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Electron-impact ionization of Ne(2 p) and Ar(3 p) at intermediate energies:
Role of the postcollision interaction
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We present the absolute triple differential cross section (TDCS) for single ionization of Ne(2p) at an impact
energy of 599.6 eV and Ar(3p) at 195 eV. The role of the postcollision interaction (PCI) is studied using a
high-order distorted-wave Born approximation model with a continuum distorted-waves expansion. Both the
second- and third-order effects are considered in the present calculations, and the third-order distorted wave Born
approximation model is reported in the (e,2e) reaction. The calculated results show satisfactory agreement with
experimental data. The magnitude of the absolute TDCS is enhanced by a factor 2–3 when the strength factor
γ of the PCI amplitude is summarized just from 0 to 2. This proves that the PCI plays an important role in the
absolute TDCS of the (e,2e) reaction in the intermediate-energy region.
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I. INTRODUCTION

Over the decades, electron-impact ionization processes
have been studied extensively over a broad range of projectile
energies and kinematic regions, both experimentally and
theoretically; for reviews, see Refs. [1,2]. In recent years,
there has been considerable interest in complex systems
in experiments. In particular, there have been analyses of
momentum distributions and the absolute triple differential
cross section (TDCS) of energetic electrons in collisions
with rare-gas atoms [3–10] due to the rapid developments
in measurement techniques in many laboratories [11,12].
Recently, Hargreaves et al. [6] reported a detailed experi-
mental measurement of the absolute TDCS of electron-impact
ionization of Ne and Ar. This measurement was also compared
to calculated results at various levels of theory, i.e., the
distorted wave Born approximation (DWBA) augmented with
the Gamow factor (DWBA-G) approach [13,14], convergent
close-coupling (CCC) [2,5,15], the second-order distorted
wave/R-matrix hybrid theory (DW2-RM) [16,17], and the
three-body distorted-wave (3DW) approach [18,19]. Compa-
rable agreement between experimental and theoretical results
can readily be observed at low energies [e.g., 150 eV for
Ne(2p), 150 eV for Ne(2s), and 113.5 eV for Ar(3p)].
However, theoretical predictions deviated noticeably from ex-
perimental data in the region of higher energies, e.g., the values
were underestimated by a factor of 1.6 and 2.0 at 599.6 eV for
Ne (2p) and 195 eV for Ar(3p), respectively. Furthermore, in
subsequent (e,2e) experiments for Ar(3p) performed by Ren
et al. [17] at 195 eV and by Ulu et al. [20] at 200 eV, similar
disagreement was also observed when comparing theoretical
results based on the B-spline R-matrix (BSR) strategy to those
measured ones. This illustrates that none of the aforementioned
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theoretical models can describe correctly the dynamics of
electron-impact ionization at relatively high energies, which
might be an indication that the applied theoretical models are
flawed and must be improved.

Theoretically, the DWBA model is designed to include
the long-range direct ionized interaction between the electron
projectile and the ionized atomic target, which was shown
in several previous works [21,22] to be applicable in high-
energy (e,2e) reactions, but it fails to predict the magnitude
of the absolute TDCS at 599.6 eV, as shown in Ref. [6].
For the BSR model, the short-range higher-order projectile-
nucleus interaction is described via the R-matrix method,
which yielded impressive agreement with 0–100 eV (e,2e)
experiments for He [7,9,23], Ne [8,24], and Ar [10,25,26]. It
is found nevertheless to yield remarkable discrepancies in the
absolute TDCS for e−-Ar(3p) at 195 eV [17]. In particular,
for large-angle scattering the absolute TDCS values were
underestimated by a factor of 2–3. One of the key arguments to
understand the observed discrepancy might be attributed to the
long-range postcollision interaction (PCI), which was crudely
neglected in the DWBA model and was partly considered in
the BSR model. Within this consideration, the 3DW model
that includes the PCI effect via Coulomb factors computed
accurately is expected to predict the experiments fairly well
within errors. Unfortunately, however, it turned out to yield
inconsistent results for the absolute TDCS of the 195 and
200 eV (e,2e) reaction of Ar(3p) [19]. In this context, the
discrepancies between theory and experiment are becoming
rather elusive, since all the mutual interactions have been
actually considered in the theoretical models mentioned above.
Inspired by this challenge, it is our aim in this work to
seek solutions to this puzzle, and our results predict the
experimental TDCS in a more reasonable manner, both in
magnitude and angle dependence, as will be presented in the
following sections.

