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Calculation of Araki-Sucher correction for many-electron systems
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We consider the evaluation of the Araki-Sucher correction for arbitrary many-electron atomic and molecular
systems. This contribution appears in the leading-order quantum electrodynamics corrections to the energy
of a bound state. The conventional one-electron basis set of Gaussian-type orbitals is adopted; this leads to
two-electron matrix elements which are evaluated with the help of the generalized McMurchie-Davidson scheme.
We also consider the convergence of the results towards the complete basis set. A rigorous analytic result for
the convergence rate is obtained and verified by comparing with independent numerical values for the helium
atom. Finally, we present a selection of numerical examples and compare our results with the available reference
data for small systems. In contrast with other methods used for the evaluation of the Araki-Sucher correction,
our method is not restricted to few-electron atoms or molecules. This is illustrated by calculations for several
many-electron atoms and molecules.
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I. INTRODUCTION

In the past few decades, there has been remarkable progress
in the many-body electronic structure theory. This has allowed
researchers to treat large systems of chemical or biological
significance containing hundreds of electrons and, at the same
time, obtain very accurate results for small systems which are
intensively studied spectroscopically. The introduction of gen-
eral explicitly correlated methods [1–3], reliable extrapolation
techniques [4–9], general coupled-cluster theories [10,11], and
new or improved one-electron basis sets [12–22] has made the
so-called spectroscopic accuracy (few cm−1 or less) achievable
for many small molecules.

However, as the accuracy standards of routine calculations
are tightened up, one encounters new challenges. One of
these challenges is the necessity to include corrections due
to the finite mass of the nuclei [23], relativistic, and quantum
electrodynamic (QED) effects [24], and possibly finite nuclear
size [25]. The former two have been the subjects of many
studies in past decades; see Refs. [26–33] and references
therein. However, systematic studies of importance of the QED
effects in atoms and molecules are scarce and have begun
relatively recently [34–36]. High accuracy of the ab initio
calculations and reliability of the theoretical predictions is of
prime importance, e.g., in the field of ultracold molecules.
This is best illustrated by the papers of McGuyer et al.
[37], which are devoted to observation of the subradiant
states of Sr2, or by McDonald and collaborators [38], where
photodissociation of ultracold molecules was studied. No-
tably, the importance of QED effects has also been realized
in the first-principles studies of He2 for the purposes of
metrology [39–41].

QED is definitely one of the most successful theories in
physics, with calculation of the anomalous magnetic moment
of the electron being the prime example [42–44]. However,
applications to the bound states, e.g., with a strong Coulomb
field, are marred with problems. Two physical phenomena, i.e.,
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electron self-energy and vacuum polarization, giving rise to the
Lamb shift [24] are difficult to include in the standard many-
body theories. For moderate and large-Z approaches based on
the Uehling potential [45] with optional corrections [46,47],
scaling of the hydrogenlike values [48,49], effective potentials
of Shabaev et al. [50,51], multiple commutator approach by
Labzowsky and Goidenko [52,53], and effective Hamiltonians
of Flambaum and Ginges [54] were used with considerable
success.

However, for small and moderate Z, the most theoreti-
cally consistent approach is the nonrelativistic QED theory
(NRQED) proposed by Caswell and Lepage [55] and further
developed and extended by Pachucki [56–59]. This method
relies on the expansion of the exact energy in power series of
the fine-structure constant, α. The coefficients of the expansion
are evaluated as expectation values of an effective Hamiltonian
with the nonrelativistic wave function. Thus, the zeroth-order
term is simply the nonrelativistic energy, the first-order term
is zero, and the second-order contributions are expecta-
tion values of the Breit-Pauli Hamiltonian (the relativistic
corrections).

NRQED has been successfully applied to numerous few-
electron atomic and molecular systems. Obvious applications
are the one-electron systems such as hydrogenlike atoms (see
Ref. [60] for a comprehensive review) and the hydrogen
molecular ion [61–65]. Beyond that, very accurate results are
available for the helium atom [66–77], hydrogen molecule
[78–83], and their isotopomers. Remarkably, corrections of
the order of α4 have been derived and evaluated recently
[72,83–85]. Other examples are lithium [86–88] and beryllium
atoms [89] with the corresponding ions [85], and helium
dimer [39,40,90]. In all of these examples, very accurate
agreement with the experimental data has been obtained,
which confirms the validity and applicability of NRQED to
light molecular and atomic systems. However, all presently
available rigorous methods for calculation of the NRQED
corrections are inherently limited to few-body systems and
cannot be straightforwardly extended to larger ones.

In the framework of NRQED, the leading (pure) QED
corrections are of the order of α3 and α3 ln α. For a singlet
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atomic or molecular state, one has [91,92]

E(3) = 8α

3π

(
19

30
− 2 ln α − ln k0

)
〈D1〉

+ α

π

(
164

15
+ 14

3
ln α

)
〈D2〉 + 〈HAS〉, (1)

where ln k0 is the so-called Bethe logarithm [24,66]; 〈D1〉 and
〈D2〉 are the one- and two-electron Darwin terms,

〈D1〉 = π

2
α2

∑
a

Za

〈∑
i

δ(ria)

〉
, (2)

〈D2〉 = π α2

〈 ∑
i>j

δ(rij )

〉
, (3)

where Za are the nuclear charges, and δ(r) is the three-
dimensional Dirac delta distribution. Throughout the paper,
we use letters i,j, . . . and a,b, . . . to denote summations over
electrons and nuclei, respectively. The last term in Eq. (1) is
the Araki-Sucher (AS) correction,

〈HAS〉 = −7α3

6π

〈∑
i>j

P̂
(
r−3
ij

)〉
, (4)

where the regularized distribution in the brackets is defined by
the following formulas:

P̂
(
r−3
ij

) = lim
a→0

P̂a

(
r−3
ij

)
(5)

and

P̂a

(
r−3
ij

) = θ (rij − a) r−3
ij + 4π (γ + ln a)δ(rij ), (6)

where γ is the Euler-Mascheroni constant, and θ (x) is the
Heaviside step function in the usual convention.

In evaluation of the QED corrections for many-electron
atoms and molecules, two quantities present in Eq. (1) are
the major source of difficulties. The first one is the Bethe
logarithm and the second is the Araki-Sucher correction. In
this paper, we are concerned with the latter quantity; evaluation
of the Bethe logarithm will be considered in subsequent
papers. Let us point out that the Araki-Sucher term is not
necessarily the largest of the α3 QED corrections. In fact, the
one-electron terms typically dominate in Eq. (1). However,
the relative importance of the Araki-Sucher correction is
expected to increase for heavier atoms similarly as for the
two-electron terms of the Breit-Pauli Hamiltonian. Moreover,
for polyatomic systems, the Araki-Sucher correction possesses
an usual R−3 asymptotics for large interatomic distances R. As
a result, it decays much less rapidly than the other components
of the potential energy curve [93] and its importance is
substantial for large R.

From the point of view of the many-body elec-
tronic structure theory, Eq. (4) is an ordinary expecta-
tion value of a two-electron operator. Provided that the
corresponding matrix elements are available, evaluation of
such expectation values by using the coupled-cluster (CC)
[94] or configuration-interaction (CI) wave functions is
a standard task [95–102]. Therefore, in this work, we
are concerned with evaluation of the matrix elements
(i.e., two-electron integrals) of the Araki-Sucher distribu-
tion in the Gaussian-type orbitals (GTOs) basis [103].

