed in these classes of experiments
when they are applied to moderate-sized polyatomic molecules

Since it was first proposed, the Kohn variational principle
[21] for scattering amplitudes has been applied using trial
functions that employ a basis expansion of the scattering
wave function in the interaction region combined explicitly
with free-particle continuum wave functions, so that the trial
function will satisfy proper scattering boundary conditions.
Here we replace this form of the trial wave function with
a grid-based representation making use of a version of the
overset-grid approach [22–25] that is familiar in the fluid-
dynamics literature. For molecules, our overset grids consist
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FIG. 1. Overset grids for CF4, in three dimensions (top panel)
and in a projection (bottom panel, the darker shade is coming out of
the page). These are sketches of the overset grid with relatively few
points and do not represent the much denser and adaptively spaced
grids used in the calculations.

of a sparse central grid located at the center of charge or an atom
of interest, together with a set of dense subgrids centered on
each atom. An example of a molecular overset grid is shown in
Fig. 1. Wave functions are switched between grids using Becke
switching functions [26]. On an overset grid, the wave function
is effectively simultaneously expanded in partial waves about
every nuclear center as well as about the center of the
coordinate system, and this expansion converges much faster
than the familiar single-center expansions that have been used,
for example, in Schwinger variational calculations [9,10].

The central difficulty in applying grid methods to the
Kohn variational principle is that the Kohn trial function must
explicitly satisfy scattering boundary conditions and in the
complex Kohn approach those must be the complex outgoing-
wave boundary conditions [27,28]. To construct the trial
function explicitly satisfying scattering boundary conditions
using only a grid representation, we expand it in functions that
are powers of Ĝ+

0 V̂ operating on the incoming free-electron
scattering function, where Ĝ+

0 and V̂ represent the free-particle
outgoing-wave Green’s function and the molecular potential,
respectively. We find that this choice of basis is equivalent

to constructing a Padé approximant to the exact T matrix
being approximated by the Kohn variational expression. The
expansion is accomplished numerically as the basis of an
iterative Arnoldi solution of the Kohn scattering equations,
called Born-Arnoldi iterations here, that exhibits remarkably
fast convergence, due evidently to the underlying equivalence
to the construction of a Padé approximant to the solution.

In the following sections we give a complete description
of the grid-based complex Kohn method and demonstrate it in
calculations on small molecules. In Sec. II A we formulate the
complex Kohn variational method and describe its relation to
Padé approximants when implemented with the form of the
trial function we are employing. We develop overset grids for
molecules in Sec. II B and we describe the Born-Arnoldi proce-
dure in Sec. II C. In Sec. II D we describe the implementation
of the three-dimensional free-particle Green’s function and
both local and nonlocal potential operations. These are based
on radial subgrids using the finite-element discrete-variable
representation, which requires the application of subinterval
integration weights to treat the slope discontinuity in the
radial Green’s functions. In Sec. III we present a series of
numerical tests of the method. First, in Sec. III A, with a model
problem we show that the method is invariant to using an
overset grid that does not match the underlying symmetry of
the potential. Then, in comparisons with electron-molecule
scattering calculations using the Schwinger approach we
demonstrate the advantages of the overset grids and the
Born-Arnoldi procedure in Secs. III B and III C in static and
static-exchange calculations on the CH4 and CF4 molecules.

II. THEORY AND IMPLEMENTATION

We begin by briefly describing the complex Kohn vari-
ational method, and the connection to Padé approximants
when the trial function is expanded in the basis consisting
of (Ĝ+

0 V )n operating on the incoming wave. We describe
the general extension to close-coupling calculations including
electron correlation and target response, to highlight some
of the difficulties with applying the complex Kohn method
to large molecules in its previous implementations, and then
discuss how they can be overcome by using overset grids. After
developing the overset grids, we present the Born-Arnoldi
iteration procedure as a quickly converging method to solve
the resulting system of linear equations, containing millions of
variables. Finally, we illustrate the application of the necessary
operations on the overset grids.

A. Complex Kohn variational method and its relation
to Padé approximants

The essence of the complex Kohn variational approach can
be seen easily in its formulation for a potential scattering
problem. The original formulation of the variational principle
by Kohn [21] made use of real-valued trial functions and
reactance matrix boundary conditions. Many years later when
it was reformulated with complex-valued S-matrix or T -matrix
scattering boundary conditions [27,28], a complex symmetric
inner product was introduced in place of the usual Hermitian
inner product, thereby removing spurious singularities that ap-
peared in numerical implementations of the original reactance
matrix form. To clarify the origin of the complex symmetric
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representation of the Hamiltonian that has appeared in all
implementations of the complex Kohn variational method to
date, we begin with the correct formulation of the complex
Kohn variational principle using the conventional Hermitian
inner product.

The Kohn stationary functional T +S
k′,k of the trial functions

ψ
(+)t
k and ψ

(−)t
k′ is

T +S
k′,k = T +t

k′,k + (2π )−3/2〈ψ (−)t
k′ |Ĥ − E|ψ (+)t

k 〉, (1)

where T +t
k′,k is the asymptotic form of the trial function ψ

(+)t
k ,

the two T matrices are labeled by asymptotic momenta, and
the scattering states are δ3(k′ − k) normalized. In this paper we
will consider the case of electron-molecule scattering where
only a single target electronic state is included, i.e., potential
scattering from a non-spherically-symmetric nonlocal poten-
tial V̂ . In that case, the T matrices used in Eq. (1) have been
defined such that for the exact scattering state ψ

(+)
k , the exact

T matrix is given by

T +
k′,k = 〈

ψ0
k′
∣∣V̂ |ψ (+)

k 〉, (2)

where ψ0
k′ is the unscattered plane wave. With partial-wave

expansions of the scattering states of the form

ψ
(±)
k (r) =

√
2

π

∑
l,m

ilψ
(±)
klm(r)Y ∗

l,m(k̂), (3)

the partial-wave expansion of the T matrix is written as

T +
k′,k =

∑
l′,m′,l,m

(i)l−l′ 2

π
T +

k,l′,m′,l,mYl′,m′ (k̂′)Y ∗
l,m(k̂), (4)

where

T +
k,l′,m′,l,m = 〈

ψ0
kl′m′

∣∣V̂ |ψ (+)
klm〉. (5)

The partial-wave form of the complex Kohn variational
expression is then

T +S
k,l′,m′,l,m = T +t

k,l′,m′,l,m + 〈ψ (−)t
kl′m′ |Ĥ − E|ψ (+)t

klm 〉. (6)

The traditional complex Kohn trial function has the form
of the sum of contributions of a square-integrable expansion
basis that describes the collision region and terms that allow it
to satisfy scattering boundary conditions

