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Effects of autoionization in electron loss from heliumlike highly charged ions
in fast collisions with atomic particles
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We study theoretically single-electron loss from the ground state of a heliumlike highly charged ion in fast
collisions with an atomic particle (a nucleus or an atom), focusing on electron emission energies where the
so-called excitation-autoionization channel of electron loss becomes of importance. The presence of this channel
leads to the appearance of sharp structures in the energy distribution of the emitted electrons and may also
noticeably influence the angular distributions of the emission in the vicinity of autoionization resonances. We
performed calculations for electron loss from Ca18+(1s2) and Zn28+(1s2) in 100 MeV/u collisions with neon.
It is shown that two qualitatively different subchannels (which involve either one or two interactions between
the electrons of the ion and the incident atomic particle) substantially contribute to excitation-autoionization
and take active part in the interference with the direct channel of electron loss; however, they practically do not
interfere with each other. Our consideration also shows that the account of QED corrections is important for an
accurate description of electron loss even from relatively light heliumlike HCIs.
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I. INTRODUCTION

Atomic systems with more than one electron possess states
which can spontaneously decay, emitting an electron. They
are called autoionizing states and can be highly visible in
many atomic processes, e.g., photo ionization and ionization
by electron impact. In particular, this is especially the case
when the energy transfer to the system is close to the
difference between the energies of an autoionizing state and
the initial state of the system. Under such circumstances, the
initial system can undergo a transition to the continuum not
only directly but also via excitation to the autoionizing state
with its consequent Auger decay (the so-called excitation-
autoionization, EA, channel).

The role of autoionization has been extensively studied for
electron-ion and electron-atom collisions. A large number of
atomic systems was considered. They include, for instance,
helium and heliumlike lithium (see, e.g., Refs. [1–4]); various
ions: Mg+, Ca+, Sr+ [5], Ga+ [6], Ba+ [5,7,8], C3+, N3+, O3+
[9], Ti3+, Zr3+, and Hf3+ [10], Snq+ (q = 4–13) [11], Xeq+

(q = –6,10)1 [12,13]; light lithiumlike ions ranging from B2+
to F6+ [14,15]; and excited C+ ions [16]. It was, in particular,
found that the EA channel and its interference with the direct
channel can be of great importance in the processes of electron
impact ionization and electron loss.

New features arise in the electron loss process when it
occurs from highly charged ions where relativistic and QED
effects may be of importance. Calculations for electron loss
from lithiumlike highly charged Ar15+, Fe23+, Kr33+, and
Xe51+ ions by electron impact were performed in Ref. [17].
According to the results reported in Ref. [17], the Breit
interaction as well as the M2 transitions may substantially
influence the EA channel and the total electron loss. The cross
section for electron loss from berylliumlike highly charged
ions (HCIs) in collisions with bare atomic nuclei, differential

*laywer92@mail.ru

in the emission angle, was calculated in Ref. [18], where a
significant influence of the Breit interaction on the EA channel
was predicted.

A review on the various aspects of autoionization in
electron-ion collisions can be found in Ref. [19].

In the present paper, we shall consider single-electron loss
from heliumlike HCIs occurring in collisions with atomic
particles (atoms, nuclei). The collisions are supposed to be
fast enough such that the interaction between the electrons of
the ion and the atomic particle remains much weaker than the
interaction of these electrons with the nucleus of the ion and
therefore can be treated as perturbation. The main focus of our
study is on the role of autoionization in this process, which
can be significant when the energy of the emitted electron is
close to the difference between the energy of an autoionizing
state of a heliumlike HCI and the energy of the final state of
the residual hydrogenlike ion. In such a case, the autoionizing
state can participate in the process via the corresponding EA
channel. This is illustrated in Fig. 1, where both the direct and
EA channels of electron loss are schematically depicted.

The topic considered in the present paper is of interest
because of the following reasons. First, to our knowledge,
although compared to helium and low-charged heliumlike
ions, heliumlike HCIs possess important and interesting
features, the role of autoionization in electron loss from the
latter has not yet been studied. Second, if the electron loss
proceeds from the ground state of the ion then the interaction
between the electrons of the ion (electron correlations in a
strong field) are expected to play an especially prominent role
in the EA channel. Third, we are not aware about studies
of autoionization in electron loss which is triggered by fast
collisions with neutral atoms. Therefore, the results presented
in this paper not only fill a substantial gap in the theoretical
studies of autoionization but also can serve as a guide for future
experimental activities in this field.

Below we suppose that the HCI is initially in its ground
state (1s2). Under such a condition there are two main ways to
excite an autoionizing state of the HCI. In the first of them, the
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FIG. 1. Electron loss from HCI via the direct channel and the EA
channel.

incident particle interacts with only one of the two electrons of
the HCI. We note that this way of populating an autoionizing
state is not possible without the interaction between the
electrons of the HCI. In the other one, the excitation of the
autoionizing state proceeds via the interaction of the incident
particle with both electrons of the HCI.

Unlike the EA, the direct channel of electron loss repre-
sents essentially one-electron process in which the “passive”
electron is merely a spectator.

The relativistic units (h̄ = c = me = 1) are used throughout
unless otherwise stated.

II. GENERAL CONSIDERATION

Our description of a free heliumlike HCI is based on the
line-profile approach (LPA) [20,21] of QED. The Furry picture
is used, in which the Coulomb interaction of the electrons of the
HCI with its nucleus is fully taken into account from the onset.
The Dirac equation is employed to treat both bound electrons
and the emitted electron. The interaction of these electrons with
the quantized electromagnetic and electron-positron fields is
treated according to the standard QED perturbation theory.
This interaction is taken into account in the zeroth and first
orders of the perturbation expansion. Besides, the leading
parts of the higher order corrections in the electron-electron
interaction are also included into the treatment according to
the LPA [20].

Since the interaction of the electrons with the field of the
incident atomic particle is assumed to be relatively weak, it
will be treated using the lowest possible orders of relativistic
perturbation theory. As was already mentioned, the direct
channel of electron loss is essentially a one-electron process.
Therefore, for its description, it suffices to use the first order of
perturbation theory in the interaction with the incident atomic
particle.