Importantly, the proposed method can be applied to an arbitrary
molecule and is not limited to few-electron systems.

Throughout the paper, we follow Ref. [104] in definitions
of all special and elementary functions.

II. CALCULATION OF THE MATRIX ELEMENTS

In this section, we consider evaluation of the matrix
elements that are necessary to calculate the Araki-Sucher
correction for many-electron atomic and molecular systems.
We adopt the usual Gaussian-type orbitals (GTOs) in the
Cartesian representation [103] as the one-electron basis set,

φa(rA) = xi
A yk

A zm
A e−ar2

A, (7)

where A = (Ax,Ay,Az) is a vector specifying the location
of the orbital, xA = x − Ax , and similarly for the remaining
coordinates. For brevity, we omit the normalization constant
in definition (7). However, normalized orbitals are used in all
calculations described further in the paper.

Evaluation of the Araki-Sucher correction from the many-
electron coupled-cluster wave function within the basis set (7)
requires the following two-electron matrix elements:

(ab|cd)=
∫∫

dr1dr2φa(r1A) φb(r1B)P̂
(
r−3

12

)
φc(r2C) φd (r2D).

(8)

The scheme presented further in the paper relies on the
McMurchie-Davidson method [105,106]. This method was
first introduced in the context of the standard two-electron
repulsion integrals and various one-electron integrals neces-
sary for calculation of the molecular properties. Later, it was
extended to handle integral derivatives and more-involved two-
electron integrals found in the so-called explicitly correlated
methods [107,108]. While some other methods of calculation
of the usual electron repulsion integrals are more computation-
ally efficient (cf. Ref. [109]) than the McMurchie-Davidson
scheme, the latter is much simpler to implement and extend to
more complicated integrals. This was the main motivation for
its use in the present context.

A. Generalized McMurchie-Davidson scheme

The backbone of the McMurchie-Davidson scheme is the
so-called Gauss-Hermite function �t (x; a) defined formally
as

�t (xA; a) exp
( − ax2

A

) = ∂t
Ax

exp
( − ax2

A

)
. (9)

Clearly, the functions �t (x; a) are closely related (by scaling)
with the well-known Hermite polynomials. It is also straight-
forward to prove the following relation:

xi
Ax

j

B e−ax2
A e−bx2

B = e−px2
P

i+j∑
t=0

E
ij
t �t (xP ; p), (10)

where p = a + b and P = aA+bB
p

. The coefficients E
ij
t can be

calculated with convenient recursion relations [105,106].
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With the help of Eqs. (9) and (10), one can show that the
product of two off-centered GTOs can be written as

φa(rA)φb(rB) =
i+j∑
t=0

E
ij
t

k+l∑
u=0

Ekl
u

m+n∑
v=0

Emn
u

× ∂t
Px

∂u
Py

∂v
Pz

exp
( − pr2

P

)
. (11)

We return to the initial integrals (8) and use Eq. (11) for both
orbital products. This leads to

(ab|cd) =
i+j∑
t=0

E
ij
t

k+l∑
u=0

Ekl
u

m+n∑
v=0

Emn
u (−1)t+u+v

×
i ′+j ′∑
t ′=0

E
i ′j ′
t ′

k′+l′∑
u′=0

Ek′l′
u′

m′+n′∑
v′=0

Em′n′
u′

×Rt+t ′,u+u′,v+v′
, (12)

where

Rtuv = ∂t
Qx

∂u
Qy

∂v
Qz

B, (13)

and B is the so-called basic integral defined as B = lima→0 Ba

with

Ba =
∫∫

dr1 dr2 exp
(−pr2

1P

)
P̂a

(
r−3

12

)
exp

( − qr2
2Q

)
.

(14)

Note that differentiation with respect to the coordinates of P
in Eq. (12) has been replaced by differentiation with respect
to the corresponding components of Q. This is valid because
the basic integral is dependent only on the length of P − Q but
not on the individual components.

The biggest inconvenience connected with Eq. (13) is the
necessity to differentiate with respect to Cartesian coordi-
nates. In the original treatment of McMurchie and Davidson
(concerning the standard electron repulsion integrals), a four-
dimensional recursion relation was introduced to resolve this
issue [105,106]. This approach is difficult to generalize to other
basic integrals and typically requires a separate treatment in
each case. In a recent paper, we proposed a different strategy
based on the following expression [108]:

xtyuzv =
lmax∑
l=0

l∑
m=−l

clm
tuv rlmax−lZlm(r), (15)

where lmax = t + u + v, relating Cartesian coordinates with
the real solid spherical harmonics, Zlm(r) = rl Ylm(r̂) (note
that the Racah normalization is not adopted here). The
numerical coefficients clm

tuv can be precalculated and stored
in memory as a look-up table (cf. the work of Schlegel [110]).
In analogy, the differentials present in Eq. (13) are rewritten
as

∂t
Qx

∂u
Qy

∂v
Qz

=
lmax∑
l=0

l∑
m=−l

clm
tuv ∇ lmax−l

Q Ẑlm(∇Q), (16)

where ∇Q is the gradient operator and Ẑlm(∇Q) are the (real)
spherical harmonic gradient operators [111]. Heuristically,
they are obtained by taking an explicit expression for Zlm(r)

and replacing all Cartesian coordinates with the corresponding
differentials.

By virtue of the Hobson theorem [112], one has

Ẑlm(∇Q)g(Q) = [
Dl

Q g(Q)
]
Zlm(Q), (17)

where DQ = Q−1∂Q, for an arbitrary function g(Q) dependent
only on the length of the vector, Q. With the help of Eqs. (16)
and (17), one can write

Rtuv =
lmax∑
l=0

l∑
m=−l

clm
tuv ∇ lmax−l

Q

[(
Dl

Q B
)
Zlm(Q)

]
. (18)

Note that the quantity in the subscript, lmax − l, is always even
(otherwise the coefficients clm

tuv vanish). Therefore, the last step
amounts to repeated action of the Laplacian on the terms in the
square brackets. The final result can be obtained by noting that
the solid harmonics are eigenfunctions of the Laplace operator
and by using the obvious relationship ∇2

Q = Q2D2
Q + 3DQ

for the radial part of the integrations,

Rtuv =
lmax∑
l=0

l∑
m=−l

clm
tuv Zlm(Q)

kmax∑
k=0

d
l,kmax
k

× (
D

lmax−k
Q B

)
Qlmax−l−2k, (19)

where kmax = 1
2 (lmax − l). The auxiliary coefficients dlm

n are
calculated recursively,

dlm
n = dl,m−1

n + [2l + 3 + 4(m − n)]dl,m−1
n−1

+ 2(m − n + 1)[2l + 3 + 2(m − n)]dl,m−1
n−2 , (20)

starting with dlm
0 = 1; the last term of the recursion is neglected

for n = 1. Note that the coefficients dlm
n can also be stored as

a look-up table.
To sum up, by means of Eq. (19) all integrals Rtuv are

expressed through the derivatives of the basic integral, Dl
QB.

We consider evaluation of these quantities in the next section.
Let us also note in passing that to achieve an optimal efficiency
during the evaluation of Eq. (19), the summations need to
be carried out stepwise, paying attention to the order of the
individual sums.

