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Logarithmic coherence: Operational interpretation of �1-norm coherence
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We show that the distillable coherence—which is equal to the relative entropy of coherence—is, up to a
constant factor, always bounded by the �1-norm measure of coherence (defined as the sum of absolute values
of off diagonals). Thus the latter plays a similar role as logarithmic negativity plays in entanglement theory and
this is the best operational interpretation from a resource-theoretic viewpoint. Consequently the two measures
are intimately connected to another operational measure, the robustness of coherence. We find also relationships
between these measures, which are tight for general states, and the tightest possible for pure and qubit states. For
a given robustness, we construct a state having minimum distillable coherence.
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I. INTRODUCTION

A single quantum system, where the notion of entanglement
is meaningless, nonetheless, differs in many ways from a
classical system. Indeed, the inception of quantum mechanics
itself was triggered by phenomena such as interference,
wave-particle duality, observed on a single system. In such
cases, the figure of merit is attributed to the superposition
principle, i.e., the characteristic of quantum mechanics
which allows superposition of prefixed basis states as a
valid state. This coherence, one of the fundamental reasons
for many counterintuitive features of quantum mechanics,
allows precise description at mesoscopic scales. In general,
coherence is an important physical resource in single-particle
interferometry [1–3], quantum thermodynamics [4–10], spin
systems [11,12], nanoscience [13–15], quantum algorithms
[16–18], and even some biomolecular processes [19–23].
With such an ample usefulness, it is desirable to have a
modern resource-theoretic approach to coherence. Recently,
one such framework has been put forward [24,25], which
has been subsequently developed [26] and advanced further
[17,27–33]. For many other models, applications, and further
details of coherence theory see the review in Ref. [34].

Undoubtedly, the monotones are an important aspect of
any resource theory. On one hand, they certify impossibility of
converting resources, while on the other they induce a partial
order among the resource states. In the framework proposed in
Ref. [25], among the most interesting coherence monotones are
the �1-norm-based coherence (C�1 ) [25], the relative entropy
of coherence (Cr ) [25], and the robustness of coherence (CR)
[35,36], which are formally defined as follows:

C�1 (ρ) :=
∑
i �=j

|ρi,j |,

Cr (ρ) := min
δ∈I

S(ρ‖δ) = S(ρ‖ diag(ρ)) = H (d) − H (λ),

CR(ρ) := min
σ

{
s � 0

∣∣∣ ρ + s σ

1 + s
∈ I

}
= min

τ∈I
{s � 0| ρ � (1 + s)τ }, (1)

*swapanqic@gmail.com

where I is the set of incoherent states (i.e., states which
are diagonal with respect to the chosen basis), S(x‖y) =
Tr[x(log2 x − log2 y)] is the relative entropy, d and λ are the
vectors of diagonal elements and eigenvalues of ρ, respec-
tively, and H (p) = −∑

pi log2(pi) is the Shannon entropy
of p. Both Cr and CR have exact analogs in entanglement
theory, both are operational quantities, and have direct physical
significance. In contrast, C�1 is peculiar in the sense that it
has no explicit prominent role in any other known resource
theory so far (entanglement, nonlocality, discord, purity, etc.),
presumably due to its explicit dependence on the chosen basis.
However, C�1 captures the simple intuitive idea that on the level
of density matrix description of quantum mechanical states,
superposition corresponds to off-diagonal matrix elements
(always with respect to the selected basis). In fact, the �1 norm
has been used in a necessary condition for separability known
as computable-cross-norm criterion [37], and in quantification
of a discordlike quantity named negativity of quantumness
[38]. Physically, for instance, C�1 is responsible for the duality
between fringe-visibility and which-path information in a
two-path interferometer [39]; more generally, it also captures
the which-path information about a particle inside a multipath
interferometer [40].