We pay particular attention to the Coulomb factor [18] that
describes the correlation between two free electrons, which
may not suffice to incorporate the largest effect of PCI in the
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three-body system of Ref. [19]. To confirm this speculation,
we therefore present a model to analyze the role of PCI for
the absolute TDCS of the intermediate-energy (e,2e) reaction.
In view of the PCI encoded in the interaction of an incident
electron projectile and an ejected electron as the high-order
terms, a straightforward treatment is to extend the present
DWBA model to high-order components in order to consider
the PCI effect more productively. In contrast to the previous
work based on the second-order DWBA model (DWBA2),
where the contribution of ionization after the excitation process
was explicitly analyzed [27,28], we shall point out in the
present work that the repulsion after the ionization process
can also play a role.

In this work, we neglected the effect of excited states
in order to emphasize exclusively the role of PCI, which
is considered to be a reasonable assumption for high- and
intermediate-energy electron-atom collisions, where ionized
cross sections are found to be dominant over excited cross
sections by several orders of magnitude. Furthermore, we
selected the distorted waves to expand the Green’s function,
which is more physical than the pseudostates [29] approach.
As a first step, we studied the (e,2e) reaction of Ne(2p) using
the present DWBA2 model at an impact energy of 599.6 eV.
To further verify the developed model, we applied it to explore
a more complex atom, i.e., Ar(3p), at 195 eV, for which
experimental data are available [30]. Finally, we extended the
DWBA model up to the third order (DWBA3) for the purpose
of obtaining more accurate results in the Ar(3p) (e,2e) reaction
while at the same time examining the high-order influences on
the TDCS.

The organization of this article is as follows. The theoretical
framework of the DWBA model is presented briefly in Sec. II,
where essential formulas are derived and the observables
are introduced. In Sec. III, results are discussed in detail
and compared to experimental data where available. The
conclusion is eventually drawn in Sec. IV. Atomic units are
employed throughout the work unless stated otherwise.

II. THEORY

In the (e,2e) reaction, the TDCS is usually given by [31]

d3σ

d�f d�sdE
= (2π )4 kf ks

k0

∑
av

|Tf i |2, (1)

where k0 is the momentum of the incident electron, and kf

and ks denote the momentum of the fast and slow electrons,
respectively. The subscript av represents a sum over the final
and the average over initial magnetic and spin degeneracies.
The total transition amplitude can thus be written as

Tf i = Tf i
(1) + Tf i

(2) + Tf i
(3) + Tf i

(4) + · · · , (2)

where, T
(j )
f i is the j th-order transition amplitude with j − 1

Green operators.
In the traditional DWBA model, it is assumed that the

total transition amplitude Tf i is approximately equal to the
first-order transition amplitude, and thus the rest of the high-
order terms are all neglected. The Hamiltonian of the collisions

system [31] is partitioned as follows:

Ĥ = [(K1 + U1) + (K2 + U2)] + 1

|r1 − r2| = Ĥ0 + ν, (3)

where K1 and K2 are the kinetic energy operators of electron 1
and electron 2, and U1 and U2 are the local, central distorting
potential. H1 and H2 are the Hamiltonians of electron 1 and
electron 2. ν refers to the interaction potential between electron
1 and electron 2. The transition amplitude T

(1)
f i can be written

as

T
(1)
f i = 〈χ (−)(ks)χ

(−)(kf )|v|αχ (+)(k0)〉, (4)

where α represents the wave function of the bound state
[31]. χ (+)(k0), χ (−)(ks), and χ (−)(kf ) are the continuum
eigenfunctions of Ĥ0 with eigenenergy E0, Es , and Ef , and
they are obtained by solving the single-electron Schrödinger
equations

(K1(2) + U1(2))|χ (k)〉 = E|χ (k)〉. (5)

In this paper, in order to emphasize the role of PCI, the
polarization potential and exchange potential are not included
in the distorting potential. The distorting potentials U [31] are
obtained from the target radial orbitals unl(r), which depend
on the electronic configuration of the target,

U (r) =
∑
nl

Nnl

∫
dr ′[unl(r

′)]2/r>, (6)

where r> is the greater of r and r ′, and Nnl is the number of
electrons in each orbital nl. The radial orbitals are obtained
with the multiconfiguration Hartree-Fock (MCHF) code [32].