ψ
(±)t
klm =

∑
i

c
(±)
i ϕi(r) + 1

kr

[
ĵl(kr)Ylm(r̂)

+
∑
l′,m′

T ±t
k,l′,m′,l,mh̃±

l′ (kr)Yl′m′(r̂)

]
. (7)

In Eq. (7) the functions ϕi are (usually real-valued) square-
integrable functions, ĵl(kr) denotes the regular Riccati-Bessel
function, and h̃±

l (kr)
r→∞−−−→ ĥ±

l (kr) is a function regular at
the origin that becomes the outgoing Riccati-Hankel function
asymptotically. The variational parameters in this linear trial
function are the coefficients c

(±)
i and the T -matrix elements

T ±t
k,l′,m′,l,m. Inserting this trial function into Eq. (6) produces

the working expression, which can be written compactly in its
general form for single-channel or multichannel scattering

TS = N00 − N0qM−1
qq Nq0. (8)

Here the subscript 0 denotes the set of regular continuum
functions {ĵl(kr)Ylm(r̂)/kr} and the subscript q denotes the
expansion basis {{ϕi(r)},{h̃±

l (kr)Ylm(r̂)/kr}}. The first of these
matrices is the Born term and has the form

(N00)l′,m′,l,m =
〈
ĵl′ (kr)

kr
Yl′m′ (r̂)

∣∣∣∣V̂
∣∣∣∣ ĵl(kr)

kr
Ylm(r̂)

〉
. (9)

The matrices N0q and Nq0 are similarly defined. The Mqq

matrix elements are brackets of (Ĥ − E) between functions
in the expansion basis. For all matrix elements in N and
M , the (+) functions are used on the right-hand sides of
the brackets and the (−) functions are used on the left-hand
sides. This is the complex Kohn formulation that has no
singularities in the matrix inverse M−1

qq at real scattering
energies and it is equivalent to the S-matrix Kohn formulation
of Miller and Jansen op de Haar [28]. If the basis functions
on the left and right are related by the + ↔ − relationship,
i.e., complex conjugation and 	k ↔ −	k, the matrix Mqq is
complex symmetric in these approaches, unlike in the original
formulation of Kohn [21], where the equivalent matrix is real
symmetric.

As mentioned in Sec. I, the grid version of the Kohn
variational approach must represent the continuum orbitals
on the overset grid, but it must also apply the asymptotic
boundary conditions in Eq. (7). We can do that by expanding
ψt in a set of functions we construct on the grid by operating
with the free-particle Green’s function Ĝ+

0 , which here denotes
the Green’s function for outgoing boundary conditions Ĝ+

0 ≡
(E − T̂ + iε)−1, where T̂ is the kinetic energy operator. The
grid-based trial function is now

|ψ (±)t
klm 〉 = ∣∣φ0

klm

〉 +
N∑

i=1

ci |φ(±)
i,klm〉, (10)

|φ(±)
i,klm〉 ≡ (Ĝ±

0 V̂ )i
∣∣φ0

klm

〉
, (11)

with φ0
klm = ĵl(kr)Ylm/kr being the incoming wave. Now all

the functions in the expansion of the trial wave function, except
for φ0, satisfy outgoing-wave boundary conditions (φ(+)

i,klm) or

incoming-wave boundary conditions (φ(−)
i,klm) because of the

asymptotic form of Ĝ±
0 . Note that with this choice of basis

functions the bra 〈φ(−)
i,klm| satisfies

〈φ(−)
i,klm| = 〈

φ0
klm

∣∣(V̂ Ĝ+
0 )i . (12)

Thus, with this basis the N and M matrices can be written as

(Nl′,m′,l,m)i,j = α
(l′,m′,l,m)
i+j , (13)

where

α
(l′,m′,l,m)
i ≡ 〈

φ0
kl′m′

∣∣V̂ (Ĝ+
0 V̂ )i

∣∣φ0
klm

〉
, (14)

and

(Ml′,m′,l,m)i,j = 〈φ(−)
i,kl′m′ |Ĥ − E|φ(+)

j,klm〉
= α

(l′,m′,l,m)
i+j−1 − α

(l′,m′,l,m)
i+j , (15)

where we have used the identity (E − T̂ )Ĝ±
0 = 1. In Sec. II D

we will discuss the procedure for operating accurately and
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efficiently with Ĝ±
0 , but here we can make an important

observation about the properties of this basis.
Nuttall [29] and Garibotti [30] observed that expressions

similar to Eq. (8) could constitute Padé approximants to the
equivalent exact expressions corresponding to the Schwinger
variational principle, providing a particular expansion basis is
used for the trial function. We have found that a similar, but
not identical, result applies here. The power-series expansion
of the scattered portion of the exact T matrix in the strength
parameter λ has the form for elastic scattering (for simplicity)
and dropping the partial-wave superscripts,

t = (φ0|V̂ (E − T̂ − λV̂ + iε)−1V̂ |φ0)

=
∞∑
i=0

λiαi+1. (16)

The Kohn variational approximation to Eq. (16) using the
basis in Eq. (11) is the second term in Eq. (8) and for elastic
scattering has the form

t
(N)
P = 	αT M−1 	α, (17)

where 	α = (α1,α2, . . . ,αN ).
The key point is that Eqs. (17) and (15) have essentially the

same form as Nuttall’s Eqs. (28)–(30) that relate the elements
of Mij = αi+j−1 − λαi+j to each other and to the elements
of 	α (differing here slightly in the definition of αi). Using the
same logic used there [29] and by Garibotti [30] we can verify
that Eq. (17) produces an [(N − 1)/N ] Padé approximant to
the scattered portion of the T matrix in Eq. (16), i.e., a ratio of
polynomials,

t
(N)
P = PN−1(λ)/QN (λ) =

2N−1∑
i=0

λiαi+1 + O(λ2N ) (18)

that reproduces the Born expansion of the scattered term in
Eq. (16) to order λ2N−1, but that has accelerated convergence
properties. The analogous result in the case of the Schwinger
expressions investigated in Refs. [29,30] and later used by
Lucchese and McKoy [31] is an [N/N ] Padé approximant.
Also note that the variational expression given in Eq. (17) is
related to the M1

2,3(V S ′,S) variational expression discussed in
Ref. [31] with the appropriate choice of bases.

The analysis for off-diagonal T -matrix elements is similar
to that by Garibotti [30]. While we know of no general proofs
concerning the rate of convergence of the Padé approximants
that we effectively construct here, the connection to Padé
approximants gives a strong hint as to the origins of the
extraordinarily rapid rate of convergence we observe in
the grid-based Kohn method demonstrated numerically in
Secs. II C and III C below.