Motivated by this evident usefulness of C�1 , in this work, we
aim to give it an operational interpretation. Based on the facts
that for pure states C�1 is equal (up to a factor of 2) to negativity
of the corresponding bipartite pure state, and both measures
satisfy strong monotonicity, we have surmised in Ref. [41]
that C�1 is analogous to negativity in entanglement theory; we
argued that if true, it would be one of the best operational inter-
pretations of C�1 . We show in this work that this is indeed the
case. Our primary aim is thus to establish the sharpest possible
interrelations between Cr and C�1 . Keeping this in mind, we
develop our results in steps, starting from the simplest qubit
case, then pure states, and finally general states. Conditions
for equality as well as interrelations with other operational
monotones (mainly CR) will be mentioned along the way.

II. QUBIT CASE

Using an inequality between Holevo information and trace
norm, it was shown in Ref. [41] that all qubit states satisfy
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Cr (ρ) � C�1 (ρ). Several proofs of this fact will be given
throughout this article. However, this is not the sharpest possi-
ble interrelation, as strict inequality occurs for almost all states.
The following result represents the sharpest interrelations.

Proposition 1. All qubit states ρ with a given coherence
C�1 (ρ) = 2b satisfy

1 − H2

(
1 − 2b

2

)
� Cr (ρ) � H2

(
1 − √

1 − 4b2

2

)

� C�1 (ρ), (2)

where H2(0 � x � 1) := −x log2(x) − (1 − x) log2(1 − x)
is the binary entropy function. The lower and upper
bounds on Cr are saturated by a unique state for
each b (up to incoherent unitaries). Equality holds in
all the inequalities iff ρ is either an incoherent or
a maximally coherent state; otherwise Cr (ρ) < C�1 (ρ).

The proof uses convexity of Cr and is given in Appendix A.
It also uses the following well-known inequality for binary
entropy:

2 min{x,1 − x} � H2(x) � 2
√

x(1 − x), ∀x ∈ [0,1]. (3)

But this inequality alone does not yield even the crude bound
Cr (ρ) � C�1 (ρ).

III. PURE STATES

We showed in [41] that all pure states also satisfy Cr �
C�1 . An independent proof was also given in [42]. We first
characterize the equality conditions.

Proposition 2. All pure states satisfy C�1 (ρ) � Cr (ρ).
Equality holds iff the diagonal elements are (up to permutation)
either {1,0, . . . ,0} or {1/2,1/2,0, . . . ,0}.

Proof. Using the recursive property [43] of entropy function
H (λ), we have

C�1

(
|ψ〉 =

d∑
i=1

√
λi |i〉

)
− Cr (|ψ〉) = 2

d−1∑
i=1

√
λi

d∑
j=i+1

√
λj − H (λ) � 2

d−1∑
i=1

√
λi

√√√√ d∑
j=i+1

λj − H (λ)

=
d−1∑
i=1

⎡
⎣( d∑

k=i

λk

)⎛⎝2

√√√√ λi∑d
k=i λk

(
1 − λi∑d

k=i λk

)
− H2

(
λi∑d
k=i λk

)⎞⎠
⎤
⎦. (4)

By inequality (3), each term in the above sum is non-negative, so for vanishing of the sum, each term should vanish. For equality
in Eq. (4), only two of the λi’s could be nonzero. Vanishing of the first term yields λ1 = 1,0,1/2. �

Now we give an upper bound for the difference C�1 − Cr and present an alternative proof, arguably the simplest one, for its
lower bound.

Proposition 3: For all pure states |ψ〉 with rank[diag(|ψ〉〈ψ |)] = d > 2,

0 � C�1 (|ψ〉) − Cr (|ψ〉) � d − 1 − log2 d. (5)

The proof uses Schur concavity of C�1 (|ψ〉) − Cr (|ψ〉) in diag(|ψ〉〈|ψ |) and is detailed in Appendix B.
These bounds are rough in the sense that they do not require knowledge of either Cr (ρ) or C�1 (ρ). A better bound follows

below, whose proof is given in Appendix C.
Proposition 4. For a given �1-norm coherence C�1 (|ψ〉) = b, Cr (|ψ〉) is bounded by

√
2b2

d(d − 1)
� Cr � log2(1 + b), (6)

where d = rank[diag(|ψ〉〈ψ |)]. The lower bound is saturated only for incoherent states while the upper bound is saturated by
incoherent and maximally coherent states.