B. Basic integral and derivatives

Calculation of the basic integral, given formally by the
limit of Eq. (14), is hampered by the troublesome form of the
Araki-Sucher distribution. It was shown in Ref. [108] that an
equivalent general formula for the basic integral reads

Ba = e−qQ2
∫∫

dr1dr2 e−qr2
2 −pr2

1 i0(2qQr2) P̂a

(
r−3

12

)
, (21)

where i0(x) = sinh x/x. In the present case, this expression
naturally splits into two parts, Ba = B(1)

a + B(2)
a ,

B(1)
a = e−qQ2

∫∫
dr1dr2

θ (r12 − a)

r3
12

e−qr2
2 −pr2

1 i0(2qQr2),

(22)

B(2)
a = 4π e−qQ2

(γ + ln a)
∫

dr e−(p+q)r2
i0(2qQr), (23)
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where the second formula follows directly from the properties
of the Dirac delta distribution. The first integral can be
simplified by changing the coordinates to r1, r2, r12 and three
arbitrary angles. Integration over all variables apart from r12

is elementary,

B(1)
a =

√
π5

p + q

1

pq

∫ ∞

a

dr

r2

e−ξ (r−Q)2 − e−ξ (r+Q)2

Q
, (24)

where ξ = pq

p+q
. The next step is to expand the Q-dependent

part of the integrand into a power series,

B(1)
a = 2N e−ξQ2

∞∑
n=0

(2ξQ)2n

(2n + 1)!

∫ ∞

a

drr2n−1e−ξr2
, (25)

where N = 2π ( π
p+q

)3/2. The first term of the series (corre-
sponding to n = 0) must be extracted and treated separately,
but the remaining integrals are straightforward. Importantly, to
simplify the integration process, we drop all higher-order terms
in a which do not contribute to the final result (once the a → 0
limit is taken). After integration and some rearrangements, one
obtains

B(1)
a = 2N e−ξQ2

[
− γ

2
− ln a − ln ξ

2

+ 1

2

∞∑
n=1

4n(n − 1)!

(2n + 1)!
(ξQ2)n

]
+ O(a). (26)

Let us return to the second part of the basic integral B(2)
a .

Fortunately, this integration is elementary,

B(2)
a = 2N e−ξQ2

(γ + ln a). (27)

Let us now add both contributions and take the limit a → 0.
The logarithmic singularities present in B(1)

a and B(2)
a cancel

out, and the result reads

B = N e−ξQ2

[
γ − ln ξ +

∞∑
n=1

4n(n − 1)!

(2n + 1)!
(ξQ2)n

]
. (28)

One can easily prove that the infinite series present in the above
expression is convergent for an arbitrary real ξQ2. Therefore,
this formula constitutes an exact analytical result. However,
the rate of convergence of this series can be expected to be
very slow for large values of the parameter, greatly increasing
the cost of the calculations. Moreover, this representation does
not allow for a straightforward calculation of the derivatives,
Dl

Q. Therefore, it is desirable to bring this expression into a
more computationally convenient form.

For this sake, the series in Eq. (28) is summed analytically,
giving the following integral representation:

∞∑
n=1

4n(n − 1)!

(2n + 1)!
xn =

∫ 1

0
dt (1 − t)1/2 etx − 1

t
. (29)

Validity of this formula can easily be verified by expanding
the integrand into a power series in x and integrating term by
term. Guided by Eq. (29), one can introduce a more general
family of functions,

Jl(x) = e−x

∫ 1

0

dt

t
(1 − t)1/2[etx(1 − t)l − 1]. (30)

Note that J0(x) directly corresponds to the result of the
summation in Eq. (29) and Jl(x) = −∂xJl−1(x). With the
help of the newly introduced quantities, the basic integral is
rewritten as

B = N [e−ξQ2
(γ − ln ξ ) + J0(ξQ2)]. (31)

Within this particular representation of the basic integral, it
becomes disarmingly simple to perform the required differen-
tiation. In fact, one can show that

Dl
QB = N (−2ξ )l[e−ξQ2

(γ − ln ξ ) + Jl(ξQ2)], (32)

which completes the present section. Parenthetically, we note
that in the above formula, the argument of Jl is always positive,
i.e., ξQ2 > 0, despite the fact that the formal definition of these
integrals given by Eq. (30) is valid for an arbitrary complex-
valued x.

At this point, we would like to compare our results with
some other expressions published in the literature. An integral
closely related to the basic integral B was considered in
Ref. [81]. In fact, one can verify that by setting c1 = c2 = 0
in Eq. (15) of Ref. [81], one obtains Eq. (14) of the present
work (after taking the a → 0 limit). However, no results for
the derivatives Dl

QB were provided as they do not appear in
the explicitly correlated Gaussian calculations. Interestingly,
an alternative integral representation of J0(x) was given in
Ref. [81]. In our notation,

J0(x) = e−x

∫ x

0

dt

t

[√
π

t

et

2
erf(

√
t) − 1

]
, (33)

where erf(x) is the error function. One can verify that the
definitions (30) and (33) coincide by exchanging the variables
and working out the inner integral. We have not found the
above representation particularly useful in the present context,
but it provides an additional verification that our final result is
correct.

C. Auxiliary integrals Jl (x)

The only missing building block of the present theory is the
calculation of the integrals Jl(x). First, let us specify the range
of parameters (x and l) which are of interest. The maximal
value of l is set to 32 in our program. This allows one to
compute the integrals (8) with the maximal value i + k + m =
8 in the one-electron basis set; see Eq. (7). This corresponds
to the maximal value of the angular momentum l = 8 (L-type
functions) in a purely spherical representation. The are no
limitations on the value of x � 0, i.e., the code is open ended
with respect to positive values of x. Below, we provide a set
of procedures based mostly on the recursive relations which
allow one to calculate the integrals Jl(x) with accuracy of at
least 12 significant digits over the whole range of parameters
specified above.

First, for x = 0, the integrals Jl(x) take a particularly simple
analytic form,

Jl(0) = 2 − 2 ln 2 − Hl+1/2, (34)

where Hn are the harmonic numbers. This expression can be
rewritten as a convenient recursion, Jl+1(0) = Jl(0) − 2

2l+3 ,
starting with J0(0) = 0. The values of Jl(0) constitute an
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important special case corresponding to the atomic integrals,
but they appear in large numbers also in molecular calculations.

For any value of x, the integrals Jl(x) obey the following
recursion relation:

Jl+1(x) = Jl(x) − 2Fl+1(x), (35)

where

Fn(T ) =
∫ 1

0
dtt2ne−T t2

. (36)

The latter quantity is simply the famous Boys function
[103] that has been considered a countless number of
times in the quantum chemistry literature (see, for example,
Refs. [113–116] and references therein). Accurate and efficient
methods for calculation of Fn(T ) are available and there is no
reason for us to elaborate on this issue.

Returning to the recursion relation (35), its direct use is
hampered by a peculiar behavior of the integrals Jl(x). Let us
temporarily consider l to be a continuous variable. Then, for
any fixed x > 0, the integrals Jl(x) have a root as a function
of l. For brevity, let us call the exact position of the root (as
a function of x) the critical line, l0(x). The exact location of
the root cannot be obtained with elementary methods, but we
found that a simple linear function,

l0(x) = 0.44 + 1.17x, (37)

provides a reasonably faithful picture. If the recursion (35) is
carried out and the critical line is crossed, one can expect an
unacceptable loss of significant digits due to the cancellations.
Therefore, this simple approach is inherently numerically
unstable, independently of whether the recursion is carried
out upward or downward.