The validation of this model has been demonstrated in a
multitude of TDCS calculations [21,22] of high-energy (e,2e)
reaction. However, it fails to describe the TDCS quantitatively
for intermediate energies, and therefore the high-order transi-
tion amplitude may be needed in the calculations to predict the
experiments.

In this section, we shall take the second-order term T
(2)
f i as

an example to present our strategy to calculate numerically the
high-order transition amplitude. If we consider the continuum
distorted wave as expanding functions, one can express T

(2)
f i

as

T
(2)
f i = lim

ε→0+
〈χ (−)(ks)χ

(−)(kf )|v 1

E − Ĥ0 + iε
v|αχ (+)(k0)〉

= lim
ε→0+

∫
1

E0 − Ea − Eb + iε
d�kad�kb

×〈χ (−)(ks)χ
(−)(kf )|v|χ (−)(ka)χ (−)(kb)〉

× 〈χ (−)(ka)χ (−)(kb)|v|αχ (+)(k0)〉, (7)

where χ (−)(ka) and χ (−)(kb) are also obtained from Eq. (5),
and �ka and �ka correspond to their momenta, respectively. With
the relation d�k = k2dk sin θ dθ dϕ, and integrating kb from
zero to infinity in Eq. (7), we obtain

T
(2)
f i = lim

ε→0+

∫
1

E0 − Ea − Eb + iε
dkadkbW (ka,kb)

= −πi

∫
1√

2E0 − ka
2
W

(
ka,

√
2E0 − ka

2
)
dka, (8)
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where the integral function W (ka,kb) is denoted as

W (ka,kb) =
∫

ka
2kb

2 sin θa sin θbdθadθbdϕadϕb

×〈χ (−)(ks)χ
(−)(kf )|v|χ (−)(ka)χ (−)(kb)〉

× 〈χ (−)(ka)χ (−)(kb)|v|αχ (+)(k0)〉. (9)

We have neglected the principal part [16] of the integral
with respect to kb in Eq. (8), and we shall explain below
in more detail the reason why we made this approximation.
Usually, the DWBA model describes the (e,2e) reaction as a
simple three-body system in which the long-range Coulomb
interaction is mainly considered. Due to a large mass ratio of
the residual ion to the electron, and long distances between the
residual ion and the electrons, the kinetic energy of the residual
ion is negligible. Similarly, for the present high-order Born
approximation models, the PCI emphasized in these models
also belongs to the long-range interaction, and we can thus
suppose that the total energy of the incident electron and the

ejected electron is conservative. Hence for the integral of the
Green’s function, the contribution of singularity is the most
important; it corresponds to the complex part of the integral
result, as seen in Eq. (8).

For the present second-order DWBA model, the interaction
with which we are most concerned, namely the scattering
potential v, can be divided into two parts by the expansion of
the Green’s function using the continuum distorted wave. One
is the direct ionization interaction, which directly promotes
the electron from the bound state to the continuum state. The
other is the postcollision interaction (PCI), which represents
the repulsion of two outgoing electrons. The second-order
physical process corresponds with the fact that the bound
electron is first ionized directly into the continuum state and
then evolves into the final state because of the influence of
PCI.

To calculate the transition amplitude numerically, we
expand the distorted functions into a partial wave form, and
we formulate the direct ionization amplitude [31] as

〈χ (−)(ka)χ (−)(kb)|v|αχ (+)(k0)〉 = (4π )5/2

(2π )9/2
(k0kakb)(−1)

∑
LaLbL0

∑
Maλ

(
L0

0
λ

0
La

0

)(
L0

0
λ

−Ma

La

Ma

)

×
(

l

0
λ

0
Lb

0

)(
l

m

λ

−Ma

Lb

Ma − m

)
R

(λ)
LaLbL0l

(ka,kb,k0)Y ∗
Lb(Ma−m)(k̂b)YLaMa

(k̂a). (10)

Similarly, the PCI amplitude can be written as

〈χ (−)(ks)χ
(−)(kf )|v|χ (−)(ka)χ (−)(kb)〉

= (4π )4

(2π )(6)

1

(kakbkskf )

∑
LaLbLsLf

∑
MaMbMf γ

(
La

0
γ

0
Lf

0

)(
La

Ma

γ

−Mf − Ma

Lf

Mf

)(
Lb

0
γ

0
Ls

0

)

×
(

Lb

Mb

γ

−Mf − Ma

Ls

Mf + Ma − Mb

)
R

(γ )
LaLbLsLf

(kakbkskf )YLaMa
(k̂a)Y ∗

LbMb
(k̂b)Y ∗

Ls (Mf +Ma−Mb)(k̂s)YLf Mf
(k̂f ). (11)

The multipolar expansion [31] of ν used in Eqs. (10) and (11) is

v(r1,r2) =
∑
λμ

4πλ̂−2 rλ
<

rλ+1
>

Yλμ(r̂1)Y ∗
λμ(r̂2), (12)

where r< and r> denote the lesser and greater, respectively, of rl and r2. The factor γ in Eq. (11) represents the change of angular
momentum number and can thus reflect the strength of PCI.