The situation with the treatment of the EA channel of
electron loss is somewhat more complicated. Indeed, it
was noted in the introduction that this channel involves
two qualitatively different pathways in which the incident
atomic particle interacts either with only one of the two
electrons (the EA1 subchannel) or with each of them (the EA2

subchannel). Therefore, the description of the EA2 necessitates
the second order of the perturbation theory whereas for the EA1

subchannel it is sufficient to use just the first order.
In Fig. 2 we illustrate our description of electron loss from

the ground state by the impact of an atomic particle by showing
Feynman graphs which correspond to the first and second
orders of the perturbation theory with respect to the interaction
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FIG. 2. Feynman graphs for electron loss from the ground state
of a heliumlike HCI. (a) The leading (in the electron-electron
interaction) contribution to the direct channel. [(b), (c)] The lead-
ing contributions to the EA1 subchannel. [(d), (e)] The leading
contributions to the EA2 subchannel. The vectors Q, q

′
, and q

′′

denote the momentums transferred by the external field to the HCI
(q

′ + q
′′ = Q).

between the electrons of the HCI and the field of the atomic
particle. We note that for each channel of the electron loss
the corresponding graphs depict just the respective leading
contributions in the electron-electron interaction and that in
our calculations we take into account also various corrections
to them.

Figure 2(a) represents the main contribution to the direct
channel of electron loss in which one of the electrons of the
ion, via absorbtion of a virtual photon, makes a transition to
the continuum, whereas the other electron remains merely a
spectator. Figures 2(b)–2(e) include leading contributions to
the EA channel [22].

A. Construction of two-electron states of a free HCI

In the framework of the LPA, the initial and final states
of a free HCI in the zeroth-order of QED perturbation theory
are chosen as configurations of noninteracting electrons in the
j -j coupling scheme. The interaction with the quantized fields
leads to various corrections to these states. They are given as
linear combinations of many different configurations of the
noninteracting electrons in the j -j scheme. The coefficients
in these linear combinations (the mixing coefficients) are
obtained in the framework of the LPA.

By employing the rest frame of the HCI, taking the position
of the HCI’s nucleus as the origin, and denoting by r1 and
r2 the coordinates of the electrons of the HCI, we give the
two-electron wave functions in the zeroth order of perturbation
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theory by

�
(0)
JMn1j1l1n2j2l2

(r1,r2) = N
∑

m1,m2

C
j1,j2
JM (m1,m2)

× det{ψn1j1l1m1 (r1)ψn2j2l2m2 (r2)}. (1)

Here, N is the normalization constant (equal to 1/2 for
equivalent electrons and to 1/

√
2 otherwise), C

j1,j2
JM (m1,m2)

are the Clebsch-Gordan coefficients, ψni,ji ,li ,mi
is a solution

of the one-electron Dirac equation where ni is the principal
quantum number, ji is the total angular momentum, mi is its
projection, and li defines parity [(−1)li ], where the index i

(i = 1, 2) labels the ith electron of the HCI.
The emitted electron with momentum p, energy εp =√

1 + p2, and polarization μ is described by the following
expansion [23]:

ψ p,μ(r) =
∫

dε
∑
j lm

a pμ,εjlmψεjlm(r), (2)

where

a pμ,εjlm = (2π )3/2

√
pεp

ile−iφjl [�+
j lm( p),υμ( p)]δ(εp − ε). (3)

In Eq. (3), the φjl is the Coulomb phase shift, �jlm( p) is
the spherical spinor, and υμ( p) is the spinor with projection
μ = ±1/2 on the electron momentum ( p)

p σ̂

2p
υμ( p) = μυμ( p), (4)

where σ̂ is the Pauli vector. It is convenient to describe the
final two-electron state (1s, e−), which contains the emitted
electron, as a linear combination of the following determinants:

1√
2

det{ψnbjblbmb
(r1)ψ p,μ(r2)}

=
∑

JMjlm

C
jb,j

JM (mb,μ)
∫

dε a pμ,εjlm�
(0)
JMnbjblbεj l(r1,r2), (5)

where the quantum numbers nb, jb, lb, and mb refer to the 1s

electron in the resudial hydrogenlike HCI.
In order to take into account the QED corrections such as the

interelectron interaction correction, the electron self-energy,
and the vacuum polarization corrections, we employ the LPA.
According to the LPA, we construct new functions, which are
given by [20]

�m(r1,r2) =
∑
k∈g

Bkm�
(0)
k (r1,r2)

+
∑

n/∈g,l∈g

[�V ]nl

Blm

E
(0)
m − E

(0)
n

�(0)
n (r1,r2), (6)

where m, k, l, and n label the two-electron configurations
and g denotes the set of all two-electron configurations
considered in this work. The set g includes all the two-electron
configurations composed of 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p,
4d, and 4f electrons and the electron in the continuum. The
�V represents the matrix of the QED corrections: the one-
and two-photon exchange corrections, the electron self-energy
correction, and the vacuum polarization correction.

FIG. 3. The absolute values of the mixing coefficients for the
two-electron configuration 1s2 [see Eq. (7)] given as a function of
ZI . The upper and lower curves refer to B(1s,2s)(1s2) and B(1s,3s)(1s2),
respectively.

For relatively light heliumlike HCIs, it is necessary to
take into account the contribution of the imaginary part of
the two-photon exchange correction to the matrix �V , which
determines the Auger widths. The contribution of the Auger
part of the two-photon exchange correction (in particular, the
nondiagonal elements, which are very important) was not
considered before. Therefore, we discus this point in some
detail in the appendix, where the explicit expression for this
correction to the matrix �V is given.

The first term on the right-hand side in Eq. (6) corresponds
to the mixing of the configurations from the set g. The mixing
coefficients Bkm are obtained within the LPA. The second
term on the right-hand side in Eq. (6) takes into account all
other configurations which are not included in the set g. The
two-electron configuration energy in zeroth-order E(0)

n is the
sum of the corresponding one-electron Dirac energies.