One of the possible solutions to this problem is to assert
that the critical line is never crossed during the recursive
process. This can be achieved as follows. For an interval of
x of approximately unit length, we find the smallest value of
l above the critical line (la) and the largest value of l below
the critical line (lb). Starting from the value at la , the upward
recursion is initiated and carried out up to the maximal desired
value of l. Similarly, the downward recursion is initiated at lb
and stopped at l = 0. This guarantees that the integrals Jl(x) do
not change sign in both subrecursions and the whole process
is completely numerically stable since the integrals Fl(x) are
always positive.

The remaining problem is to evaluate the integrals Jl(x) at
la and lb for a given x. This is achieved by fitting Jla (x) and
Jlb (x) for each interval of x. Since the length of each interval
is only about unity, the ordinary exponential-polynomial [117]
fitting is sufficient, i.e.,

e−x

Nfit∑
k=0

c
(1)
k xk. (38)

The length of the expansion was chosen to be Nfit = 11 in each
interval, both for la and lb.

For x > x0 ≈ 36, the method described above needs to be
slightly modified. This is the point where the critical line
crosses l = 32. Therefore, for x > x0, all Jl(x) with l � 32
are positive, and it is sufficient to evaluate J32(x) by fitting and
carry out the recursion (35) downward. We used the following

fitting function:

N ′
fit∑

k=0

c
(2)
k xk + 1

x81/2

N ′
fit∑

k=0

c
(3)
k xk, (39)

with N ′
fit = 9. The prefactor in the second term of this

expression comes from the asymptotic expansion of Jl , which
will be introduced in the next paragraph.

Finally, for x > xasym, we use large-x asymptotic expansion
of the Jl(x) functions. For l = 0, the necessary expression was
given in Ref. [81],

J0(x) =
√

π

2x3/2

∑
k=0

(2k + 1)!!

2k
x−k, (40)

and, for larger l, the corresponding formulas can be obtained
by noting that Jl(x) = −∂xJl−1(x). The value of xasym was
set to 125 after some numerical experimentation. Under these
conditions, the summation converges to the machine precision
after at most 30 terms. In general, the rate of convergence
improves with increasing x and thus expansion (40) is able
to handle arbitrarily large values of x > xasym. Moreover, all
terms in Eq. (40) are positive and thus no loss of digits in
the summation is possible. This observation remains valid for
l > 0.

To sum up, the integrals Jl(x) are calculated with a union
of three algorithms, involving polynomial fitting, recursion
relations, and asymptotic expansion. We note that the effi-
ciency of the resulting code is only somewhat worse than for
the aforementioned Boys function. A C++ implementation of
the methods described in this section can be obtained upon
request.

III. BASIS-SET CONVERGENCE ISSUE

Most of the ab initio methods used nowadays in the
electronic structure theory rely on a basis set for expansion of
the exact wave function. Consequently, observables obtained
with a (necessarily finite) basis set suffer from the basis-set
incompleteness error. To allow for a meaningful comparison
with the experimental data, this error should be estimated and
minimized, if possible.

One of the prominent techniques applied to remove a
bulk fraction of the basis-set incompleteness error is the
extrapolation towards the exact theoretical value. However, to
ensure that such a procedure is reliable, one typically requires
some information on how the calculated values converge
towards the exact result as a function of the basis-set size. For
example, it was shown by Hill [118] that the nonrelativistic
energy converges as L−3, where L is the largest angular
momentum present in the basis set. It can be shown that
some relativistic corrections converge even slower, as L−1.
This was numerically observed in Refs. [119,120] and later
proved by Kutzelnigg [121]. In this case, the values calculated
with a finite basis set can be in error of tens of percents and
extrapolation is necessary to arrive at a reliable result.

Concerning the Araki-Sucher correction, here we assess
how the results obtained with finite basis sets converge as
a function of the largest angular momentum included. To
answer this question, we consider the ground state of the
helium atom as a model system where a strict asymptotic result
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can be obtained. Further in the paper, we show numerically
that the main conclusions are valid also for many-electron,
many-center systems. This allows for a reliable extrapolation
towards the complete basis-set limit, dramatically improving
the final results.

A. Definitions and notation

We consider the ground 11S state of the helium atom
with the exact wave function given by �(r1,r2), where ri

are the positions of the electrons and r12 = r1 − r2. The
corresponding wave function can be represented as

�(r1,r2) =
∞∑
l=0

�l(r1,r2)Pl(cos θ12), (41)

where ri = |ri |, Pl are the Legendre polynomials, and θ12 is
the angle between vectors r1 and r2. The above expression is
dubbed the partial wave expansion (PWE) by many authors
and we shall follow this nomenclature for the wave functions
and operators.

It is natural to define a family of approximants to the exact
wave function by truncating Eq. (41) at a given L, i.e.,

�L(r1,r2) =
L∑

l=0

�l(r1,r2)Pl(cos θ12). (42)

The Araki-Sucher correction can then be approximated as the
a → 0 limit of the following expectation values:〈

P̂a

(
r−3
ij

)〉
L

= 〈
�L

∣∣P̂a

(
r−3
ij

)∣∣�L

〉/〈�L|�L〉. (43)

Obviously, in the infinite-L limit, this series converges to the
exact value, 〈P̂a(r−3

ij )〉. Therefore, we may consider the error

εL(a) = 〈
P̂a

(
r−3
ij

)〉 − 〈
P̂a

(
r−3
ij

)〉
L

(44)

as a function of L and ask what is the asymptotic form of εL(a)
at large L. After taking the a → 0 limit, one recovers the actual
result for the Araki-Sucher correction. This is only a precise
mathematical restatement of the intuitive picture presented at
the beginning of this section.

All derivations presented further rely on the seminal work
of Hill and the methods introduced therein [118]. The original
presentation of Hill relies on a chain of postulates which is
extremely difficult to prove strictly, but is nonetheless very
physically sound and hard to deny (especially in the face of
ample numerical evidence). First, the denominator in Eq. (43)
can be replaced by unity as it converges much faster than
the numerator and does not contribute in the leading order.
Second, for large L, the dominant contribution to the integral
in Eq. (43) comes from the region around the electrons’
coalescence points. The famous Kato cusp condition [122]
teaches us that in this regime, the exact wave function behaves
as

�(r1,r2) = �(r,r,0)
(
1 + 1

2 r12
) + O

(
r2

12

)
, (45)

where �(r,r,0) is the value of the exact wave function at
r12 = 0. By using these assumptions, modulus square of the
present wave function is rewritten as

|�(r1,r2)|2 = |�(r,r,0)|2(1 + r12) + O
(
r2

12

)
. (46)

Finally, let us recall PWE for r12,

r12 =
∞∑
l=0

{r12}l Pl(cos θ12), (47)

{r12}l = 1

2l + 3

rl+2
<

rl+1
>

− 1

2l − 1

rl
<

rl−1
>

, (48)

where r< = min(r1,r2), r> = max(r1,r2). This expression is
closely related to the well-known Laplace expansion of the
potential.

B. PWE for the Araki-Sucher distribution

Throughout the presentation, we shall need PWE for the
distribution of Eq. (6),

P̂a

(
r−3

12

) =
∞∑
l=0

Al(r1,r2; a) Pl(cos θ12), (49)

where the radial coefficients are defined formally through the
expression

An(r1,r2; a) = 2n + 1

2

∫ π

0
dθ12 sin θ12 P̂a

(
r−3

12

)
Pn(cos θ12).