The terms of the radial operators R
(λ)
LaLbL0l

(ka,kb,k0) and R
(γ )
LaLbLsLf

(kakbkskf ) are defined as follows:

R
(λ)
LaLbL0l

(ka,kb,k0) = iL0−La−Lb exp[i(σL0 + σLa
+ σLb

)]l̂L̂2
0L̂aL̂b

×
∫

dr1

∫
dr2uLa

(ka,r1)uLb
(kb,r2)vλ(r1,r2)unl(r2)uL0 (k0,r1), (13)

R
(λ)
LaLbLsLf

(ka,kb,ks,kf ) = iLa+Lb−Ls−Lf exp[i(σLa
+ σLb

− σLs
− σLf

)]

×L̂sL̂f L̂aL̂b

∫
dr1

∫
dr2uLf

(kf ,r1)uLs
(ks,r2)vλ(r1,r2)uLa

(ka,r1)uLb
(kb,r2). (14)

Since the scattering potential v only works for the radial
operators R

(λ)
LaLbL0l

(ka,kb,k0) and R
(γ )
LaLbLsLf

(kakbkskf ), we can
use the spherical harmonics orthogonal relationship [see
Eq. (15)] to integrate k̂a and k̂b in Eq. (11). This integral
not only simplifies the calculation of the high-order transition
amplitude, but it also ensures the conservation of total mag-
netic quantum numbers, i.e., αχ (+)(k0) = χ (−)(ka)χ (−)(kb) =

χ (−)(ks)χ (−)(kf ), which is the necessary requirement for the
(e,2e) reaction,

∫ 2π

0

∫ π

0
Y ∗

l1m1
(θ,ϕ)Yl2m2 (θ,ϕ) sin θ dθ dϕ = δl1l2δm1m2 . (15)
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FIG. 1. Absolute TDCS of Ne(2p) as a function of ejected angle
(θ2) in the coplanar asymmetric geometry. Solid circles: experimental
data of Hargreaves et al. [6]; open circles: experimental data of
Naja et al. [13], after normalizing in the binary peak; solid curve:
present DWBA2 calculation; dashed curve: DWBA2-RM calculation
[6]; dotted curve: DWBA-G calculation [6]; dashed-dotted curve:
present DWBA calculation. The relevant parameters are indicated in
the legend.

Several key points are summarized as follows for the
numerical calculation of the formula (9), and they clearly
show the physical mechanism reflected by the second-order
Born approximation. (i) The energies of outgoing electrons
determine the integral range of the electron momentum ka

through the PCI amplitude [Eq. (11)], which converges in a
small vicinity of the fast electron momentum kf for the high-
and intermediate-energy (e,2e) reaction. Meanwhile, in this
integration region, the direct ionization amplitude [Eq. (10)] is
essentially unchanged and is equal to the ionization amplitude
of the DWBA. (ii) The PCI amplitude changes the partial waves
population of the direct ionization amplitude. Upon increasing
the PCI strength γ , the shape of the cross section changes
significantly. (iii) In the present calculations, the maximum
value of γ is set to 2, which means the PCI is weak at high
and intermediate energies. It should be noted that the present
high-order model considers the direct ionization interaction
and PCI effects simultaneously. However, only the PCI affects
the convergence of the high-order Born approximation.