For example, the ground two-electron state constructed
according to Eq. (6) has the following form:

�(1s2) = B(1s2),(1s2)�
(0)
(1s2) + B(1s2s),(1s2)�

(0)
(1s2s)

+B(1s3s),(1s2)�
(0)
(1s3s) + · · · , (7)

where only the main terms of the first sum in Eq. (6) are
explicitly given. In order to describe the EA1 subchannel of
electron loss from the ground state of a HCI, it is necessary to
take into account the contributions from the (1s2s) and (1s3s)
configurations. The absolute values of the mixing coefficients
corresponding to these configurations are shown in Fig. 3,
where they are given as a function of the atomic number ZI of
the HCI. It is seen in the figure that the initial rapid decrease
in the magnitude of the mixing coefficients at not very large
ZI is then replaced by a much slower decrease at higher ZI

and that these coefficients become almost constants at very
high ZI .

This behavior can be understood by noting that the Coulomb
and the Breit parts of the electron-electron interaction scale
approximately as ∼ZI and Z3

I , respectively. Since the energy
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differences, E(0)
n − E(0)

m (n �= m), scale with ZI as Z2
I , the

contribution of the Coulomb and Breit parts to the mixing
coefficients are proportional to 1/ZI and ZI , respectively.
Therefore, at not very high ZI , where the Coulomb part of the
electron-electron interaction strongly dominates, we observe
that the mixing coefficients depend on ZI as 1/ZI , whereas at
very high ZI , where the effective strength of Breit interaction
becomes overall comparable to that of the Coulomb one, these
coefficients are almost ZI independent.

To conclude this subsection, we note that the LPA enables
one to describe with very good accuracy highly charged ions
with a few electrons (see Refs. [20,21] for benchmark LPA
calculations). In particular, one of the advantages of the LPA
is that within this method one may not only take exactly into
account the lowest orders of the standard QED perturbation
theory but also account partly for the contributions of all
higher orders and implement such calculations with a relative
economy of computational resources and time. The application
of the LPA, however, has a limiting factor: The computation
becomes increasingly cumbersome when the relative role of
the electron correlations increases (that makes it necessary to
employ very large basis sets). Therefore, the application of the
LPA to light systems (like, e.g., He or Li+) would either yield
inaccurate results or demand powerful computers and be very
time-consuming.

B. Electron loss in collisions with a bare atomic nucleus

It is convenient to give the basic consideration of electron
loss in fast collisions with atomic particle using the rest frame
of the HCI. We take the position of the HCI’s nucleus as the
origin and denote by r1 and r2 the coordinates of the electrons
of the HCI. We shall suppose that the energy of the incident
particle is so high that its change in the process is negligible
compared to its initial value. This allows us to describe the
particle as moving along a straight-line classical trajectory
R(t) = (b,vt), where b = (bx,by) is the impact parameter, v =
(0,0,v) is the velocity of the particle, and t denotes the time.

The field of the particle represents a relatively weak
perturbation for the electrons of the HCI provided the charge
(the atomic number) ZA of the particle and the collision
velocity v satisfy the condition α ZA

v
� 1, where α is the

fine-structure constant. Below we suppose that this condition
is fulfilled which enables one to restrict our consideration just

to the first and second orders of the perturbation theory in the
interaction between the electrons and the incident particle.

In this subsection, we assume that the particle is a bare
atomic nucleus. Then, within the first order of the perturbation
theory, the amplitude of electron loss from the HCI is given by

A
(1)
if (b) = −i

∫ ∞

−∞
dt 〈�f |Wb(r1,t)

+Wb(r2,t)|�i〉eit(E(0)
f −E

(0)
i ), (8)

Wb(ri ,t) = − γZAα(1 − vαz)√
(b − ri,⊥)2 + γ 2(vt − ri,z)2

, (9)

where Wb(ri ,t) is the interaction between the atomic particle
and the ith ionic electron (i = 1,2). In Eq. (9), γ = 1/

√
1 − v2

is the Lorentz factor of the collision and αz is the corresponding
Dirac α matrix. In Eq. (8) and below, the indices i and f denote
the initial (1s2) and final (1smb

,e−
pμ) states, respectively, where

mb and μ are polarizations of the corresponding electrons in
the final state.

It is convenient to work with the transition amplitude in
the momentum space, which is obtained from Eq. (8) by
performing the Fourier transformation

S
(1)
if (Q⊥) = 1

2π

∫
d2b A

(1)
if (b)eiQ⊥b, (10)

which results in

S
(1)
if (Q⊥) = 2i

ZAα

v

〈�f |WQ⊥(r1) + WQ⊥(r2)|�i〉
Q2

⊥ + Q2
min

γ 2

, (11)

where

WQ⊥ (ri) = eiQri (1 − vαz). (12)

In the above expressions, the momentum transfer Q to the HCI
in the collision reads

Q = (Q⊥,Qmin), Qmin = E
(0)
f − E

(0)
i

v
, (13)

where E
(0)
i is the energy of the initial state of the HCI and

E
(0)
f is the sum of the energies of the emitted electron and the

residual hydrogenlike ion.
The second-order contribution to the amplitude of electron

loss from the HCI reads

A
(2)
if (b) = (−i)2

∑
m

∫ ∞

−∞
dt 〈�f |Wb(r1,t) + Wb(r2,t)

∣∣�(0)
m

〉
eit(E(0)

f −E
(0)
m )

×
∫ t

−∞
dt

′ 〈
�(0)

m

∣∣Wb(r1,t
′
) + Wb(r2,t

′
)|�i〉eit

′
(E(0)

m −E
(0)
i ), (14)

where the summation is performed over the complete basis set of two-electron wave functions �(0)
m with corresponding energies

E(0)
m . Like in the first-order consideration described above, we perform the Fourier transformation to obtain the following result:

S
(2)
if (Q⊥) =

∑
m

∫
dqz

1

qz − E
(0)
f −E

(0)
m

v
− i0

fm(qz), (15)

where

fm(qz) = −i

(
ZAα

vπ

)2 ∫
d2q⊥

〈�f |Wq⊥(r1) + Wq⊥(r2)
∣∣�(0)

m

〉
q2

⊥ + q2
z

γ 2

〈
�(0)

m

∣∣WQ−q⊥(r1) + WQ−q⊥(r2)|�i〉
(Q⊥ − q⊥)2 + (Qmin−qz)2

γ 2

. (16)
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Performing the Sokhotski-Plemelj theorem for the qz integral
in Eq. (15), we can rewrite it as follows:

S
(2)
if (Q⊥) =

∑
m

iπfm

(
E

(0)
f − E(0)

m

v

)

+
∑
m

P
∫

dqz

1

qz − E
(0)
f −E

(0)
m

v

fm(qz), (17)

where P denotes the principal value integral.
The fully differential cross section for electron loss by

particle impact is given by

dσ

dεpd�dQ⊥
= εpp

(2π )3

∣∣S(1)
if (Q⊥) + S

(2)
if (Q⊥)

∣∣2
. (18)

It is convenient to split the total contribution to the electron
loss into the resonant and nonresonant parts. The nonresonant
part amounts to the direct channel of the electron loss, whereas
the EA channel represents the resonant part in which the EA1

and EA2 subchannels are described by the terms in Eqs. (8) and
(14), respectively, containing the corresponding autoionizing
states. We note that whereas the splitting into the resonant
and nonresonant parts in each order of perturbation theory is
strictly speaking not unambiguous and may depend on the
approach used, the full calculation for the cross section has a
well-defined physical meaning.

C. Electron loss in collisions with a neutral atom

When an ion collides with a neutral atom, the interaction
between the electrons of the ion both with the nucleus of the
atom and the electrons of the atom can contribute to electron
loss from the ion. According to the consideration of first order
in the interaction between the ion and atom, the role of the
atomic electrons in the electron loss is twofold.

First, in collisions in which the atom remains in its initial
internal state (elastic atomic mode), the electrons of the atom
tend to screen (fully or partially) the charge of the atomic
nucleus (see, e.g., Refs. [24–26]). The screening effect reduces
the probability for electrons of the ion to undergo a transition
compared to collisions with the corresponding bare atomic
nucleus. Second, in collisions, which are inelastic also for
the atom, only the interaction with the electrons of the atom
may contribute to transitions of the ionic electrons (see,
e.g., Refs. [24–26]). In this case, the presence of the atomic
electrons increases the probability for the electrons of the ion
to make a transition [27].

In collisions, which are characterized by momentum
transfers to the atom substantially exceeding typical orbiting
momenta of the atomic electrons, the contributions of the
elastic and inelastic atomic modes to the cross sections for
excitation of (electron loss from) the ion roughly scale as ∼Z2

A

and ∼ZA, respectively, where ZA is the atomic number of the
atom (see, e.g., Ref. [26]). In the present paper, we consider
collisions of HCIs with multielectron atoms (ZA � 1) only,
where the relative contribution of the inelastic mode is small.
Therefore, in what follows we shall simply neglect the inelastic
atomic mode. For the first order with respect to the interaction
of HCI’s electrons and incident atom, the contribution from the
elastic atomic mode can be obtained from expression Eq. (11)
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,e
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FIG. 4. The effective charge of neon atom as a function of the
transverse momentum transfer in collision with qmin = 4.96 a.u.

if we replace ZA by the effective charge of the atom given
by [26]

ZA,eff = Z(Q), (19)

where

Z(Q) = ZA

(
Q2

⊥ + Q2
min

γ 2

) 3∑
i=1

Ai

k2
i + Q2

⊥ + Q2
min

γ 2

. (20)

The parameters Ai and ki (i = 1,2,3) are tabulated for various
atoms in Refs. [28,29] and in the case of a neon atom are
equal to

A1 = 0.0188, A2 = 0.9812, A3 = 0, (21)

k1 = 34.999 a.u., k2 = 2.566 a.u., k3 = 0.

Figure 4 shows the effective charge of the Ne atom, as a
function of the transverse momentum transfer, for electron
loss from Ca18+(1s2) in collisions at an impact energy of
100 MeV/u.

We do the same procedure for the second-order contribution
and replace Z2

A in Eq. (16) by Z(q)Z(Q − q).

III. RESULTS AND DISCUSSION

In this section, we present results of our numerical com-
putation for the electron loss cross sections averaged over
polarizations of the emitted electron and the bound electron in
the final state.

A. Electron loss in the rest frame of the HCI

The process of electron loss looks most simple in the rest
frame of the HCI. Therefore, we first consider electron loss in
this frame assuming that the incident particle moves along the
Z axis (from which the polar angle for the emitted electron is
counted).

Figures 5 and 6 show results of our calculations for electron
loss from Ca18+(1s2) in collisions with bare neon nuclei
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FIG. 5. Cross sections for single electron loss from Ca18+ (1s2) by the impact of 100 MeV/u bare neon nucleus (the left column) and
100 MeV/u neon atom (the right column). The upper and lower panels present the energy and energy-angular distributions, respectively, of the
emitted electron. The cross sections are given in the rest frame of the HCI. The numbered vertical lines refer to resonances arising due to the
autoionizing states listed in Table I.

(the left column) and neutral neon atoms (the right column) at
an impact energy of 100 MeV/u corresponding to the collision
velocity v = 0.428 r.u. (γ = 1.106). The upper panels in these
figures display the loss cross section (singly) differential in
the electron emission energy whereas the lower panels present
results for the loss cross section differential in emission energy
and angle. In Fig. 5, we consider a relatively broad range of
emission energies, whereas in Fig. 6 we focus on the energy
range where the (2s 2p3/2)J=1 and (2p2

3/2)J=2 autoionizing
states actively participate. The (2s 2p3/2)J=1 state was chosen
because it leads to the strongest resonance. We note also that in
this case both the EA1 and EA2 subchannels of the EA channel
are equally important.

The energy spectra, shown in the upper panels of these
figures, display one of characteristic shapes known as Fano
profiles [30]. Such a shape arises because of interference
between the direct and the EA channels of electron loss.

The upper panels in these figures also show the contribu-
tions of the EA1 (the lower solid curve) and EA2 (the dotted
curve). In general, these subchannels could interfere with each
other. However, according to our numerical calculations, the
principal value part of the second-order amplitude in Eq. (17),
which is responsible for this interference (see, e.g., Ref. [25]),
gives a significantly smaller contribution to this amplitude
than the first term in Eq. (17). Therefore, it turns out that
the interference between the EA1 and EA2 subchannels is
practically absent.