(50)

Derivation of the explicit expression for Al(r1,r2; a) is fairly
straightforward and relies solely on Eq. (50). However, it
requires some tedious technical algebra. In order to shorten the
main text, we present the entire derivation in the Appendix A.
Herein, we present only the final result,

An(r1,r2; a) = A′
n(r1,r2; a) + A′′

n(r1,r2; a)

+A′′′
n (r1,r2; a) + O(a), (51)

where

A′
n(r1,r2; a) = θ (|r1 − r2| − a)

(2n + 1)rn
<r−n−1

>

r2
> − r2

<

, (52)

A′′
n(r1,r2; a) = θ (a − |r1 − r2|)θ (r1 + r2 − a)

× 2n + 1

2a

1

r1r2
Pn

(
r2

1 + r2
2

2r1r2

)
, (53)

and

A′′′
n (r1,r2; a) = (2n + 1)(γ + ln a)r−2

1 δ(r1 − r2). (54)

Note that only the leading-order terms in a have been retained
in the above formulas. This is justified because the actual
Araki-Sucher correction of Eq. (5) involves the a → 0 limit
and all higher-order contributions in a vanish.

C. Large-L asymptotic formula for εL(a)

Let us insert Eqs. (46), (47), and (49) into Eq. (43) and
change the variables to r1, r2, and θ12. Integration over the
remaining three variables gives 8π2 and integration over θ12 is
trivial due to the orthogonality of the Legendre polynomials.
The error is given by

εL(a) = 16π2
∞∑

l=L+1

1

2l + 1

∫ ∞

0
dr1

∫ ∞

0
dr2

× r2
1 r2

2 |�(r,r,0)|2 {r12}l Al(r1,r2; a), (55)
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where the factor r2
1 r2

2 comes from the volume element. Let us
define the following quantities:

I ′
n(a) = 1

2n + 1

∫ ∞

0
dr1

∫ ∞

0
dr2 r2

1 r2
2

× |�(r,r,0)|2 {r12}n A′
n(r1,r2; a), (56)

which are natural constituents of Eq. (55). Analogous defini-
tions hold for the doubly primed and triply primed quantities
in accordance with Eqs. (51)–(54) and for the sum of the three
(without the prime).

Starting with Eq. (56), we change the variables to r> and
r<, insert the explicit form of Eqs. (47) and (52), and execute
the Heaviside θ to arrive at the result

I ′
n(a) = 2

∫ ∞

0
dr>|�(r>,r>,0)|2

∫ r>−a

0
dr<

× 1

r2
> − r2

<

[
r2n+4
< r−2n

>

2n + 3
− r2n+2

< r2n−2
>

2n − 1

]
. (57)

The inner integral can be brought into a closed form, but it is
much simpler to obtain the leading-order expression in a from
the integration by parts. This leads to

I ′
n(a) = 4

(2n − 1)(2n + 3)

∫ ∞

0
dr> r3

>

× |�(r>,r>,0)|2
[
γ − 1

2
+ ln

(2n + 3)a

r>

]
+ O(a),

(58)

where additionally some higher-order terms in 1/n have been
neglected.

Passing to the doubly primed quantities, we insert Eq. (53)
into Eq. (56) and, after elementary rearrangements and a
change of variable, we obtain

I ′′
n (a) = 1

a

∫ ∞

0
dr>

∫ r>

0
dr< |�(r>,r>,0)|2

× θ (a − r> + r<) θ (r> + r< − a)

×Pn

(
r2
> + r2

<

2r>r<

)[
rn+3
< r−n

>

2n + 3
− rn+1

< rn−2
>

2n − 1

]
. (59)

By the virtues of the θ function, the integral can be rewritten
to the form

1

a

∫ ∞

0
dr>

∫ r>

0
dr< θ (a − r> + r<)θ (r> + r< − a) · · ·

= 1

a

[ ∫ a

a/2
dr>

∫ r>

a−r>

dr< +
∫ ∞

a

dr>

∫ r>

r>−a

dr< · · ·
]
.

(60)

It turns out that in our case, the first integral gives zero
contribution (in the small-a limit). The inner integral of the
second component can be expanded as a powers series in a.
The first term vanishes and only the second (i.e., proportional
to a) has to be retained, giving∫ r>

r>−a

dr< Pn

(
r2
> + r2

<

2r>r<

)[
rn+3
< r−n

>

2n + 3
− rn+1

< rn−2
>

2n − 1

]
= a · Pn

(
r2
> + r2

<

2r>r<

)[
rn+3
< r−n

>

2n + 3
− rn+1

< rn−2
>

2n − 1

]∣∣∣∣
r<= r>

= a · −4 r3
>

(2n − 1)(2n + 3)
+ O(a2). (61)

Upon reinserting into Eq. (59) and rearranging, one obtains

I ′′
n (a) = −4

(2n − 1)(2n + 3)

∫ ∞

0
dr> r3

>

× |�(r>,r>,0)|2 + O(a). (62)

The last integral I ′′′
n (a) is the simplest to evaluate. One inserts

Eq. (54) into Eq. (56) and executes the Dirac δ to arrive at

I ′′′
n (a) = − 4(γ + ln a)

(2n − 1)(2n + 3)

×
∫ ∞

0
dr> r3

> |�(r>,r>,0)|2, (63)

without invoking any approximations. Finally, we add up the
three integrals evaluated above,

In(a) = 1

4π2

1

(2n − 1)(2n + 3)

×
{[

ln(2n + 3) − 3

2

]
J3 − Jln

}
+ O(a), (64)

where

J3 = 16π2
∫ ∞

0
drr3|�(r,r,0)|2, (65)

Jln = 16π2
∫ ∞

0
drr3 ln r|�(r,r,0)|2. (66)

One can see that in the final expression, all logarithmic
singularities cancel out. Therefore, we can now take the limit
a → 0, removing all higher-order terms in a.

Let us now return to the formula for the error, given by
Eq. (55) at a = 0. Making use of Eq. (64) and after some
algebra, the result can be written as

εL(0) = 4J3

∞∑
n=L+1

ln(2n + 3)

(2n − 1)(2n + 3)

− 4

(
3

2
J3 + Jln

) ∞∑
n=L+1

1

(2n − 1)(2n + 3)
. (67)

The first infinite sum is nontrivial to evaluate, but we can utilize
the Euler-Maclaurin resummation formula to get the large-L
asymptotics. This gives the leading-order expressions and their
error estimates,

∞∑
n=L+1

ln(2n + 3)

(2n − 1)(2n + 3)
= 1 + ln 2L

4L
+ O

(
ln L

L2

)
, (68)

∞∑
n=L+1

1

(2n − 1)(2n + 3)
= 1

4L
+ O(L−2). (69)

Finally, we rewrite the error formula as

εL(0) = J3
ln 2L

L
− 1

L

(
Jln + 1

2
J3

)
+ O

(
ln L

L2

)
, (70)

which indicates a very slow, i.e., logarithmic, convergence of
the Araki-Sucher correction towards the exact value. In fact,
the convergence rate is even slower than for the aforementioned
relativistic corrections [121]. Nevertheless, the above formula
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TABLE I. Total electronic energies and the expectation values
of the Araki-Sucher distribution for the helium atom. Extrapolations
were performed with the help of Eq. (70) in the case of the Araki-
Sucher correction and with the standard X−3 formula in the case of
the energy [118]. All values are given in atomic units.