III. RESULTS AND DISCUSSION

In this work, the absolute TDCS for the (e,2e) reaction of
Ne(2p) at an impact energy of 599.6 eV was calculated using
the present DWBA2 model with a slow electron energy of
E2 = 74 eV. Our results are presented in Fig. 1, along with
experimental data [6,13] and other theoretical results [6], as
a function of the ejected electron angle (θ2). The scattering
angle θ1 was set to −6◦ (experimental condition) so that the
comparison could be performed on an equal footing. Clearly,
calculated TDCS results with the present DWBA2 model are
in nice agreement with available experimental cross sections
measured by Hargreaves et al. [6], both in the magnitude
as well as the dependence of the scattering angle, which

improves the quality of theoretical predictions significantly
when comparing to other DWBA models based on distinct
approximations. More precisely, the conventional DWBA
model (dashed-dotted curve) underestimated the magnitude
of the absolute TDCS by nearly a factor of 1.5, especially
in the vicinity of 60◦ and 240◦. In addition, the DWBA-G
model underestimated the magnitude of absolute TDCS by
a factor of ∼1.8 in the considered angle range, although
the DWBA-G model also considers the role of PCI within
an approximate Coulomb factor, i.e., the Gamow factor.
The significant improvement of the present results may be
attributed to the different treatments of PCI, implying that the
present DWBA2 model indeed incorporates more PCI effects
than the Gamow factor.

On the other hand, the DWBA2-RM model is also used
for comparison. Quantitatively, the magnitudes predicted by
the DWBA2-RM model are quite similar to those predicted
by the DWBA model, and the difference is estimated to
be less than 3%. It should be noted that the short-range
higher-order projectile-nucleus interaction is considered more
accurate through the R matrix in the DWBA2-RM model
than by distorted potentials in the DWBA. As a consequence,
short-range interactions play only a marginal role in the
intermediate-energy (e,2e) reaction, which is not as important
as the role of PCI in the case shown in Fig. 1.

With respect to the overall shape of the TDCS, i.e., the
dependence of the TDCS on the scattering angle, all of the four
theoretical models result in the same shape as that depicted
in experiments, characterized by a sequence of extrema in
the considered range (maxima at around 60◦ and 240◦ and
minima around 130◦ and 330◦). This is not totally surprising,
since the shape of the TDCS is dominated by the wave
function of Ne(2p). In the present DWBA2 calculations, the
strength factor γ of PCI is summarized from 0 to 1 which
already suffices to yield the converged results. Hence, the
low-order PCI is the crucial factor to determine the magnitude
of the absolute TDCS for the intermediate energy (e,2e)
reaction.

To further verify the present model and confirm the role
of PCI, we also calculated the absolute TDCS for single
ionization of the Ar(3p) ground state with an incident electron
energy of E0 = 195 eV, a slow electron energy of E2 = 10
and 15 eV, and a scattering angle θ1 ranging from −5◦ to −20◦
separated by 5◦. For these calculations, we used in DWBA2
the maximum value of the PCI strength factor, i.e., γ = 2. The
results are depicted in Figs. 2–4 as a function of the ejected
angle (θ2) in three planes (xy, xz, and yz) within the laboratory
frame. For comparison, experimental data measured by Ren
et al. [17] are also shown together with other calculations of
DWBA2-RM [17] and BSR-482 [25]. By analyzing the TDCS
in three planes, it is expected that the relationship between PCI
and the ejected angle will be revealed.

Figure 2 presents the absolute TDCS calculated using the
present DWBA2 and DWBA3 models in the perpendicular
plane xy. The present high-order calculations show similar
structures in the relative shape of the TDCS compared with the
standard DWBA calculation, but the magnitude of the cross
section has been roughly enhanced by a factor of 2–3. This
can occur because the PCI effect remains unchanged in the xy

plane when the ejected angle varies from 0◦ to 360◦.
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FIG. 2. Absolute TDCS of Ar(3p) as a function of ejected angle
(θ2) at an impact energy E0 = 195 eV in the xy plane. Parts (a)–(d) are
for E2 = 10 eV (left panel), and parts (e)–(h) are for E2 = 15 eV (right
panel). The measured scattering angle varies from −5◦ (top panel)
to −20◦ (bottom panel) in a step of 5◦. Solid circles: experimental
data of Ren et al. [30]; solid curve: present DWBA2 calculation;
dashed-dotted curve: present DWBA3 calculation; dashed and dense
dots curve: standard DWBA calculation; dashed curve: DWBA2-RM
calculation [30]; dotted curve: BSR calculation [25].