The working equations of the many-electron coupled-
channel version of this theory has the form [1] of Eq. (8),
but the matrices are defined in terms of the components of the
many-electron trial function corresponding to incoming waves
in channel 
,

ψt

′ =

∑



Aχ
(r1 · · · rN )F
(rN+1)

+
∑

μ

d
′
μ �μ(r1 · · · rN+1). (19)

In previous implementations of the theory, the continuum
orbitals F
(rN+1) of this trial function have the form of
Eq. (7) but with the T matrix now labeled additionally by
channels T


,
′
lm,l′m′ and incoming waves in one channel only. The

correlated target state functions χ
 and the square-integrable
N + 1 electron correlation terms �μ form the interface
with electronic structure about which we will comment
further below. The much larger matrix inverse portion of the
working expression M−1

qq Nq0 is of course found by solving
linear equations, as we will do in Sec. II C in the grid
implementation.

In the previous implementations of the complex Kohn
variational method, a basis of atom-centered Gaussians and
central Bessel functions is used to expand the trial function in
Eq. (19) [5,6]. This approach has been applied successfully to a
number of multichannel and single-channel electron-molecule
scattering problems [1–4,8,32] and photoionization problems
[7,33–35]. However, it has some drawbacks that limit its ap-
plications to larger systems. Chiefly, the exchange interaction
between continuum and bound electrons is approximated. As
more scattering channels are added, or more correlated target
states considered and therefore more of the basis required to
describe bound states, this approximation (called the separable
exchange approximation since its introduction [1,2]) becomes
a greater hindrance to the accurate solution of the complex
Kohn equations. Additionally, at high energies, the rapid
oscillation of the wave functions become more difficult to
describe in this basis.

These issues have been addressed in other variational
scattering methods such as the Schwinger variational method
by using a single-center grid expansion of the wave function
[9,10]. The Schwinger variational method has the disadvantage
that describing multichannel scattering is much more difficult
than in the complex Kohn variational method, which only
requires a multichannel trial wave function. Furthermore,
the use of single-center grid expansions limits the size of
the molecules that can be considered, as we will show in
Sec. III. This limitation arises because for large molecules with
multiple heavy atoms, the cusps in the wave function at each
nuclear position becomes more difficult to resolve as they move
farther from the expansion center. It may require hundreds or
thousands of angular grid points to resolve a nuclear cusp,
leading to grids with tens of millions of points. This is the
case even for small molecules such as CF4, as we will show
in Sec. III. Our solution to these problems lies in the use of an
overset grid.

B. Overset grid

The overset grid, pictured for CF4 in Fig. 1, consists of a
central grid (carbon centered in Fig. 1) and several smaller
but denser subgrids (fluorine centered in Fig. 1). The grids
we use are combinations of finite-element-method (FEM)
discrete-variable-representation (DVR) grids for the radial
variable in each subgrid [36–38] with Gauss-Chebyshev and
Gauss-Legendre quadratures in the angular variables [39,40].
A wave function described everywhere in space can be
switched onto each grid g using Becke switching functions
Wg [26], commonly used in numerical density functional
calculations, that smoothly switch between unity inside the
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grid and zero outside it,

(r) =
∑

g

Wg(r)(r). (20)

The left-hand and right-hand sides of Eq. (20) are equal
because the switching functions sum to unity everywhere in
space, ∑

g

Wg(r) = 1. (21)

The right-hand side of Eq. (20) is a sum of wave functions
localized on each grid,

ψg(r − rg,0) = Wg(r)(r), (22)

where rg,0 is the origin of grid g. The localized functions can
be expanded in local partial waves

ψg(rg) =
∑
l,m

1

rg

ψg,lm(rg)Ylm(r̂g), (23)

where rg = r − rg,0 and the Ylm(r̂g) are spherical harmonics
in the angular coordinates of each grid. Furthermore, there is
an underlying polynomial basis of normalized Lobatto shape
functions χq(rg) connected to the FEM-DVR radial grids [37]
so that in a direct product basis

Xg,λ(rg) = χq(rg)Ylm(r̂g), (24)

where λ = (q,l,m), the localized wave functions can written
as a linear combination of this basis as

ψg(rg) = 1

rg

Xg(rg)cg, (25)

where the elements of the column vector cg are the basis
expansion coefficients of the local function and X is a row
vector of the direct product basis defined in Eq. (24),

Xg(rg) = [Xg,1(rg),Xg,2(rg), . . . ,Xg,N (rg)]. (26)

Our choice of the angular quadratures allow an efficient
transformation between the grid and spherical harmonic
representations [40].

We will discuss in detail the operations necessary for the
Born-Arnoldi scheme in Sec. II D, but here we consider how
operators are represented in the overset-grid approach. A three-
dimensional function (r) is defined by its value on the grid
points rg on all grids labeled by the different values of g. For
a local operator Ô = Ô(r), we have

(Ô)(r) = Ô(r)(r). (27)

For nonlocal operators, e.g., exchange operators and Green’s
functions, Ô operating on a set of local function Ôψg can be
calculated using Og , which is the matrix representation of the
operator Ô in the direct product basis defined in Eq. (24), so
that

(Ôψg)(rg) = 1

rg

X(rg)Ogcg, (28)

For example, Og for a local potential is its matrix representa-
tion in the product basis, diagonal in radial discrete-variable-
representation (DVR) points. We describe the construction of

the Og for the exchange operator and free-particle Green’s
function in Sec. II D below.

The off-grid contributions must be calculated by interpola-
tion or extrapolation. The FEM-DVR and spherical harmonic
expansions lend themselves to interpolating accurately due to
the underlying orthogonal polynomial bases. If the maximum
radius of the grid in region g is rg,x , then the off-grid points
are obtained from a matrix transform [41]

(Ôψg)(r − rg,0)

=
⎧⎨
⎩

1

|r − rg,0|Xg(r − rg,0)Ogcg for |r − rg,0| < rg,x

Zg(r − rg,0)Oa
gcg otherwise,

(29)

where Zg is a row vector of the asymptotic partial-wave
expansion terms of the operator Ô outside the grid g, whose
length is the number of spherical harmonics used in the direct
product basis. Note that Oa

g is a rectangular matrix with the
number of rows being the number of spherical harmonics used
in the direct product basis, i.e., the length of the row vector
Zg , and with the number of columns being the size of the
direct product basis, i.e., the length of the column vector cg .
For example, in the case of 1/r12 in the exchange operator, the
asymptotic forms for a system with no symmetry would be

Zg(rg) =
[

1

rg

Y00(r̂g),
1

r2
g

Y11(r̂g),
1

r2
g

Y10(r̂g),
1

r2
g

Y1,−1(r̂g),

× 1

r3
g

Y2,−2(r̂g),
1

r3
g

Y2,−1(r̂g), . . .