Basis −E 〈P̂ (r−3
12 )〉

d3Z 2.90 170 0.470
d4Z 2.90 285 0.541
d5Z 2.90 328 0.595
d6Z 2.90 347 0.637
d7Z 2.90 356 0.670
Extrapolation 2.90 372 1.003
Referencea 2.90 372 438 0.989 274

aFrolov [128]; all digits shown are correct.

gives precise information on how the values from the finite
basis sets should be extrapolated.

IV. NUMERICAL RESULTS

A. Benchmark calculations

To verify that the method of calculation of the matrix
elements of the Araki-Sucher distribution and the extrapolation
scheme (70) are both valid, we performed calculations for
several systems where reference values of this quantity are
known to a sufficient accuracy. The includes the helium
atom (He), lithium atom (Li) and its cation (Li+), beryllium
atom (Be) and its cation (Be+), and the hydrogen molecule
(H2). Expectation values of the Araki-Sucher distribution were
computed by using the finite-field approach. Suitable values
of the displacement parameter were found individually for
each system by trial and error. Typically, a value of about
10−5 was optimal. For the two- and three-electron systems
(He, Li+, H2, Li, Be+), we used the full CI method to
solve the electronic Schrödinger equation (this method is
exact in the complete basis-set limit). For larger systems, we
employed the coupled-cluster single-double and perturbative
triple [CCSD(T)] method [123,124]. All electronic structure
calculations reported in this work were performed with help
of a locally modified version of the GAMESS program package
[125,126]. For the helium atom, we used the customized
basis sets developed by Cencek et al. [90]. For the hydrogen
molecule, lithium, and beryllium (both neutral atoms and
cations), the standard basis sets developed in Refs. [12,127]
were employed.

In Table I, we show results for the calculations for the
helium atom. One can see a very slow convergence of the
results with the size of the basis set. To overcome this
difficulty, we applied a two-point extrapolation formula, given
by Eq. (70). Note that in the present case, we do not extrapolate
with respect to the maximal angular momentum present in
the basis (L), but rather with respect to the so-called cardinal
number (X) [12]. This does not change the asymptotic formula
(70), but changes values of the numerical coefficients in the
expansion. Therefore, we do not attempt to compare the values
obtained by fitting with the analytic results given by Eqs. (65)
and (66). Nonetheless, the quality of the extrapolation is very
good. Extrapolation from the basis sets X = 3, . . . ,6 reduces

TABLE II. Expectation values of the Araki-Sucher distribution
for the hydrogen molecule (R denotes the internuclear distance).
Reference values are given in the third and fourth columns for
comparison purposes. All values are given in atomic units.

R 〈P̂ (r−3
12 )〉

This work Ref. [129] Ref. [81]

0.1 0.8742 0.8707 0.8847
0.6 0.8042 0.7782 0.7775
0.8 0.6857 0.6698 0.6696
1.0 0.6014 0.5714 0.5712
1.4 0.4305 0.4135 0.4143
1.7 0.3356 0.3248 0.3250
2.0 0.2542 0.2550 0.2554
2.6 0.1531 0.1535 0.1555
6.0 0.0060 0.0025 0.0063

the error from about 30% to less than 1.5% (cf. Table I). One
can safely say that the extrapolation is mandatory to obtain
results of any reasonable quality.

Let us now pass to the calculations for the hydrogen
molecule H2. We calculated the Araki-Sucher correction for
several internuclear distances and compared them with more
accurate values given by Piszczatowski et al. [81] and by
Stanke et al. [129] obtained with the explicitly correlated
Gaussian wave functions. Our extrapolated results are given in
Table II and compared with the two sets of reference values.
One can see a reasonable agreement between the present
results and Refs. [81,129]. The biggest absolute deviation from
the values of Piszczatowski et al. [81] is about 4%. This is only
slightly larger than for the helium atom. This error increase
can be (at least partially) attributed to the fact that a larger d7Z
basis set was used for the helium atom, while calculations for
the hydrogen molecule were restricted to the d6Z basis.

Finally, in Table III, we show results of the calculations for
the lithium and beryllium atoms as well as the corresponding
cations. Our extrapolated values are compared with the refer-
ence data taken from the papers of Frolov et al. [128,130] and
Pachucki et al. [131,132]. The errors are consistently within
the range of 1–2%. Only for the lithium cation is the accuracy
slightly worse (≈3%), but this is probably accidental. We can
also check how well the relative differences are reproduced

TABLE III. Expectation values of the Araki-Sucher distribution
for the lithium and beryllium atoms (Li, Be) and their cations (Li+,
Be+). All values are given in atomic units.

Basis 〈P̂ (r−3
12 )〉

Li Li+ Be Be+

d3Z −2.891 −2.924 −15.32 −15.38
d4Z −2.194 −2.241 −13.52 −13.61
d5Z −1.718 −1.774 −12.06 −12.18
d6Z −1.397 −1.460 −11.25 −11.38
Extrapolation +0.267 +0.173 −7.320 −7.505
Reference +0.2734a +0.1789b −7.3267c −7.5146a

aReference [132].
bReference [130].
cReference [131].
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TABLE IV. Expectation values of the Araki-Sucher distribution
for the magnesium atom (Mg) and its cation (Mg+), and the argon
atom (Ar) and its dimer (Ar2). All values are given in atomic units.
The uncertainties in the final values are estimated to be about 5%.

Basis 〈P̂ (r−3
12 )〉

Mg Mg+ Ar Ar2

d2Z −1371.3 −1370.5 −6090.3 −12179.9
d3Z −1331.1 −1330.2 −6022.7 −12044.8
d4Z −1315.9 −1315.0 −5963.4 −11926.1
d5Z −1295.0 −1294.2 −5917.1 −11833.7
Extrapolation −1220.7 −1221.4 −5440.8 −10881.0

in our method. To this end, we calculate contributions of
the Araki-Sucher term to the ionization energies of the
lithium and beryllium atoms and compare the results with
Refs. [131,132]. In both cases, we find a remarkable agreement
within approximately 1% of the total value.

To sum up, the method of calculating the Araki-Sucher
correction proposed here is fundamentally valid and useful
in practice. By comparing our results with the reference data
available in the literature for several few-body systems, we
conclude that it is capable of reaching an accuracy of a
few percents or better. This is true provided that sufficiently
large basis sets and accurate electronic structure methods are
employed. Moreover, extrapolation to the complete basis-set
limit must be performed in every case. The theoretically
derived leading-order formula (70) is very efficient in this
respect.

B. Results for many-electron systems

The biggest advantage of the method proposed here is that
it can be applied to systems that are much larger than studied
previously. This includes not only many-electron atoms, but
also diatomic and even polyatomic molecules. To illustrate
this, we performed calculations for several many-body sys-
tems: the magnesium atom (Mg) and its ion (Mg+), and the
argon atom (Ar) and its dimer (Ar2). In the case of Mg and
Mg+, we employed the IP-EOM-CCSD-3A method [133,134]
and the basis sets “aug-cc-pwCVX” reported in Ref. [127]. For
the Ar and Ar2 systems, we used the CCSD(T) method and
the basis sets “disp-XZ+2/AE” developed by Patkowski and
Szalewicz [135] specifically for the accurate description of
the argon dimer. The results are shown in Table IV. Overall,
the rate of convergence of the values obtained in finite basis
sets is similar as that for the helium atom, which validates the
extrapolation formula (70) for many-electron systems. We can
estimate that the accuracy of the results shown in Table IV is
not worse than 5%.