The lower bound indicates that for a given C�1 , the value of Cr probably could be made arbitrarily small for high dimension.
In contrast, the upper bound does not depend on the dimension d. Thus, for a fixed C�1 = b, we cannot increase Cr beyond
log2(1 + b) even by increasing the dimension arbitrarily (but keeping it finite).

This motivates the following question: what could be the sharpest (maximum and minimum) values of Cr given only the
knowledge of C�1 ? Fortunately, we are able to give the precise answer in the following.

Theorem 5. All pure states |ψ〉 with a given C�1 (|ψ〉) = b satisfy

H2(α) + (1 − α) log2(d − 1) � Cr (|ψ〉) � H2(β) + (1 − β) log2(n − 1),

where α = 2 + (d − 2)(d − b) + 2
√

(b + 1)(d − 1)(d − 1 − b)

d2
,

β = 2 + (n − 2)(n − b) − 2
√

(b + 1)(n − 1)(n − 1 − b)

n2
,

d = rank[diag(|ψ〉〈ψ |)], n =
{
b + 1 if b is integer,
[b] + 2 otherwise, (7)

with [x] denoting the integer part of x.
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Tightest lower boundfrom Eq. (7)

Tightest upper boundfrom Eq. (7)

Upper boundLog2[1+Cl1 (| )]

0.5 1 1.5 2 2.5
Cl1 (| )

0.5

1

1.5

Bounds on Cr (| )

FIG. 1. Cr (|ψ〉) vs C�1 (|ψ〉) for (normalized) |ψ〉 ∈ C4: given
only C�1 and d , the bounds in Eq. (7) are the tightest possible. For any
point (x,y) inside the pink region (including the boundary curves),
there is a |ψ〉 such that x = C�1 (|ψ〉) and y = Cr (|ψ〉).

Each of the bounds is satisfied by a unique state, up to
permutation the diagonal elements of the state with minimum
Cr are given by {α,(1 − α)/(d − 1),(1 − α)/(d − 1), . . . ,(1 −
α)/(d − 1)} and that with maximum Cr are {β,(1 − β)/(n −
1),(1 − β)/(n − 1), . . . ,(1 − β)/(n − 1)}.

The proof is based on Lagrange multipliers, and uses some
techniques recently employed in Refs. [44,45]. The complete
proof is given in Appendix D. In Fig. 1, we show the several
bounds on Cr as a function of C�1 .

We note that for any fixed b, as d → ∞ α → 1 and the
lower bound of Cr → 0. Thus, for any fixed value of C�1 = b,
there is a |ψ〉 ∈ Cd (for sufficiently high d) with C�1 (|ψ〉) = b

and arbitrary small Cr (|ψ〉). In contrast, we cannot increase
Cr beyond the upper bound (which depends on b but is
independent of dimension). An explanation is that, given more
and more components, the probability could be made more
biased but not more uniform than the initial one.

This result for pure states has an interesting aspect: since
C�1 = CR for all pure states [[36], Theorem 6], Theorem 5
also gives the sharpest bounds on Cr , for a given robustness
CR = b. Note also that unless C�1 has an integral value, no
pure state saturates the inequality Cr � log2(1 + C�1 ).

IV. ARBITRARY STATES

As usual, the case of mixed states is more demanding, since
in this case Cr depends on the eigenvalues, which are implicit
functions of the matrix elements. Another difficulty is that the
quantity C�1 is not unitarily invariant. So, we have to resort to
different techniques. But, before dealing with general mixed
states, let us mention that the result Cr � C�1 holds for the
following simple class of states.

Proposition 6. Any pseudopure state of the form ρ =
p|ψ〉〈ψ | + (1 − p)δ with p ∈ [0,1] and δ ∈ I satisfies
Cr (ρ) � C�1 (ρ). This gives an alternative proof for the validity
of the same relation for any qubit state.