]
, (30)

where the number of elements is just given by the number of
spherical harmonics used in the direct-product basis. In that
case the matrix Oa

g would be the implementation of the integral
in Eq. (50) for points outside the region g. The operation on
the total wave function can then be determined by

(Ô)(r) =
∑

g

(Ôψg)(r − rg,0). (31)

In the single-channel calculations that we present here
the matrix inverse portion of the complex Kohn working
expression in Eqs. (8) and (9) is equivalent to the solution
of a driven equation

(E − Ĥ )|scat〉 = V̂

∣∣∣∣ ĵl(kr)

kr
Ylm(r̂)

〉
(32)

of the Schrödinger equation, which when expressed directly
on the overset grid becomes a set of linear equations for the
quantity scat = M−1

qq Nq0. The coordinate r in Eq. (32) is
defined in the central grid of the overset grid. Three problems
arise in solving the complex Kohn driven equations (32) on the
grid: (i) Outgoing-wave scattering boundary conditions must
be imposed on the solution, (ii) the linear equations on the
overset grids can contain on the order of millions of variables,
and (iii) interpolating the derivatives required by the kinetic
energy operator in Ĥ between grids as required in Eq. (31)
is numerically problematic due to the oscillations of the DVR
of the derivative operator between grid points. The use of the
Born-Arnoldi iterative basis defined in Eq. (11) and the Kohn
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FIG. 2. Partial scattering cross sections for s waves for the
spherical potential V = −3e−r . (a) Hamiltonian-Arnoldi iterates of
E − Ĥ converge slowly to the exact result. (b) Born-Arnoldi iterates
converge at only five iterations, including the case where the order of
the DVR in each finite element is increased to represent the scattered
wave at higher energies.

variational expression given in Eq. (8) will be seen to overcome
these problems.

C. Born-Arnoldi iteration

By building a basis to solve Eq. (32) using the Born series
(Ĝ+

0 V̂ )nĵlYlm/kr , we have a physically motivated basis that
automatically satisfies the outgoing-wave scattering and that
is quickly convergent, evidently because of its equivalence
to a Padé approximant. Additionally, as we will show in
this section, this basis eliminates the need for interpolating
the action of the kinetic energy operator T̂ , significantly
reducing the numerical error in the overset-grid representation.

We aim to solve the driven equation of the complex Kohn
variational method, Eq. (32) with E = k2/2, in order to
construct the T -matrix elements Tlm,l′m′ . To compare to a
more standard Arnoldi iterative approach, we solved those
equations with a basis of Arnoldi iterates of E − Ĥ operating
repeatedly on the right-hand side of Eq. (32), applied a cutoff
to prevent the results from reaching the end of the grid,
and then added a single function on the grid that satisfies
outgoing-wave boundary conditions in each partial wave. This
procedure is analogous to the construction of the traditional
Kohn trial function in Eq. (7). In Fig. 2 we demonstrate that this
procedure, which is labeled “Hamiltonian-Arnoldi,” converges
quite slowly. We have also found that this procedure converges
even more slowly at higher energies.

The issues of slow Arnoldi convergence and application
of the proper boundary conditions are both addressed by
using iterates of the Born series (Ĝ+

0 V̂ )nĵlYlm/kr , beginning
with n = 1. As discussed Sec. II A, using this basis is
equivalent to constructing an [(N − 1)/N ] Padé approximate
to the elements of the scattered portion of the T matrix. In
addition, the application of the outgoing free-particle Green’s

function Ĝ+
0 ensures that every member of the basis satisfies

outgoing-wave boundary conditions. The zeroth iterate is set
to φ0 = ĵlYlm/kr [φ0 does not have the proper boundary
conditions and is not used to solve Eq. (32)]. Subsequent
orthogonal iterates are generated as

φ̃+
k+1 = Ĝ+

0 V̂ φ+
k , (33)

φ̄+
k+1 = φ̃+

k+1 − (φ̃+
k+1,φ

+
j )φ+

j ∀j � k, (34)

φ+
k+1 = φ̄+

k+1/(φ̄+
k+1,φ̄

+
k+1)1/2. (35)

The products (φ+
1 ,φ+

2 ) in Eqs. (33)–(35) are symmetric
products rather than Hermitian inner products,

(φ+
1 ,φ+

2 ) =
∫

φ+
1 φ+

2 d3r. (36)

Note that this form of the inner product for functions expanded
in real-valued symmetry-adapted harmonics, as is done in the
actual calculations, is equivalent to the Hermitian inner product
with the (−) form of the functions on the left side and the (+)
form on the right, i.e., 〈φ−

1 |φ+
2 〉.

The use of the Born iterates also eliminates the necessity
in the application of E − Ĥ to operate numerically with the
kinetic energy operator. The matrix elements of E − Ĥ in this
basis are easily constructed using the fact that G+

0 is the Green’s
function of E − T̂ . All the terms in this basis, contributing
to matrix elements 〈φ−

j |E − Ĥ |φ+
k 〉 in the representation of

Eq. (32), involve the operation

(E − Ĥ )Ĝ+
0 V̂ φ+ = (E − T̂ − V̂ )Ĝ+

0 V̂ φ+

= (Î − V̂ Ĝ+
0 )V̂ φ+

= V̂ (φ+ − Ĝ+
0 V̂ φ+). (37)

Since the quantities φ+ and Ĝ+
0 V̂ φ+ are calculated for all

φ+ functions in the basis, they can be simply combined
to construct the result of E − Ĥ operating on any φ+

k .
The calculation of the matrix element 〈φ−

j |E − Ĥ |φ+
k 〉 is

completed by using the quadratures and switching functions
for each grid.