It is seen in Figs. 5 and 6 that the main feature of the
energy spectrum of the emitted electrons is the presence of
sharp maxima and minima, which arise due to the EA channel
and its interference with the direct channel of electron loss.
These maxima and minima, which reveal the participation of
LL autoionizing states in the EA process, are embedded in a
smooth background appearing because of the direct electron
loss channel. Figures 5 and 6 also show that, unlike in the case
with the EA2, not all autoionizing states are involved in the
EA1 subchannel. This can be understood if we remark that
the (1s2s)J=0 electron configuration is the only singly excited
configuration which is present with a significant weight in
the “physical” ground state of a heliumlike HCI. Therefore,
if the incident particle interacts just once with the HCI, then
only those autoionizing states can be noticeably populated
which include two-electron configuration(s) with at least one
2s electron.

It is obvious that the EA2, which involves the interaction
of the incident atomic particle with both electrons of the HCI,
is free of such a restriction and generally all LL autoionizing
states can play a noticeable role in this subchannel.

In Fig. 7, we present the doubly differential cross section
as a function of the polar angle of the momentum of the
emitted electron. The angular dependence was calculated for
five resonant emission energies corresponding to the (2s2)J=0,
(2p1/22p3/2)J=2, (2s2p3/2)J=1, (2p2

3/2)J=2, and (2p2
3/2)J=0

autoionizing states. It follows from the figure that four
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FIG. 6. Same as in Fig. 5 but for the energy range where only the (2s2p3/2)J=1 and (2p2
3/2)J=2 autoionizing states actively participate in

the electron-loss process.

out of five angular dependences are qualitatively similar,
showing a pronounced maximum at about 70◦ (the angular
dependences corresponding to the other resonances present
in Fig. 5 are qualitatively similar to these four). However,
in the case of the (2p2

3/2)J=2 state, the angular dependence is
qualitatively different (we shall discuss the origin of this shape
later).

In addition to autoionization, a doubly excited state can also
decay via spontaneous radiative emission, which competes
with the EA channel diminishing it. Therefore, it is of interest
to compare the strength of the Auger decay with that of

spontaneous radiative decay. This is done in Tables I and II,
where the decay widths with the corresponding branching
ratios are given.

Besides, in these tables, we present the resonant kinetic
energies of the emitted electron (Eres = Ea − ε1s − mc2,
where ε1s = 505.5274 keV for Ca and ε1s = 498.6036 keV for
Zn) and the binding energy of the autoionizing states (E

′
a =

Ea − 2mc2). These tables also show the contributions (�E)
to the positions of resonances due to the radiative corrections
(vacuum polarization and electron self-energy corrections). It
is seen that for each resonance these corrections lead to the shift

TABLE I. Electron loss from Ca18+. The positions of the resonances (Eres = Ea − ε1s − mec
2) with the radiative corrections (�E), the

binding energies of the autoionizing states (E
′
a = Ea − 2mc2), the radiative (�r ), Auger (�a), and the total (�) widths of the corresponding

autoionizing states, and the branching ratio (�a/�).

Autoionizing Eres �E E
′
a �r �a � �a/�

state (keV) (eV) (keV) (eV) (eV) (eV)

1 (2s2)J=0 2.7995 −1.3 −2.6704 0.026 0.235 0.26 0.90
2 (2s2p1/2)J=0 2.8033 −1.4 −2.6667 0.066 0.015 0.08 0.18
3 (2s2p1/2)J=1 2.8052 −1.4 −2.6647 0.066 0.013 0.08 0.16
4 (2s2p3/2)J=2 2.8103 −1.4 −2.6597 0.066 0.010 0.08 0.13
5

(
2p2

1/2

)
J=0

2.8243 −1.6 −2.6456 0.128 <0.001 0.13 0.00
6 (2p1/22p3/2)J=1 2.8271 −1.7 −2.6428 0.132 <0.001 0.13 0.00
7 (2p1/22p3/2)J=2 2.8305 −1.6 −2.6394 0.132 0.027 0.16 0.17
8 (2s2p3/2)J=1 2.8393 −1.4 −2.6306 0.066 0.131 0.20 0.66
9

(
2p2

3/2

)
J=2

2.8413 −1.6 −2.6286 0.132 0.219 0.35 0.63
10

(
2p2

3/2

)
J=0

2.8713 −1.5 −2.5986 0.108 0.015 0.12 0.13
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TABLE II. Same as in Table I but for electron loss from Zn28+.

Autoionizing Eres �E E
′
a �r �a � �a/�

state (keV) (eV) (keV) (eV) (eV) (eV)

1 (2s2)J=0 6.2809 −4.9 −6.1081 0.136 0.238 0.38 0.63
2 (2s2p1/2)J=0 6.2839 −5.4 −6.1052 0.331 0.024 0.35 0.07
3 (2s2p1/2)J=1 6.2912 −5.4 −6.0979 0.331 0.024 0.36 0.07
4 (2s2p3/2)J=2 6.3205 −5.4 −6.0685 0.331 0.011 0.34 0.03
5

(
2p2

1/2

)
J=0

6.3251 −6.1 −6.0640 0.581 0.004 0.59 0.01
6 (2p1/22p3/2)J=1 6.3459 −6.3 −6.0431 0.662 <0.001 0.66 0.00
7 (2p1/22p3/2)J=2 6.3545 −6.3 −6.0345 0.662 0.109 0.77 0.14
8 (2s2p3/2)J=1 6.3606 −5.4 −6.0285 0.331 0.124 0.45 0.28
9

(
2p2

3/2

)
J=2

6.3897 −6.2 −5.9994 0.662 0.135 0.80 0.169
10

(
2p2

3/2

)
J=0

6.4274 −6.1 −5.9616 0.604 0.028 0.63 0.04

of the position of the resonance, which substantially exceeds its
total widths. Therefore, these corrections should be taken into
account for an accurate description of the electron loss process.
In contrast, the two-photon exchange yields corrections to
the positions of the resonances which are of the same order
of magnitude as the widths and thus much smaller then the
radiative corrections.