Proof. From the convexity of Cr , we have

Cr (ρ) � pCr (|ψ〉〈ψ |) � pC�1 (|ψ〉〈ψ |)
= C�1 (p|ψ〉〈ψ | + (1 − p)δ) = C�1 (ρ).

Since every (mixed) qubit state can be expressed as the above
pseudomixture, the result follows. �

We have seen that for pure states when C�1 > 1, C�1 is
too high compared to Cr and so log2(1 + C�1 ) is reasonably
a better upper bound for Cr . It turns out that the same upper
bound holds also for all (mixed) states.

Theorem 7. For any state ρ,

Cr (ρ) � log2[1 + CR(ρ)] � log2[1 + C�1 (ρ)]. (8)

The proof uses operator monotonicity of log function and the
details are presented in Appendix E. Here we give an alterna-
tive proof for Cr � log2[1 + C�1 ], highlighting the similarity
of C�1 with negativity. Recalling that distillable entanglement
Ed is upper bounded by the logarithmic negativity [46]
and, for any state, coherent information is upper bounded
by one-way distillable entanglement E→ (by the so-called
hashing inequality, [[47], Theorem 10]), we get

S(σA) − S(σAB) � E→(σ ) � Ed (σ ) � log2[1 + 2N (σ )].

(9)

For any given ρ = ∑
aij |i〉〈j |, consider the state σAB =∑

aij |ii〉〈jj |. One immediately verifies that S(σA) −
S(σAB) = Cr (ρ). The eigenvalues of partial transposition of
σAB are aii for i = 1,2, . . . ,d, and ±|aij | for 1 � i < j �
d [[48], Lemma 6.3]. Therefore, 2N (σ ) = 2

∑
i<j |aij | =

C�1 (ρ). Substituting these values in Eq. (9), we get the desired
result. �

Yet another method to prove the same inequality is to use
the monotonicity of sandwiched α-Rényi relative entropy

Sα(A‖B) := 1

α − 1
log2 Tr

[
B

1−α
2α AB

1−α
2α

]α
in α > 0 [49].

Since log2(1 + x) � x for all x � 1, we have by Eq. (8)

Cr (ρ) �
{
C�1 (ρ), if C�1 (ρ) � 1,

C�1 (ρ) log2 e, if C�1 (ρ) < 1.
(10)

Thus Cr � C�1 holds for all states, at most up to a multiplica-
tive constant of 1/ ln 2. Unfortunately, we could not resolve
the conjecture Cr � C�1 made in Ref. [41] in full generality.
However, employing perturbative techniques, we could prove
it when C�1 is very small (see Appendix F). Note, on the other
hand, that if Cr (ρ) � C�1 (ρ) is true, then it is the sharpest
possible upper bound on Cr when C�1 (ρ) � 1.

Proposition 8. For any 0 < b < 1 and d � 3, there is a
d-dimensional state ρ with Cr (ρ) = C�1 (ρ) = b.

Proof. One such state is given by

ρ =
(

b/2 b/2
b/2 b/2

)
⊕ (1 − b)δ,

with any (d − 2)-dimensional diagonal state δ ∈ I . �
It is desirable to sharpen Eq. (8) to something like Eq. (7).

However, we are not aware of any sharper bounds. Our
numerical study suggests that, for a given C�1 , the state with
max Cr is generally a mixed one, unless we put restriction
also on the dimension (it is a pure state, if additionally
d � [C�1 ] + 2).
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Nonetheless, we have completely characterized the sharpest
lower bound of Cr for a given CR . The next result guarantees
the minimum amount of distillable coherence from a resource
state given only the dimension d and CR .

Theorem 9. All states ρ with a given CR(ρ) = b satisfy

Cr (ρ) � log2 d − H2(α) − (1 − α) log2(d − 1),

where d = rank[diag(ρ)] and α = 1 + b

d
. (11)

Equality occurs for isotropic-like states ρ = p|�〉〈�| + (1 −
p)1/d, p = b/(d − 1), and |�〉 being the maximally coherent
state.