D. Operating with Ĝ+
0 and V̂

To complete the algorithm for solving the complex Kohn
equations we require efficient ways with which to operate
with Ĝ+

0 and the potential on the overset grid. The potential
energy operator in each channel and the coupling potentials
between channels are, in general, combinations of direct
operators and nonlocal exchange operators. The essential
observation is that since both the free-particle Green’s function
Ĝ+

0 and the potential energy of electron repulsion 1/|r − r′| are
translationally invariant, we can transform to the single-center
expansion around the center of each subgrid when operating
on that grid. Exploiting that translational invariance efficiently
requires the fast transformation between quadrature points and
the spherical harmonic expansion developed earlier [40] and
this is the central idea that allows the overset-grid method to
effectively expand the wave function around all the nuclear
centers and the center of the central grid simultaneously.
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We use the integral form of the free-electron Green’s
function Ĝ+

0 , operating in the partial-wave basis of Eq. (23),

Ĝ+
0 ψg(rg) =

∑
l,m

− 2

krg

Ylm(r̂g)

×
∫

ĵl(kr<,g)ĥ+
l (kr>,g)ψg,lm(r ′

g)dr ′
g. (38)

In Eq. (38), ĥ+
l is the outgoing Riccati-Bessel function, the

arguments of ĵl and ĥ+
l depend on whether rg < r ′

g , and Ĝ+
0

is diagonal in the partial-wave basis. The local wave functions
on each grid are expanded in terms of the FEM-DVR local
radial basis functions χq(r) and the wave function evaluated
at Gauss-Lobatto quadrature points rq ,

ψg,lm(rg) =
∑

q

ψg,lm(rq)χq(rg). (39)

At the FEM-DVR element boundaries Rb, the integrals in
Eq. (38) can be performed using the Gauss-Lobatto quadrature
with weights wq ,

(Ĝ+
0 ψg,lm)(Rb) = −2

k

∑
q

wqĵl(kr<)ĥ+
l (kr>)ψg,lm(rq),

(40)

where r< and r> are the minimum and maximum, respectively,
of Rb and rq .

More care must be taken [42] when evaluating the integral
in Eq. (38), (Ĝ+

0 ψg,lm)(ri), at quadrature points ri within
an FEM-DVR element because of the slope discontinuity at
r = r ′. Naively, the sum in Eq. (40) might be cut off at q = ri .
This approximation corresponds, however, to integrating a
function across the entire boundary region that is represented
by a polynomial whose values at the quadrature points drop
suddenly from the integrand values of Eq. (38) before ri to
zero following ri . The resulting polynomial approximation is
highly oscillatory and only on very dense FEM-DVR grids
does it represent the integrand accurately.

A far better choice for evaluating Eq. (38) at the interior
points is obtained by integrating the basis functions χq(r)
of Eq. (39), which are the cardinal functions of the DVR
representation, to obtain integration weights �q ′,q adapted to
integrating over the subintervals ending at the quadrature point
rq ′ . For the example of the finite element beginning at 0 and
ending at Rb we define the adapted weights

�<
q ′,q =

∫ rq′

0
χq(r)dr, (41)

�>
q ′,q =

∫ Rb

rq′
χq(r)dr. (42)

These weights can be calculated exactly using the same order
DVR that defines the cardinal functions χq(r) by rescaling the
integration variable in, e.g, Eq. (41),

�<
q ′,q =

∫ Rb

0
χq

(
rq ′

Rb

r

)
rq ′

Rb

dr (43)

and evaluating the basis functions χq at the rescaled points.
The Green’s-function result at the interior points ri is therefore

FIG. 3. Cross sections σ� in each angular momentum channel
� are given for the Noro-Taylor potential V = 15

2 r2e−r . The solid
lines are numerically exact results calculated using exterior complex
scaling and the crosses are the results calculated using the complex
Kohn method on the CH4 overset grid. Even though the potential
is peaked at the subgrid locations, the grid-based Kohn method is
accurate even in the difficult region of the narrow s-wave resonance
(inset).

given as a matrix-vector product of the adapted weights and
the wave functions evaluated across the entire element

(Ĝ+
0 ψg,lm)(ri) = ĥ+

l (kri)
∑

q

�<
i,q ĵl(krq)ψg,lm(rq)

+ ĵl(kri)
∑

q

�>
i,q ĥ

+
l (krq)ψg,lm(rq), (44)

producing a significantly more accurate result than truncating
the quadrature at the interior point.

After calculating the on-grid result of the Green’s function,
we must interpolate it to obtain the off-grid result

(Ĝ+
0 ψg)(rg′)

= − 2

krg[rg′ ]

∑
q,lm

(Ĝ+
0 ψg,lm)(rq)χq(rg[rg′])Ylm(r̂g[rg′]).

(45)

The interpolants here are again calculated using the cardinal
functions for the radial variables and spherical harmonics for
the angular variables.

We must also calculate the operation of the potential V̂ . For
local potentials, e.g., model potentials for which results are
shown in Figs. 2 and 3, or the Coulomb potential, we calculate
the potential directly on the coordinates of each grid,

(V̂ ψg)(rg) = V (rg)ψg(rg). (46)

The nuclear potentials for each atom are such local potentials,
but they are singular at the origin of each subgrid, behaving
as −Z/r . The radial functions ψg,lm(r) in Eqs. (39) and (40)
are r times the complete radial function and tend to zero at the
grid origins. We therefore use L’Hôpital’s rule to determine
V̂ ψg at the grid origins,

(V̂nucψg,lm)(rg �= 0) = − Z

rg

ψg,lm(rg) , (47)

(V̂nucψg,lm)(0) = −Z
∂ψg,lm

∂rg

∣∣∣∣
rg=0

. (48)
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Equation (48) is only evaluated for the nucleus at the center
of the grid g and the derivative χ ′

q(0) is evaluated using
the analytic derivative of the FEM-DVR basis functions that
include the cardinal function that is nonzero at the origin.

The static Coulomb potential due to an electron in an
occupied orbital ϕ is a nonsingular local potential

(Ĵ {ϕ}ψg)(rg) =
∫ |ϕ(r′)|2

|r′ − (rg + rg,0)|ψg(rg)d3r ′. (49)

The molecular orbitals from, for instance, a Hartree-Fock
calculation in a Gaussian basis can be used to provide
a static Coulomb potential. In this case, the integrals of
Eq. (49) evaluated at each grid point on the overset grid are
Gaussian nuclear electrostatic potential integrals. These can
be computed by standard Gaussian integral libraries in widely
available quantum chemistry software, and we use the LIBINT

integral library [43] to compute them.
The exchange potential due to an electron in an orbital ϕ

is an example of a nonlocal potential and we calculate the
exchange potential using a mechanism similar to the Green’s-
function operation. The 1/r12 integrals of the exchange
operator can be calculated in the partial-wave basis using the
spherical multipole expansion of the Coulomb interaction

(K̂{ϕ}ψg)(rg)

= ϕ(rg)
∑
l,m

4π

2l + 1
Ylm(r̂g)

∫
rl
<,g

rl+1
>,g

(ϕψg)lm(r ′
g)dr ′

g, (50)

where (ϕψg)lm has an overall multiplicative factor of r2
g

coming from the product of two partial-wave radial functions.
Equation (50) is analogous to Eq. (38) with 4π/(2l + 1)
replacing −2/k, rl

<,g replacing ĵl(kr<,g), and r−(l+1)
>,g replacing

ĥ+
l (kr>,g). The action of any exchange interaction operator is

evaluated in the same manner as the Green’s function, with
these constants and functions substituted.