The energy-angular distribution of the emitted electrons
contains quite detailed information about the process. In
particular, it follows from the results shown in the lower
panels of Figs. 5 and 6 that the angular distribution of the
emitted electrons at emission energies, which are sufficiently
far from the resonance values, reaches a maximum at �68◦.
However, in the vicinity of a resonance the shape of the angular
distribution may be quite different for different resonances (see

also Fig. 7). For instance, for electrons emitted in the energy
range, where the (2s2p3/2)J=1 autoionizing state participates
in the ionization process, the shape of the angular distribution
is rather similar to that at energies far from the resonances.
This is in contrast with the angular distribution at energies,
where the emission is strongly influenced by the presence of
the (2p2

3/2)J=2 autoionizing state: Now the angular distribution
reaches its maximum value at 180◦ (see also Fig. 7).

The fact that the electron prefers to be emitted mainly in
the backward direction is quite interesting and it is worthwhile
to get insight into the origin of such a behavior. In Fig. 8,
we explore in detail the shape of the angular distribution at
emission energy of 2.8413 keV corresponding to the position
of the (2p2

3/2)J=2 resonance. Few main conclusions can be
drawn from the figure. First, the total angular distribution
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FIG. 7. Doubly differential cross section for the electron loss from Ca18+ (1s2) by the impact of 100 MeV/u bare neon nucleus (left)
and 100 MeV/u neon atom (right). The cross section is given as a function of the polar emission angle for five resonant emission energies
corresponding to the (2s2)J=0, (2p1/22p3/2)J=2, (2s2p3/2)J=1, (2p2

3/2)J=2, and (2p2
3/2)J=0 autoionizing states.
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FIG. 8. Doubly differential cross section for the electron loss
from Ca18+ (1s2) by the impact of 100 MeV/u neon atom. Emission
energy is 2.8413 keV, which corresponds to a resonance with the
(2p2

3/2)J=2 autoionizing state.

has three maxima (at 0◦, 90◦, and 180◦). Second, the EA1

subchannel is of minor importance for all emission angles, as
expected. Third, the direct channel leads to electron emission
mainly in the forward semisphere. Fourth, the EA2 subchannel

leads to an almost symmetric angular distribution which peaks
at 90◦ and has two more maxima at 0◦ and 180◦. We thus see
that the maximum at 180◦ in the total angular distribution is
caused by constructive interference between the direct channel
and the EA2.

Cross sections for electron loss from Ca18+ in collisions
with neutral neon at an impact energy of 100 MeV/u are
displayed in the right columns of Figs. 5–7. By comparing
them with the corresponding results for collisions with
equivelocity bare neon nuclei, we see that the presence of
atomic electrons has overall a rather weak effect on the electron
loss process. The reason for this is that the electrons in the HCI
are tightly bound and, as a result, the loss process involves
momenta transfers which are large on the typical atomic scale
of neon that makes the effective charge of the atom ZA(Q),
given by Eq. (20), to be approximately equal to the charge of
the unscreened atomic nucleus for the most important range
of the momentum transfers contributing to the loss process.

One could add that the origin of the weakness of the
screening effect in collisions with HCI can be viewed also
from a different perspective. Namely, due to the small size of
the ground state of electrons tightly bound in the HCI (and
because of not very large impact velocity), the loss process
takes place mainly in collisions with impact parameters much
smaller than the size of the atom. Therefore, only a small
fraction of the atomic electron cloud can stay between the
electrons of the HCI and the nucleus of the atom that weakens
the screening effect.

In Figs. 9–11, we show results for the electron loss from
Zn28+(1s2) in collisions with neon at an impact energy of
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FIG. 9. Cross sections for single-electron loss from Zn28+ (1s2) by the impact of 100 MeV/u bare neon nucleus. The upper and lower
panels present the energy and energy-angular distributions, respectively, of the emitted electron. The cross sections are given in the rest frame
of the HCI. The numbered vertical lines refer to resonances arising due to the autoionizing states listed in Table II.
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FIG. 10. Same as in Fig. 9 but for the energy range where only the (2p1/22p3/2)J=2 and (2s2p3/2)J=1 autoionizing states actively participate
in the electron loss process.

100 MeV/u. Since the electrons in Zn28+(1s2) are much
more tightly bound than those in Ca18+(1s2), the screening
effect of atomic electrons in the electron loss from Zn28+ in
collision with neutral neon atoms is even weaker than that
for the electron loss from Ca18+(1s2). Therefore, in the case
of electron loss from Zn28+(1s2), we present results only for
collisions with Ne10+.

Similar to the electron loss from Ca18+, we observe in
Figs. 9 and 10 that the energy spectrum of the emitted electrons
contains sharp maxima and minima appearing due to the EA
channel and its interference with the direct channel of electron
loss. Now, however, they are less pronounced, which is related
to the diminishing role of the EA channel in electron loss with
increase in the atomic number of the HCI. The diminishing
role of the EA can be also unveiled by considering the angular
spectra (see Fig. 11), where now all angular distributions, being
dominated by the direct channel, look qualitatively similar.

One can show that the EA2-to-EA1 amplitude ratio roughly
scales as αZA ZI

v
[31]. Therefore, the contribution of the EA2

subchannel to the EA becomes more important when ZI and/or
ZA/v increase. In particular, the increase with ZI follows from
the comparison of the results shown in Figs. 5, 6 and the results
shown in Figs. 9, 10. Since the use of the perturbation theory is
limited to αZA/v � 1, it is obvious that for fast collisions the
high visibility of the EA2 subchannel in the EA is a qualitative
feature inherent to electron loss from (the ground state of)
heliumlike HCIs.