The full proof is presented in Appendix G. Appendix H
contains an unsuccessful attempt to prove Cr � C�1 via convex
roofs [50,51]. Nevertheless, it could be of independent interest
because of its close connection with the convex roof of
negativity for maximally correlated states.

V. LOGARITHMIC COHERENCE: A STRONG
MONOTONE WHICH IS NOT CONVEX

Similar to logarithmic negativity EN [46,52], we can define
Clog2

(ρ) := log2[1 + C�1 (ρ)]. The addition by 1 not only
makes Clog2

� 0, but also yields the additivity under tensor
products, Clog2

(ρ ⊗ σ ) = Clog2
(ρ) + Clog2

(σ ), just like Cr and
EN . The strong monotonicity follows easily from that of C�1 ,
using concavity and monotonicity of the logarithm:

∑
i

pi log2[1 + C�1 (ρi)] � log2

[∑
i

pi[1 + C�1 (ρi)]

]

= log2

[
1 +

∑
i

piC�1 (ρi)

]

� log2[1 + C�1 (ρ)],

the last inequality due to strong monotonicity of C�1 . Due to
the concavity of log function, however, Clog2

is not convex:

Clog2

(
1
2ρ + 1

2σ
)

> 1
2Clog2

(ρ) + 1
2Clog2

(σ ),

iff C�1 (ρ)C�1 (σ )[C�1 (ρ) − C�1 (σ )] �= 0. Note that the above
arguments show that for any strong monotone C, the logarith-
mic version Clog2

= log2(1 + C) is also a (nonconvex) strong
monotone; there is nothing special about C�1 —except that in
this case Clog2

is additive under tensor products.

VI. RELEVANCE

The main importance of this work is that it gives operational
interpretation to C�1 in a completely quantitative way, namely
it is similar to negativity in entanglement theory, and indeed
the logarithmic coherence defined here, though not convex, is
a better motivated one. The latter plays the exact role of loga-
rithmic negativity in entanglement theory, giving a tight upper
bound on distillable resource. Once this is established, we can
seamlessly browse all instances of usefulness of (logarithmic)
negativity as an entanglement monotone from entanglement
theory to coherence theory. For example, Theorem 7 is just a
manifestation of known interrelations between relative entropy
of entanglement, (logarithmic) negativity, and robustness of

entanglement. Thus C�1 , though arguably one of the simplest
monotones which has apparently no conspicuous role in en-
tanglement theory, is significant for most relevant operational
quantities in coherence theory. Later we will mention relevance
of our results beyond a particular resource theory.

In many practical scenarios, the density matrix depends
on some parameters (e.g., the entries are functions of time—
in time-dependent evolution; temperature, or other relevant
parameters—in thermometry or metrology). In such cases, the
density matrix cannot be diagonalized and hence Cr becomes
uncomputable. The precise bounds given in this work are the
best from the knowledge of the entries.

We would also like to mention possible applications of our
results to some related fields, namely information theory and
matrix analysis. First note that C�1 (|ψ〉) is the Rényi entropy

Rα(λ) := 1

1 − α
log2

[
d∑

i=1

λα
i

]
= α

1 − α
log2(‖λ‖α),

of order α = 1/2 in disguise. Thus the relation between
Cr (|ψ〉) and C�1 (|ψ〉) is actually optimizing Rα (α → 1)
subject to the given fixed value of R1/2. The upper bound in
Eq. (6) is just a consequence of nonincreasing property of Rα .
The optimization technique employed in Appendix D could
also be applicable to other values of α. Indeed, it is easy to
find sharpest bounds on Rα→1 subjected to a fixed R2, which
reproduce the result from [53].

Lastly, finding trade-off relations between diagonals, eigen-
values, singular values, etc., are standard problems in matrix
analysis [[54], Ch. 9]. Our main quest here was a small part,
finding exact trade-off between diagonals and eigenvalues
(via entropy function), having the knowledge of the sum of
absolute values of the entries. One such independent relation
is Eq. (11) (it is worth mentioning that the same matrix
maximizes the determinant [55], a log-concave function).
More precisely, our problem is exactly similar to finding
sharpest Fannes-Audenaert bound [56,57] for a single state
and our results are independent of similar bounds [58,59].