We thus exploit the translational invariance of the underly-
ing operator 1/r12 to allow the use of a separate single-center
expansion about the origin of each subgrid. The combination of
these local expansions and the adapted weights for integrations
like that in Eq. (40) produces an accurate representation on
the overset grid of the action of both Ĝ+

0 and the local and
exchange portions of V̂ .

III. NUMERICAL RESULTS

We have implemented the complex Kohn variational
method on overset grids using the computational infrastructure
of the electron-molecule scattering code suite ePolyScat
[40,44] originally developed for calculations using the
Schwinger approach. This implementation allows interfacing
with a number of quantum chemistry code suites including
MOLPRO [45,46] and GAUSSIAN [47] to provide molecular
orbitals from Hartree-Fock calculations and other target
electronic-structure information. Below we discuss the ap-
plication to both model potentials and to single-channel
molecular static (Coulomb operators only) and static-exchange
approximations.

A. One-dimensional spherical potential

An initial test of the overset-grid method in three dimen-
sions was to solve a spherical potential scattering problem,
scattering from the Noro-Taylor potential [48], with a non-
spherically symmetric overset grid. The Noro-Taylor potential,
in atomic units,

V (r) = 15
2 r2e−r (51)

is 0 at r = 0, rises to a peak of 110.48 eV at r = 2 bohrs,
which is approximately the C—H bond distance in methane,
and falls to about 0.93 eV at r = 10 bohrs. In s-wave scattering
this potential supports a narrow resonance near a scattering
energy of 95.2 eV. We used an overset grid based on the
tetrahedral geometry of CH4. Thus we had a central grid
centered at the origin coinciding with the location of the C
atom of CH4 and four subgrids located away from the origin
centered at the location of the H atoms in CH4. Thus the grid
for this problem was qualitatively the same as that depicted
in Fig. 1. We observed that the overset grid does not modify
the scattering amplitudes of the Noro-Taylor potential for any
partial wave, nor does it suffer from any apparent numerical
pathologies associated with the obvious linear dependence of
the underlying spectral basis in the overlapping subgrids and
central grid. That result is shown in Fig. 3.

B. CH4 static Coulomb and static-exchange potentials

The central difficulty in the application of single-center
expansions to the solution of scattering problems is resolving
the nuclear potentials of atoms not at the center of the
coordinate system, which can require values of � in the
hundreds even for relatively small systems. This problem of
course becomes more severe as heavy atoms are added far
from the expansion center, as we will find in Sec. III C. In
the examples we explore here, we will compare the grid-
based complex Kohn approach with the numerical Schwinger
method, which relies on a single-center expansion and outward
radial integration beyond the range of the exchange potential,
seeking convergence of the integral cross section in all cases

to within 0.01 Å
2
.

We begin by exploring the cross sections for scattering
from the static Coulomb potential of CH4, calculated using a
STO-3G basis [49,50]. We used the GAUSSIAN package [47]
to calculate the Hartree-Fock molecular orbitals. In Fig. 4 we
show the cross sections for the CH4 static potential for both the
single-center expanded Schwinger variational method and the
complex Kohn method on the overset grid. The single-center
expansion is converged using partial waves up to � = 40 and
the grid-based Kohn method reproduces that result using only
� � 15.

We show the analogous calculation of the cross sections
for the CH4 static-exchange potential in Fig. 5. The potentials
due to CH4 are mostly spherical due to the small perturbations
of the hydrogen atoms, so both the single-center Schwinger
variational method and the overset-grid complex Kohn method
converge quickly. For the Schwinger method, expanding
in partial waves with � � 20 and � � 10 gives a similar
result, while � � 5 and � � 3 depart considerably from the
converged values. The overset-grid complex Kohn method
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FIG. 4. Integral cross section for electron-molecule scattering
from the static potential of CH4 as a function of energy: The
single-center expanded Schwinger variational method result is shown
with partial waves up to � = 40 (larger dark blue circles) and � = 20
(smaller light blue circles). Overset-grid complex Kohn method cross
sections are shown as a solid black line. Partial waves only up to
� = 15 on the central grid and � = 3 on the subgrid are required for
similar convergence in the complex Kohn method.

converges more rapidly, converging at � � 5 until an energy
of 50–60 eV and completely converging with � � 15. While
the CH4 calculations test that the method is viable, a more
nonspherical potential is necessary to show that it is a
significant improvement over single-center methods.

C. CF4 static Coulomb and static-exchange potentials

CF4 presents a more serious challenge for single-center
expansion methods because of the Z = 9 F atoms located
1.315 Å from the carbon center. While for CH4, 1681
partial waves with � � 40 were required to resolve the static
Coulomb potential, for CF4 the number of partial waves

FIG. 5. Total cross sections σ for electron-molecule scattering
from the static-exchange potential of CH4 are given as a function of
energy. We make a comparison between the single-center Schwinger
variational method (blue circles) from � � 3 (smallest) to � � 20
(largest) and the overset-grid complex Kohn method for � � 3 (dotted
line), � � 5 (dashed line), and � � 15 (solid line) on the central grid
and � � 3 on the subgrids.

TABLE I. Convergence of the Born-Arnoldi iterations for
electron-CH4 and -CF4 scattering for different sizes of grids. Here
�max = �cg/�sg denotes the �cg maximum angular momentum on the
central grid and �sg on subgrids. All cases refer to the T2 symmetry
component in the static-exchange approximation at 6 eV.

Molecule �max Grid points Born-Arnoldi iterations

CH4 15/3 1 105 920 9
CH4 5/3 366 720 11
CF4 15/3 1 228 800 24
CF4 35/3 2 352 000 22

required increases dramatically. For � � 100 (10 201 partial
waves), the change in many calculated cross sections slowed

to about 0.1 Å
2

per increase of �max by 20. However, as we will
show, complete convergence is not reached even by �max = 200
(40 401 partial waves). In contrast, the complex Kohn method

on the overset grid converges to 0.01 Å
2

between � = 35 and
� = 45. Those values of � correspond to 1296–2116 partial
waves on the central grid and 16 partial waves on each subgrid.

The total number of grid points on the union of the
overset grids is therefore in the millions for the complex
Kohn calculations, which however is much smaller than
the corresponding single center grid largely because of the
more rapid convergence with partial waves in the central and
subgrids. Nonetheless, as demonstrated in Table I, the number
of Born-Arnoldi iterations remains less than about 25 even
when the number of grid points is doubled. The number of
iterations is effectively the number of basis functions in the
expansion of the trial wave function in Eq. (11). At resonances
slightly more iterations can be required, but we observe similar
convergence properties in the Born-Arnoldi iterations in all the
calculations reported in Sec. III. The origin of this remarkable
numerical behavior is evidently the underlying connection to
an [(N − 1)/N] Padé approximant to the scattered part of the
T matrix discussed in Sec. II A.