By comparing the results for electron loss from Ca18+ and
Zn28+, we also see that the shape of the angular emission

spectra noticeably depends on the atomic number of the HCI.
This dependence is caused not only by the fact that the relative
importance of the direct and EA channels is a function of ZI
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FIG. 11. Doubly differential cross section for the electron loss
from Zn28+ (1s2) by the impact of 100-MeV/u neon atom (right).
The cross section is given as a function of the polar emission
angle for five resonant emission energies corresponding to the
(2s2)J=0, (2p1/22p3/2)J=2, (2s2p3/2)J=1, (2p2

3/2)J=2, and (2p2
3/2)J=0

autoionizing states.
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FIG. 12. Doubly differential cross section for single-electron loss
from 100 MeV/u Ca18+ (1s2) in collision with neon given in the
rest frame of neon. Resonant energy-angle region corresponds to the
(2s2p3/2)J=1 and (2p2

3/2)J=2 autoionizing states.

but also by the ZI dependence of the ratio between the typical
momentum transfer to the HCI in the collision and the typical
orbiting electron momenta in the HCI. Indeed, the former
and the latter scale with ZI approximately as ∼Z2

I and ∼ZI ,
respectively. The growth of the ratio leads to the increase of the
effective number of the partial waves contributing to the state
of the emitted electron that changes the shape of the emission
pattern. Besides, as calculations show, the effective magnitude
of the transverse component Q⊥ of the momentum transfer Q
increases with ZI somewhat less rapidly than its longitudinal
component Qmin (Qmin ∼ Z2

I ). This makes the orientation of Q
effectively ZI dependent. Since the relative populations of the
magnetic sublevels of the autoionizing and continuum states in
the collision depend on the orientation of Q with respect to the
quantization axis, the relative populations of these sublevels
for Ca18+ and Zn28+ turn out to be different, which leads to
changes in the emission pattern.

B. Spectra of electrons emitted from a moving HCI

Up to now, we have discussed the electron emission spectra
by considering them in the rest frame of the HCI. Such a
theoretical discussion would be directly relevant to a possible
experimental exploration of electron loss if the ion rests in the
laboratory frame.

However, a more realistic is a situation in which a quickly
moving HSI loses an electron in collision with an atom (or
with an effectively bare atomic nucleus). Such a situation
can be experimentally realized in accelerators of heavy ions
when a beam of fast heliumlike highly charged projectiles
penetrates a gas target which rests in the laboratory frame.
Therefore, in Fig. 12 we display results for electron emission
from a moving HCI calculated for the laboratory frame. These
electrons are emitted from Ca18+(1s2) ions, which move in
the laboratory frame with an energy of 100 MeV/u, colliding
with a neon target.

In this figure, we focus on very small emission angles (ϑ �
2◦) which are relevant for the electron spectrometer currently

functioning at the GSI (Darmstadt, Germany). It can measure
spectra of high-energy electrons which move within an angle
of about 2◦ with respect to the projectile velocity (see, e.g.,
Ref. [32]). In order not to overload the figure, for these angles
we consider just those ranges of electron emission energies
for which only the (2s2p3/2)J=1 and (2p2

3/2)J=2 autoionizing
states are involved. One can conclude from the figure that the
signatures of the EA channel in electron loss are clearly seen
also in the frame where the HCI moves.

Since it is much simpler to ionize a neutral atom than to
produce electron loss from a HCI, it is obvious that in fast
collisions between a heliumlike HCI and a neutral atom the
overwhelming majority of the emitted electrons will originate
from the atom. Therefore, for a possible experimental verifica-
tion of the results presented in this paper, it is very important
to find out whether the spectra of electrons shown in Fig. 12
will not be masked by electron emission from the atoms. In
order to answer this point, we have estimated cross sections for
ionization of neon atoms in collisions with 100 MeV/u Ca18+.

We evaluated the differential cross section for single
ionization of neon in collision with 100 MeV/u Ca18+ as
follows. We used the first-order perturbation theory in the
interaction between neon and Ca18+ in order to calculate the
differential cross sections for removal of single electron from
the K and L shells of neon, assuming that the corresponding
electrons can be described as a moving in the Coulomb field
with an effective charge (Zeff = 9.7 for the K shell electrons
and Zeff = 5.85 for the L shell electrons; see Ref. [33]). The
resulting cross section for single ionization was obtained by
taking into account the corresponding contributions from each
of the electrons of Ne. According to this simple estimate,
the cross section for ionization of neon has maximum of
0.007 kb/(keV sr) and 0.001 kb/(keV sr) in the upper and
lower panels, respectively, of Fig. 12. Although these numbers
are obtained using the approach, which is obviously not very
accurate, they are so much smaller than the cross section
for electron loss from Ca18+ that one can conclude that the
contribution of neon ionization to the energy-angle range
shown in Fig. 12 can be safely neglected.

C. Electron loss by charged particle impact
versus electron loss by photoabsorption

The relationship between the processes of ionization (elec-
tron loss) by photoabsorption and by the impact of a charged
particle is of fundamental importance since its consideration
offers a deeper insight into subtle details of the response of
atoms, ions, and molecules to the action of electromagnetic
fields. As known, these two types of ionization (electron loss)
in general qualitatively differ from each other.

Here we shall very briefly discuss this relationship in cases
when autoionization is involved by considering that only one
photon participates in the process of photoelectron loss and
also that electron loss by charged particle impact proceeds via
just a single interaction between the colliding particles (the
exchange of one virtual photon). Under such conditions, any
difference between these two electron-loss processes should
be fully attributed to the difference between the properties
(momentum and polarization) of a real and virtual photon.
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FIG. 13. The comparison of electron loss from Ca18+(1s2) via photoabsorption (a) and by the impact of a charged particle [proton, (b)–(d);
electron, (c) and (d)]. The emission energy range corresponds to the participation of the (2s2p3/2)J=1 autoionizing state. The spectra of emitted
electrons are given in the rest frame of the HCI in which both the incident photon and the charged particle move along the z axis (ϑ = 0◦).

In the case of ionization of light atomic systems, in which
the electron motion is nonrelativistic, the differences between
these properties were discussed in detail in Ref. [34]. There, in
particular, it was shown that a virtual photon representing the
field of a charged particle becomes almost real if the following
conditions are fulfilled:

qmin

γ 2
� q⊥ � qmin. (22)

It can be easily shown that the same holds true also for electron
loss from tightly bound systems, like HCIs, where the electron
motion is already relativistic.

The correspondence between electron loss by photoab-
sorption and by the impact of a charged particle (proton,
electron) is illustrated in Fig. 13, where the impact energy
of the incident proton ranges from a modest relativistic value
of ≈94MeV (γ = 1.1) to extreme relativistic energies (and
the corresponding energies of an equivelocity electron except
the lowest one, which cannot be treated in the semiclassical
approximation). It is seen that the shapes of the emission
pattern in electron loss by photoabsorption and by the charged
particle impact can be very similar, provided the energy of the
incident particle is high enough.