VII. DISCUSSION AND CONCLUSION

We have shown that in the coherence theory [25], C�1

operationally plays the exact role of negativity in entanglement
theory. Since there is no bound coherence [26] (analogous to
no bound entanglement in maximally correlated states), C�1 is
intimately connected to any operationally relevant quantity
or process. For example, the sharpest bounds on Cr from
Theorem 5 remain the same even if we replace C�1 by CR .
Thus our approach here supports the idea that coherence theory
is a subclass of entanglement theory for maximally correlated
states. Nonetheless, similar to entanglement theory, we showed
that the requirement of convexity, although a desirable prop-
erty, should be relaxed for coherence monotones.

Given their similar operational meaning, it would be
interesting to compare Eq. (7) with its entanglement-analog
Ed = log2[1 + 2N ], especially since in contrast to Cd = Cr ,
Ed is a noncomputable quantity. Note that for the NPT bound
entangled states [proof of whose (non)existence is an open
problem in quantum information theory, with all conjectures in
literature claiming the existence [60]], the bound on Ed is worst
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as it gives absolutely no information. However, the relation for
Cd always gives some nonzero bound, thereby the inequality
has more to offer in coherence theory. From quantitative per-
spectives, both bounds are quite rough as almost all the states
never achieve equality. Our results in Theorem 5 and Theorem
9 are the best possible in this regard, as they give the optimal
bound on one quantity from the knowledge of the other.

It is worth remarking that the relation C�1 � Cr does not
hold for normalized quantities. The normalized quantities,
being dimension dependent, need not be monotone. Also, Cr

and C�1 do not give the same ordering of state space. For
example, there are states ρ and σ such that C�1 (ρ) > C�1 (σ ) >

Cr (σ ) > Cr (ρ).
Before concluding, we would like to mention that over

the past two years many alternative frameworks of coherence
theory have been proposed [61–65], stemming mainly from
different notions of incoherent (free) operations. In some of
these models, C�1 is not a monotone and arguably there is no
maximally coherent state [[34], Table II], thereby lacking the
interpretation of Cr as distillable coherence. However, both Cr

and CR are not only monotones, but also operational quantities
even in the most general (reversible) resource theory [66,67].
Most of our results, as could also be seen as relations between
Cr and CR , are thus applicable to more general scenarios.
Pertinent to coherence, the most general framework by Åberg
[24], where incoherent states are block-diagonal of any block
size, allows an interrelation analogous to Eq. (8); we have to
replace C�1 by the sum of trace norm of all off-diagonal blocks
[49].

Note added. The operational interpretation of C�1 presented
in this work has been complemented in Ref. [68].
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APPENDIX A: PROOF OF PROPOSITION 1

Proof. Without loss of generality, let

ρ =
(

a b

b 1 − a

)

be a state with given �1-norm coherence 2b > 0. For positivity
of ρ, we must have

1 − √
1 − 4b2

2
� a � 1 + √

1 − 4b2

2
, 0 < b � 1

2
. (A1)

We will now show that for fixed b, Cr (ρ) := H2(a) − H2(λ)
is a convex function of a over the entire region (A1). To this
end, the double derivative of Cr with respect to a is given by

b2

[√
1 − 4(a(1 − a) − b2)(8a2 − 8a + 4b2 + 1) + 8a(1 − a)(a(1 − a) − b2) ln

(
1+

√
1−4(a(1−a)−b2)

1−
√

1−4(a(1−a)−b2)

)]
a(1 − a)[a(1 − a) − b2][1 − 4(a(1 − a) − b2)]3/2 ln 2

.