In Fig. 6 we show the cross sections for the CF4 static po-
tential, using the single-center Schwinger variational method
and the complex Kohn method on the overset grid. From
� = 60 to � = 120, there is a significant change in the results
obtained using the single-center expansion. Resolving the
static potential is particularly difficult for the single-center
expansion as the slow convergence of the result shows. The
overset-grid method, on the other hand, is converged at the
small number of partial waves given by � = 25 in the central
grid and � = 3 in the subgrid. By expanding the nuclear
potentials in the spherical polar coordinates of their proper
centers, we dramatically reduce the computational effort.

In Fig. 7 we compare the same methods for the static-
exchange potential of CF4 at the HF/6-31G* [51–53] level
of theory. The static-exchange potential models the physical
electron-molecule scattering potential of CF4 for elastic scat-
tering, although electron correlation and target response effects
are neglected. The differences between the cross sections
calculated using the overset-grid Kohn method with �max = 3
in the subgrids and with �max = 15, 25, and 35 in the central
grid are small, especially outside the region of the resonance
and except at very low energies. In the region of the resonances
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FIG. 6. Comparison of the cross sections for the static Coulomb
potential of CF4. The complex Kohn method on the overset grid
(red circles, solid line) is shown with �max = 15 in the central
grid and �max = 3 in the subgrids. Results with the single-center
expanded Schwinger variational method at various �max are shown
(fading purple squares, dotted lines), including an approximately
converged reference line at �max = 120 (blue square, solid line).
The single-center results converge slowly with the number of partial
waves, while the overset-grid results are largely converged with very
few partial waves.

(one T2 resonance and about 10.0 eV and one A1 resonance at
about 11.5 eV), the cross section calculated at � = 15 is slightly
low. However, the shape of the resonance features is close to the
converged shape even with the lowest number of partial waves
shown, which is not the case for the unconverged single-center
expansion result from the Schwinger calculations.

At energies below 10 eV in Fig. 7, the single-center expan-
sion cross sections converge very slowly. At lower energies,
the effects of the potentials near the nuclei are becoming
increasingly important, as is evidenced by the fact that this
is the most difficult region of the cross section to converge in
the single-center expansion. In Table II we choose E = 6 eV

FIG. 7. Comparison of the cross sections for the static-exchange
potential of CF4. The grid Kohn method (red circles, various fading)
are given for subgrids with � = 3 and central grid with � = 15, 25,
and 35. The nonresonance features match for all three, while the
resonance features converge at � = 25. The single-center expanded
Schwinger method (blue squares, various fading) is shown for � = 60,
80, and 100 for which some of the features are not converged even
for maximum � = 200.

to explore the convergence of the single-center expansion
Schwinger method and compare it to the convergence of the
overset-grid complex Kohn method. Although no exact result
is available, the rates of convergence of the two methods
can be judged at least approximately from the changes as
�max is incremented which are shown in the table. By that
measure, the total cross section from the overset-grid Kohn

method is converged to 0.01 Å
2

by � = 35 in the central
grid and increasing the subgrid angular grid from � = 3 to
� = 6 has no effect. The A1 and T2 components of the cross

section converge to 0.0017 and 0.0030 Å
2
, respectively. In

contrast, the single-center expansion results converge to only

0.02 Å
2

at � = 200. To demonstrate conclusively that these
methods are converging to the same result to two digits

TABLE II. Convergence of the integral cross section and its dominant symmetry components at E = 6 eV for CF4 in the static-exchange

approximation (in units of Å
2
, with differences in parentheses). Schwinger variational cross sections using a single-center expansion are given

from � = 60 to � = 200. Overset-grid complex Kohn cross sections are given for the central grid � = 15 to � = 45, by which an effectively
converged result is obtained. For the overset grids �max is denoted as �cg/�sg as in Table I.

�max A1 E T2 Total

Schwinger variational method, single-center expansion

60 7.9166 0.2322 4.2152 21.0662
80 7.8290 (−0.0876) 0.2315 (−0.0007) 4.0662 (−0.1491) 20.5299 (−0.5363)
100 7.7752 (−0.0538) 0.2313 (−0.0002) 3.9974 (−0.0688) 20.2694 (−0.2606)
120 7.7442 (−0.0309) 0.2313 (−0.0001) 3.9623 (−0.0351) 20.1330 (−0.1364)
140 7.7259 (−0.0184) 0.2312 (−0.0000) 3.9426 (−0.0197) 20.0556 (−0.0774)
160 7.7144 (−0.0115) 0.2312 (−0.0001) 3.9306 (−0.0120) 20.0081 (−0.0475)
180 7.7075 (−0.0069) 0.2312 (0.0001) 3.9238 (−0.0068) 19.9807 (−0.0274)
200 7.7027 (−0.0048) 0.2312 (−0.0000) 3.9189 (−0.0048) 19.9613 (−0.0193)

Complex Kohn variational method, overset-grid expansion

15/3 7.7536 0.2107 3.8348 19.7149
25/3 7.6605 (−0.0931) 0.2309 (0.0202) 3.8795 (0.0448) 19.8001 (0.0853)
35/3 7.6907 (0.0302) 0.2314 (0.0005) 3.9083 (0.0288) 19.9179 (0.1178)
35/6 7.6907 (−0.0000) 0.2314 (−0.0000) 3.9083 (−0.0000) 19.9178 (−0.0000)
45/3 7.6890 (−0.0017) 0.2312 (−0.0002) 3.9053 (−0.0030) 19.9066 (−0.0112)
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FIG. 8. The (a) A1 and (b) T2 components of the static-exchange
cross section of CF4. The grid Kohn method cross sections (red circles,
various fading) and single-center expanded Schwinger method cross
sections (blue squares, various fading) are compared.

beyond the decimal would require Schwinger calculations
calculations substantially beyond � = 200, which rapidly
become computationally prohibitive.

We have also examined the symmetry components of the
cross sections as a function of energy, shown in Fig. 8. Here
we can see in more detail what is happening as the resonance
regions converge. For the single-center expanded Schwinger
method, the A1 resonance is moving to lower energies as it
converges [10]. The overset-grid Kohn method, in comparison,
converges its prediction of the A1 resonance energy closely
by � = 15. At very low energies, the Schwinger method also
converges slowly compared to the grid Kohn method. The

FIG. 9. Convergence of differential cross sections for CF4 in the
static-exchange approximation at 5 eV and at the energies of the
centers of the resonance features: complex Kohn results, red dots
and solid red line with the converged results at �max = 35; Schwinger
results with single-center expansion, blue dots with solid blue line at
�max = 100.

behavior of the methods at the T2 resonance is similar, with
the single-center expanded Schwinger method converging the
magnitude of the resonance slowly from � = 60 to � = 100
and the grid Kohn method converging much more rapidly.
For energies below 10 eV, the Schwinger T2 cross sections
also converge more slowly compared to the grid Kohn cross
sections.