IV. SUMMARY

We have considered electron loss from the ground state of
heliumlike highly charged ions in fast collisions with atomic

particles. In this consideration, we supposed that the field of
the atomic particle in the collision represents a relatively weak
perturbation for electrons of the HCI. We have performed
calculations for the energy and energy-angular distributions of
electrons emitted from Ca18+(1s2) and Zn28+(1s2) in collisions
with neon at 100-MeV/u impact energy.

Electron loss in general proceeds via two different pathways
which can (partially) interfere. In one of them, an electron of
the ion undergoes a direct transition from the initial state to
the continuum. For highly charged ions, this direct channel
is essentially a single-electron transition. In the other—the
EA channel—the ion is excited in the collision into an
autoionizing state which then Auger decays. The main focus
of our study was on the role of this channel. In particular,
its presence leads to the appearance of sharp structures in the
energy distribution of the emitted electrons. The EA may also
noticeably influence the angular distributions of the emission
in the vicinity of resonances.

We have shown that for electron loss from the ground state
of heliumlike HCI there are two main subchannels contributing
to the EA and they both have been explored in our study. In
one of them (EA1), an autoionizing state is excited via just
a single interaction between the electrons of the HCI and the
atomic particle. Within this subchannel, in order to excite an
autoionizing state, the interaction between the electrons of the
HCI is absolutely necessary. Since Auger decay also proceeds
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via this interaction, the EA1 represents a highly correlated
subchannel of electron loss.

In the other EA’s subchannel (EA2), the atomic particle
interacts with both electrons of the HCI and the excitation
of an autoionizing state can now take place without electron
correlations. Since the relative strength of the electron-electron
interaction in the HCI decreases when the atomic number of the
ion increases [31], the role of this less correlated subchannel
in the EA increases, with ZI becoming important even in fast
collisions where the field of the incident particle represents an
already weak perturbation for the electrons of the HCI.

We have found that both EA1 and EA2 substantially
interfere with the direct channel of electron loss. However,
they practically do not interfere with each other.

Our consideration has also shown that the account of
QED corrections is important for an accurate description of
electron loss even from relatively light heliumlike HCIs like,
for instance, Ca18+.

Experiments on electron loss from heliumlike highly
charged ions in fast collisions with atoms seem to be feasible
at the GSI (Darmstadt, Germany).

ACKNOWLEDGMENTS

We are grateful to C. Müller for useful discussions. The
work of K.N.L. and O.Y. A. presented in Sec. II A was
supported by the Russian Science Foundation under Grant No.
17-12-01035. The work of K.N.L. (except the part presented in
Sec. II A) was also supported by RFBR Grant No. 16-32-00620
and by the German-Russian Interdisciplinary Science Center
(G-RISC) funded by the German Federal Foreign Office via
the German Academic Exchange Service (DAAD).

APPENDIX: AUGER PART OF TWO-PHOTON
EXCHANGE CORRECTION

Within the framework of QED, the Auger widths are
obtained from the imaginary part of the two-photon ex-
change corrections (the Auger part of the two-photon exchange
correction). In the case of heavy HCIs, the Auger widths are
usually much smaller than the radiative widths and are simply
neglected. However, in the case of relatively light HCI (e.g.,
Ca18+ and Zn28+), the Auger widths become of importance and
have to be taken into account. Correspondingly, the LPA [20]
has to be generalized in order to account for the Auger widths.

In the framework of the LPA, the expression for two-photon
exchange correction is derived in Ref. [20] [see Eqs. (294)

and (298)]. In these expressions, the double summation (n1,
n2) over the complete Dirac spectrum takes place. In order to
obtain the Auger widths, we have to evaluate the imaginary
part of those terms in this double summation for which (n1,n2)
are equal to (1s,e−), where e− represents the corresponding
continuum state of the Dirac spectrum with energy ε = εu1 +
εu2 − ε1s . After a relatively simple calculation, the imaginary
part of these terms can be written as

�V
(a)
u1u2d1d2

= −πi
[
I
(∣∣εn2 − εu2

∣∣)]
u1u2n1n2

× [
I
(∣∣εn2 − εd2

∣∣)]
n1n2d1d2

−πi
[
I
(∣∣εn1 − εu2

∣∣)]
u1u2n2n1

× [
I
(∣∣εn1 − εd2

∣∣)]
n2n1d1d2

, (A1)

where di , ui , and ni denote one-electron states with energies
εdi

, εui
, and εni

, respectively (i = 1,2). Autoionizing states are
composed from these excited one-electron states: (d1,d2) and
(u1,u2), e.g., (2s2s), (2s2p) (2p2p).

In Eq. (A1), the quantity [I (|�|)]f1f2n1n2
denotes the matrix

element of one-photon exchange

[I (�)]n1n2n3n4
=

∫
d3r1d

3r2 ψn1 (r1)ψn2 (r2)(−iα)

×γ μ1γ μ2Iμ1μ2 (�,|r1 − r2|)ψn3 (r1)ψn4 (r2),

(A2)

where ψni
is a solution of Dirac equation corresponding to the

set of quantum numbers ni = (ni,ji,li ,mi) (i = 1,2,3,4), γ μ

are the gamma matrices (μ = 0,1,2,3), and I (�,|r1 − r2|) is
the photon propagator [20].

The application of the nondegenerative perturbation theory
would lead to the following expression for the Auger width
�a:

�a = 2i�V (a)
n1n2n1n2

. (A3)

However, in our case the two-electron configurations are
strongly mixed because of (quasi)degeneracy. Correspond-
ingly, in our calculation we have to employ the degenerative
perturbation theory and the Auger width appears as a correc-
tion to the total width arising from taking into account the
matrix �V (a) [see Eq. (A1)]. It is important to note that in
order to obtain accurate results for the Auger widths, not only
diagonal but also nondiagonal elements of this matrix have to
be taken into account. The Auger widths, which we calculate
within the LPA, are in good agreement with the results obtained
in Refs. [35,36].
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