Figure 3 reports a similar set of results to those shown in
Fig. 2, but in another perpendicular plane, i.e., the xz plane.
In contrast to the xy plane, with the ejected angle θ2 changing
from 180◦ to 0◦ or to 360◦, the angle between the two outgoing
electrons decreases rapidly. In this sense, the PCI varies
sensitively with respect to different ejected angles. This is also
supported by comparing the present DWBA3 results with those
from DWBA2, from which we find a pronounced difference
at the ejected angle 0◦ < θ2 < 90◦ and 270◦ < θ2 < 360◦; the
difference in the convergence indicates the change of PCI.
Figure 4 presents the absolute TDCS calculated using the
present high-order DWBA models in coplanar asymmetric
geometry (the yz plane). In this plane, the dependence of
shape on the ejected angle is more obvious.

For clarity, two aspects are worth pointing out in some
detail: (i) The calculations based on DWBA3, which take
into account the high-order PCI effect, have more obvious
influences on the shape of the TDCS than those based on
DWBA2 with the low-order PCI effect. Actually, it depends
on the ratio of the direct ionized interaction to the PCI,
which determines the role of PCI in a different order Born

FIG. 3. Same as Fig. 2, but the slow electron is detected in the xz

plane.

approximation. (ii) The shape dependence on the ejected angle
for E2 = 10 eV differs from that for 15 eV. As can be seen in
Figs. 3(a)–3(d), 3(e) and 3(f), when taking the DWBA2 results
for comparison, the prediction by the DWBA3 model increases
the TDCS in Figs. 3(a)–3(d) and decreases it in Figs. 3(e) and
3(f) when the angle between two outgoing electrons becomes
large, i.e., 0◦ < θ2 < 90◦ and 270◦ < θ2 < 360◦.

By comparing all theoretical results with experimental data,
it is found that our present calculations yield more satisfactory
agreement with experimental results for the magnitude of the
TDCS than other methods, especially in the large-angle scat-
tering region. Concerning the shape of the TDCS, relatively
good agreement can also be found in the xy and xz planes.
This illustrates that the PCI plays the more important role
in out-of-plane geometries. However, in the yz plane, it is
seen that the BSR results agree fairly well with experiments
in the full measured energies and angles. The reason for
this agreement may be that the high-order projectile-nucleus
interactions play a more important role in this plane.

Figure 5 compares results obtained using the three-body
distorted wave (3DW) approach with those obtained using
the present high-order DWBA model for the Ar(3p) (e,2e)
reaction. Also note that the 3DW approach includes the role
of PCI by calculating the Coulomb factor accurately. As seen
in Fig. 5, a better agreement with experimental measurement
can be found in the present predictions for the magnitude of
the TDCS. In fact, the 3DW predictions [19] did not improve
too much on top of the standard DWBA model. Therefore,
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FIG. 4. Same as Fig. 2, but the slow electron is detected in the yz

plane.

we conclude that the Coulomb factor alone may not suffice
to contain the largest effect of PCI quantitatively in the three-
body system; instead, one must treat explicitly the high-order
transition amplitude.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have presented in this paper a high-order
DWBA model with the continuum distorted-waves expansion,
which considers the postcollision interaction (PCI) accurately.
Then we applied it to calculate the absolute triple differential
cross section for single ionization of Ne(2p) by 599.6 eV
and Ar(3p) by 195 eV. Comparing with the standard DWBA
calculation, the present high-order calculations show similar
structure in the relative shape of the TDCS, but the magnitude
of the cross section has been significantly improved to repro-
duce well the experimental results. Quantitatively, the present
results are estimated to be a factor of 1.6 for Ne and 2–3 for Ar
in comparison with those obtained by the standard DWBA
approach. Compared with other theoretical predictions, an

FIG. 5. Same as Fig. 4, but the olive dotted line represents the
3DW calculations [19].

overall agreement with the experiments in many cases is found
to be better if the PCI is properly considered within the high-
order model, indicating the important role of the PCI in the
electron-impact ionization process. Furthermore, comparing
the results of DWBA2 and DWBA3 with the experiment data,
a conclusion can be drawn that the effect of PCI on the shape
of the TDCS is the high-order part of the PCI effect, and the
effect on the magnitude of the TDCS is more important for the
intermediate-energy (e,2e) reaction.

The satisfactory agreement between the present results
and the experimental data confirms our arguments that the
Coulomb factor that accounts for the correlation between two
free electrons is not enough to describe the largest effect of
PCI in the three-body system. In addition, this work reveals
that it is possible to use the fully perturbative high-order
DWBA model to obtain the accurate absolute TDCS for the
low-energy (e,2e) reaction of a complex atom as long as
the short-range higher-order projectile-nucleus interaction is
considered reasonably in the near future.
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