With the help of the results from Table IV, one can also
calculate the contribution of the Araki-Sucher correction to
the ionization energy of the magnesium atom and interaction
energy of the argon dimer. The former quantity is approx-
imately equal to −0.02 cm−1 (the negative sign indicates
that this correction decreases the ionization energy). While
this value seems to be very small, we note that it is of the
same order of magnitude as the present-day experimental
uncertainty in the measurement of the ionization energy of the

magnesium atom, 0.03 cm−1 [136–138]. For the argon dimer,
we calculate that the contribution to the interaction energy
of the Araki-Sucher term is equal to 0.02 cm−1. Again, this
value has to be put into context. The total interaction energy of
the argon dimer is approximately 99 cm−1. Therefore, while
the Araki-Sucher contribution is small on the absolute scale,
it becomes non-negligible in relation to other subtle effects.
Moreover, the theoretical accuracy attainable for the argon
dimer at present [135,139,140] is already quite close to the
level where the QED effects come into play.

V. CONCLUSIONS

In the present work, we have put forward a general scheme
to calculate the Araki-Sucher correction for many-electron sys-
tems. Several obstacles had to be removed to accomplish this
goal. First, the complicated two-electron integrals involving
the Araki-Sucher distribution have been solved with help of
the McMurchie-Davidson technique (within the Gaussian-type
orbitals basis set). It has been shown that they can be expressed
through a family of one-dimensional integrals. Recursive and
numerically stable computation of the latter integrals has been
discussed in detail.

Second, the issue of convergence of the results with respect
to the size of the basis set has been considered. We have
demonstrated a slow convergence pattern (ln 2L/L in the
leading order) towards the complete basis-set limit. This
result has been verified by comparing with reference data
for the helium atom. With the analytic information about the
convergence at hand, extrapolations have been used to improve
the accuracy of the results. The accuracy of about 1% has been
achieved in this case.

To confirm the validity of the proposed approach, we have
performed calculations for several few- and many-electron
systems. First, we have concentrated on small systems (e.g.,
few-electron atoms, hydrogen molecule) for which accurate
reference values are available in the literature. A consistent
accuracy of a few percents has been obtained and the molecular
results are only slightly less accurate than the atoms. Next,
we have moved on to many-electron systems. We have
estimated the contribution of the Araki-Sucher correction to
the ionization energy of the magnesium atom and interaction
energy of the argon dimer. The final values of the Araki-Sucher
correction are comparable to the present-day experimental
uncertainties of the measurements.
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APPENDIX: PARTIAL WAVE EXPANSION OF THE
ARAKI-SUCHER DISTRIBUTION

In this Appendix, we present details of the derivation of
Eqs. (49)–(54). Let us start with the definition (49) and split
it into two parts,An(r1,r2; a) = A(1)

n (r1,r2; a) + A(2)
n (r1,r2; a),
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with

A(1)
n (r1,r2; a) = 2n + 1

2

∫ π

0
dθ12 sin θ12

× θ (r12 − a)

r3
12

Pn(cos θ12) (A1)

and

A(2)
n (r1,r2; a) = 2π (2n + 1)(γ + ln a)

×
∫ π

0
dθ12 sin θ12 δ(r12)Pn(cos θ12).

(A2)

The second of these integrals is straightforward to evaluate
because, in the present context,

δ(r12) = δ(r1 − r2)

2πr2
1

δ(θ12)

sin θ12
. (A3)

Upon inserting back into Eq. (A2), the integration over the
angle becomes straightforward and, with help of the expression
Pn(1) = 1, one arrives at

A(2)
n (r1,r2; a) = (2n + 1)(γ + ln a)r−2

1 δ(r1 − r2). (A4)

Evaluation of the first term A(1)
n (r1,r2; a) is much more

complicated. Changing the integration variable in Eq. (A1)
to r12 = (r2

1 + r2
2 − 2r1r2 cos θ12)1/2 gives

An(r1,r2; a) = 2n + 1

2r1r2

∫ r1+r2

|r1−r2|
dr12 θ (r12 − a)

× 1

r2
12

Pn

(
r2

1 + r2
2 − r2

12

2r1r2

)
. (A5)

To get rid of the θ function under the integral sign, we need to
distinguish three possible (and disjoint) cases. First, assuming
that a < |r1 − r2|, the integration range remains unchanged
because θ (r12 − a) is equal to the unity there. The second case
is |r1 − r2| < a < r1 + r2; the integrand vanishes whenever
r12 < a so that the lower integration limit has to be shifted to
a. The third case is a > r1 + r2; the result is zero because the
integrand vanishes here. With this reasoning, the integral can
be rewritten as

An(r1,r2; a) = θ (|r1 − r2| − a)
2n + 1

2

×
∫ +1

−1
du

(
r2

1 + r2
2 − 2r1r2u

)−3/2
Pn(u)

+ θ (a − |r1 − r2|)θ (r1 + r2 − a)
2n + 1

2

×
∫ u(a)

−1
du

(
r2

1 + r2
2 − 2r1r2u

)−3/2
Pn(u)

(A6)

after the change of variables to u = (r2
1 + r2

2 − r2
12)/2r1r2 and

with the shorthand notation u(a) = (r2
1 + r2

2 − a2)/2r1r2. The
first integral is evaluated with elementary methods,∫ +1

−1
du

(
r2

1 + r2
2 − 2r1r2u

)−3/2
Pn(u)

= 2rn
<r−n−1

>

(r> − r<)(r> + r<)
. (A7)

The second integral is more complicated because of the
function in the upper integration limit. It is probably quite
difficult to derive the explicit expression for this integral, but
fortunately we require only the leading-order term in a. The
higher-order terms vanish in the final result due to the a → 0
limit. To extract the leading-order contribution, we return to
the original variable and integrate by parts once,∫ u(a)

−1
du

(
r2

1 + r2
2 − 2r1r2u

)−3/2
Pn(u)

= 1

r1r2

∫ r1+r2

a

dt

t2
Pn

(
r2

1 + r2
2 − t2

2r1r2

)
= − (−1)n

r1r2(r1 + r2)
+ 1

a

1

r1r2
Pn

(
r2

1 + r2
2 − a2

2r1r2

)
− 1

r2
1 r2

2

∫ r1+r2

a

dt P ′
n

(
r2

1 + r2
2 − t2

2r1r2

)
. (A8)

The first and the second terms are of the order of a0 and a−1,
respectively. By integrating by parts again, one can show that
the last term is also of the order of a0. Therefore, we can write∫ u(a)

−1
du

(
r2

1 + r2
2 − 2r1r2u

)−3/2
Pn(u)

= 1

a

1

r1r2
Pn

(
r2

1 + r2
2

2r1r2

)
+ O(a0), (A9)

which is sufficient for the present purposes. Finally, to arrive at
Eqs. (51)–(54) from the main text, one has to gather Eqs. (A4)
and (A6)–(A9) and rearrange.
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[139] P. Slavíćek, R. Kalus, P. Paška, I. Odvárková, P. Hobza, and A.

Malijevský, J. Chem. Phys. 119, 2102 (2003).
[140] K. Patkowski, G. Murdachaew, C.-M. Fou, and K. Szalewicz,

Mol. Phys. 103, 2031 (2005).