The convergence of the differential cross section is shown
in Fig. 9, both at the resonance features and at 5 eV. As
might be expected, the cross sections converge most slowly
for backscattering and at the oscillations at intermediate angles
for the resonance energies. In all cases the convergence of the
grid-based complex Kohn results with added partial waves on
the central grid is dramatically faster than the single-center
expansion results.

TABLE III. Convergence of integral cross sections for the static-exchange potential of CF4 using the Schwinger method with single-center
expansion and the overset-grid complex Kohn method for four points of interest: the A1 components at 0.01 and 0.1 eV, the A1 resonance at
11.5 eV, and the T2 resonance at 10.0 eV.

A1 T2

�max 0.01 eV 0.1 eV 11.5 eV 10.0 eV

Schwinger variational method, single-center expansion

60 25.1782 24.6777 6.8941 6.3549
120 22.8114 (−2.3667) 22.3826 (−2.2951) 7.8005 (0.9064) 6.1151 (−0.2398)
140 22.6240 (−0.1874) 22.2007 (−0.1819) 7.7918 (−0.0087) 6.1006 (−0.0145)
160 22.5088 (−0.1152) 22.0889 (−0.1118) 7.7837 (−0.0081) 6.0924 (−0.0082)
180 22.4438 (−0.0650) 22.0256 (−0.0633) 7.7766 (−0.0071) 6.0871 (−0.0053)
200 22.3975 (−0.0463) 21.9807 (−0.0450) 7.7718 (−0.0048) 6.0838 (−0.0034)

Complex Kohn variational method, overset-grid expansion

15/3 22.8492 22.4204 7.8700 6.0061
25/3 22.0215 (−0.8277) 21.6151 (−0.8053) 7.7112 (−0.1589) 6.0572 (0.0511)
35/3 22.2841 (0.2626) 21.8705 (0.2553) 7.7574 (0.0462) 6.0760 (0.0188)
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In Table III we examine the convergence of the single-
center and overset-grid expansions for the following points of
interest: the A1 components of the cross section at the very
low energies (i) 0.01 and (ii) 0.1 eV, for which the potential
near the nuclei must be well resolved, (iii) the center of the
A1 resonance feature at 11.5 eV, and (iv) the center of the
T2 resonance at 10.0 eV. For the A1 and T2 resonance cross
sections, the Schwinger method converges to the values 7.8

and 6.1 Å
2

by � = 120, respectively, and converges to 7.77 and

6.08 Å
2
, respectively, with a tolerance of 0.005 Å

2
by � = 200.

At � = 35 for the central grid and � = 3 for the subgrid, the
overset-grid Kohn method predicts cross sections for these

resonances of 7.76 and 6.08 Å
2
, in near perfect agreement

with the Schwinger results but with many fewer partial waves.
All of these comparisons are done with the maximum value
of the radial variable r on the grids, both equal to 5.3 Å,
chosen purely for convenience to be just beyond the range of
the exchange potential. Nonetheless, at the lowest energies the
cross sections from the Schwinger and Kohn calculations agree

only to within 0.1 Å
2
, suggesting that the remaining small

differences between them are due to slower convergence with
respect to partial waves at low energies of the A1 component
of the T matrix seen in the table.

IV. SUMMARY

We have formulated an overset-grid version of the complex
Kohn variational approach to electron–polyatomic-molecule
collisions and demonstrated that it is a robust method for
solving the scattering problem. The key components developed
here, all necessary for this formulation, are an overcomplete
(in principle) underlying spectral basis defined on overlapping
subgrids and a central grid, simultaneous expansion of the
scattering trial wave function in spherical harmonics about
multiple centers, expansion of the trial function in the basis
φ+

k = (Ĝ+
0 V̂ )kφ0 in which all the basis functions satisfy

outgoing-wave boundary conditions, and accurate operation
of the free-particle Green’s function and exchange operators
based on Gauss-Lobatto quadratures adapted for integration
over subintervals required by the slope discontinuity in the
radial Green’s function. This grid-based method will allow the
application of the Kohn variational approach to both larger
systems and higher energies and also removes the separable
exchange approximation made in the previous implemen-
tation of the complex Kohn method for electron-molecule
scattering.

Although in principle the spectral basis in the subgrids
and central grid can become linearly dependent if the radial
grids are made arbitrarily dense and the number of partial
waves is greatly increased, two factors seem to minimize any
effects of over completeness. First, the switching functions
remove parts of the central grid that would overlap the majority
of each subgrid volume and thus restrict potential problems

only to the overlapping annular volumes where the switching
between grids occurs. Second, in this method the Born-Arnoldi
iterative solution generates a small basis of functions on
the grid that allows solution of the linear equations for the
scattered wave function before any numerical pathologies due
to potential linear dependence of the central grid and subgrid
representations appears.

Toffoli et al. [54] have described and extensively applied
a method for solving scattering problems using a density-
functional theory that is based on overlapping, multicenter
B-spline basis sets, in which a similar question arises.
That method does not have the drawbacks of single-center
expansions, but still manages to avoid numerical difficulties
due to linear dependence even though it does not make use of
switching functions like those used here. Those authors make
an important observation that in their method the problem
diminishes for atoms located far from the expansion center,
precisely those for which the addition of the subgrids is
most important. The same is true here, and the potential
overcompleteness of the underlying spectral basis from the
union of the subgrids and central grid has thus far produced
no noticeable numerical pathologies.

While the principal motivation to represent the trial wave
function of the Kohn approach on overset grids is to gain the ac-
curacy and generality of grid representation in this variational
approximation to the scattering amplitudes, the basis we have
chosen in order to apply outgoing-wave boundary conditions
produces a formal property for this approach not previously
exploited in any implementation of Kohn’s original idea. In
the present method a Padé approximant to the full solution
of the scattering problem is being automatically constructed.
That property allows the convergence of the T matrix with a
basis of 20–30 functions defined by (Ĝ+

0 V̂ )kφ0 even for the
largest grids used in these calculations.

This aspect of the method will be critical to the extension
of this approach to multichannel calculations. All of the
fundamental components necessary for implementing the
close-coupling version of the complex Kohn method [1] have
been demonstrated here. That extension to multiple scattering
channels and the application of Coulomb boundary conditions
within this framework are left to future work.
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