052510-12

https://doi.org/10.1063/1.2393226
https://doi.org/10.1063/1.2393226
https://doi.org/10.1063/1.2393226
https://doi.org/10.1063/1.2393226
https://doi.org/10.1103/PhysRevA.66.042504
https://doi.org/10.1103/PhysRevA.66.042504
https://doi.org/10.1103/PhysRevA.66.042504
https://doi.org/10.1103/PhysRevA.66.042504
https://doi.org/10.1103/PhysRevA.68.042507
https://doi.org/10.1103/PhysRevA.68.042507
https://doi.org/10.1103/PhysRevA.68.042507
https://doi.org/10.1103/PhysRevA.68.042507
https://doi.org/10.1103/PhysRevA.87.032503
https://doi.org/10.1103/PhysRevA.87.032503
https://doi.org/10.1103/PhysRevA.87.032503
https://doi.org/10.1103/PhysRevA.87.032503
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1063/1.4712218
https://doi.org/10.1063/1.4712218
https://doi.org/10.1063/1.4712218
https://doi.org/10.1063/1.4712218
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRevA.72.062706
https://doi.org/10.1103/PhysRevA.72.062706
https://doi.org/10.1103/PhysRevA.72.062706
https://doi.org/10.1103/PhysRevA.72.062706
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1063/1.456069
https://doi.org/10.1063/1.456069
https://doi.org/10.1063/1.456069
https://doi.org/10.1063/1.456069
https://doi.org/10.1063/1.1531106
https://doi.org/10.1063/1.1531106
https://doi.org/10.1063/1.1531106
https://doi.org/10.1063/1.1531106
https://doi.org/10.1063/1.1788634
https://doi.org/10.1063/1.1788634
https://doi.org/10.1063/1.1788634
https://doi.org/10.1063/1.1788634
https://doi.org/10.1002/qua.560480303
https://doi.org/10.1002/qua.560480303
https://doi.org/10.1002/qua.560480303
https://doi.org/10.1002/qua.560480303
https://doi.org/10.1135/cccc20051109
https://doi.org/10.1135/cccc20051109
https://doi.org/10.1135/cccc20051109
https://doi.org/10.1135/cccc20051109
https://doi.org/10.1063/1.2364489
https://doi.org/10.1063/1.2364489
https://doi.org/10.1063/1.2364489
https://doi.org/10.1063/1.2364489
https://doi.org/10.1063/1.4896056
https://doi.org/10.1063/1.4896056
https://doi.org/10.1063/1.4896056
https://doi.org/10.1063/1.4896056
https://doi.org/10.1063/1.4973978
https://doi.org/10.1063/1.4973978
https://doi.org/10.1063/1.4973978
https://doi.org/10.1063/1.4973978
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1007/BF01132826
https://doi.org/10.1007/BF01132826
https://doi.org/10.1007/BF01132826
https://doi.org/10.1007/BF01132826
https://doi.org/10.1016/S0010-4655(02)00590-8
https://doi.org/10.1016/S0010-4655(02)00590-8
https://doi.org/10.1016/S0010-4655(02)00590-8
https://doi.org/10.1016/S0010-4655(02)00590-8
https://doi.org/10.1063/1.4915272
https://doi.org/10.1063/1.4915272
https://doi.org/10.1063/1.4915272
https://doi.org/10.1063/1.4915272
https://doi.org/10.1016/S0065-3276(08)60019-2
https://doi.org/10.1016/S0065-3276(08)60019-2
https://doi.org/10.1016/S0065-3276(08)60019-2
https://doi.org/10.1016/S0065-3276(08)60019-2
https://doi.org/10.1002/qua.560540202
https://doi.org/10.1002/qua.560540202
https://doi.org/10.1002/qua.560540202
https://doi.org/10.1002/qua.560540202
https://doi.org/10.1135/cccc20051225
https://doi.org/10.1135/cccc20051225
https://doi.org/10.1135/cccc20051225
https://doi.org/10.1135/cccc20051225
https://doi.org/10.1112/plms/s1-24.1.55
https://doi.org/10.1112/plms/s1-24.1.55
https://doi.org/10.1112/plms/s1-24.1.55
https://doi.org/10.1112/plms/s1-24.1.55
https://doi.org/10.1002/qua.560400604
https://doi.org/10.1002/qua.560400604
https://doi.org/10.1002/qua.560400604
https://doi.org/10.1002/qua.560400604
https://doi.org/10.1002/(SICI)1097-461X(1996)59:3<209::AID-QUA4>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)59:3<209::AID-QUA4>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)59:3<209::AID-QUA4>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)59:3<209::AID-QUA4>3.0.CO;2-1
https://doi.org/10.1002/jcc.23935
https://doi.org/10.1002/jcc.23935
https://doi.org/10.1002/jcc.23935
https://doi.org/10.1002/jcc.23935
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.473663
https://doi.org/10.1063/1.473663
https://doi.org/10.1063/1.473663
https://doi.org/10.1063/1.473663
https://doi.org/10.1016/S0009-2614(00)00161-5
https://doi.org/10.1016/S0009-2614(00)00161-5
https://doi.org/10.1016/S0009-2614(00)00161-5
https://doi.org/10.1016/S0009-2614(00)00161-5
https://doi.org/10.1002/qua.21747
https://doi.org/10.1002/qua.21747
https://doi.org/10.1002/qua.21747
https://doi.org/10.1002/qua.21747
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1007/s00214-010-0764-0
https://doi.org/10.1007/s00214-010-0764-0
https://doi.org/10.1007/s00214-010-0764-0
https://doi.org/10.1007/s00214-010-0764-0
https://doi.org/10.1016/j.cplett.2014.11.048
https://doi.org/10.1016/j.cplett.2014.11.048
https://doi.org/10.1016/j.cplett.2014.11.048
https://doi.org/10.1016/j.cplett.2014.11.048
https://doi.org/10.1088/1361-6455/aa56ad
https://doi.org/10.1088/1361-6455/aa56ad
https://doi.org/10.1088/1361-6455/aa56ad
https://doi.org/10.1088/1361-6455/aa56ad
https://doi.org/10.1063/1.4895042
https://doi.org/10.1063/1.4895042
https://doi.org/10.1063/1.4895042
https://doi.org/10.1063/1.4895042
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1063/1.2042452
https://doi.org/10.1063/1.2042452
https://doi.org/10.1063/1.2042452
https://doi.org/10.1063/1.2042452
https://doi.org/10.1063/1.2409289
https://doi.org/10.1063/1.2409289
https://doi.org/10.1063/1.2409289
https://doi.org/10.1063/1.2409289
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.555617
https://doi.org/10.1063/1.555617
https://doi.org/10.1063/1.555617
https://doi.org/10.1063/1.555617
https://doi.org/10.1088/0031-8949/35/6/006
https://doi.org/10.1088/0031-8949/35/6/006
https://doi.org/10.1088/0031-8949/35/6/006
https://doi.org/10.1088/0031-8949/35/6/006
https://doi.org/10.1063/1.555879
https://doi.org/10.1063/1.555879
https://doi.org/10.1063/1.555879
https://doi.org/10.1063/1.555879
https://doi.org/10.1063/1.1582838
https://doi.org/10.1063/1.1582838
https://doi.org/10.1063/1.1582838
https://doi.org/10.1063/1.1582838
https://doi.org/10.1080/00268970500130241
https://doi.org/10.1080/00268970500130241
https://doi.org/10.1080/00268970500130241
https://doi.org/10.1080/00268970500130241