Applying the inequality ln[(1 + x)/(1 − x)] � 2x for x ∈ [0,1], the numerator is bounded below by b2(1 − 2a)2[1 − 4(a(1 −
a) − b2)]3/2, a non-negative quantity. Therefore, Cr (ρ) is convex and hence the maximum value will be attained at the extreme
values of a (and the corresponding state is a pure state). Thus for a given fixed b, we have

Cr (ρ) � H2

(
1 − √

1 − 4b2

2

)
. (A2)

The upper bound on H2(x) from Eq. (3) gives the rightmost inequality of Eq. (2),

Cr (ρ) � H2

(
1 − √

1 − 4b2

2

)
� 2b = C�1 (ρ). (A3)

Note that for any given b there is a ρ (indeed a pure state) such
that equality occurs in the first inequality of Eq. (A3), while
except for incoherent states and maximally coherent states, the
last inequality is always strict.

The expression of Cr remains unchanged if we interchange
a and (1 − a), i.e., Cr is symmetric about a = 1/2. Also, from
Eq. (A1) the allowed range of a is symmetric about a = 1/2.
Therefore, Cr being a symmetric convex function would have a
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Tightest lower bound from Eq. (2)

Tightest upper bound from Eq. (2)

Upper bound Cl1 ( )

Upper bound Log2[1+Cl1 ( )]

0.2 0.4 0.6 0.8
Cl1 ( )

0.2

0.4

0.6

0.8

Bounds on Cr ( )

FIG. 2. Cr (ρ) vs C�1 (ρ) for qubit ρ: the bounds given by Eq. (2)
are the tightest possible. For any point (x,y) inside the pink region (or
over the boundary curves), there is a qubit state ρ such that x = C�1 (ρ)
and y = Cr (ρ). Note that for a given C�1 , there is a unique pure state,
whose Cr is given by the tightest upper bound (the magenta colored
curve).

unique global minimum at a = 1/2. Hence the first inequality
in Eq. (2). All the bounds for qubit systems are depicted in
Fig. 2. �

APPENDIX B: PROOF OF PROPOSITION 3

Proof. Without loss of generality, let |ψ〉 := ∑d
i=1

√
λi |i〉,

with λi > 0 and
∑

λi = 1. We will now show that the function

f (λ) := C�1 (|ψ〉) − Cr (|ψ〉) =
(

d∑
i=1

√
λi

)2

− 1

+
d∑

i=1

λi log2 λi

is Schur concave in λ, which will complete the proof. One
verifies that

∂f

∂λ1
− ∂f

∂λ2
= (

√
λ2 − √

λ1)√
λ1λ2

(
d∑

i=1

√
λi

)
+ log2

(
λ1

λ2

)

= (
√

λ2 −
√

λ1)

⎡
⎢⎣
∑d

i=1

√
λi√

λ1λ2
−

log2

(√
λ1
λ2

)
2(

√
λ1 − √

λ2)

⎤
⎥⎦.

Thus it suffices to show that the quantity inside the brackets is
non-negative. Using the geometric-logarithmic-mean inequal-
ity [[54], p. 141], we get

−
log2

(√
λ1
λ2

)
2(

√
λ1 − √

λ2)
� − 1

2 ln 2 (λ1λ2)1/4
> − 1

(λ1λ2)1/4
,

and hence the quantity inside the brackets is non-negative. �
A sufficient (but not necessary) condition for a Schur-

concave function φ to satisfy φ(x) > φ(y) whenever x  y

and y is not a permutation of x is that φ is strictly Schur
concave [[54], p. 83]. Although both C�1 (λ) and Cr (λ) are
strictly Schur concave, f (λ) is not. This makes it difficult to
characterize the equality conditions in Eq. (5). Nonetheless,
saturation of the lower bound has been fully characterized in

Proposition 2. It is tempting to think that the upper bound
will be saturated only by maximally coherent states if d > 2.
Although it could be true for d � 4, there are many λ’s giving
the same maximum of f , with λ = (2/3,1/6,1/6) being an
example for d = 3.

APPENDIX C: PROOF OF PROPOSITION 4

Using the inequality

−x log2 x �
√

2x(1 − x) ∀x ∈ [0,1], (C1)

we get

Cr (|ψ〉) =
d∑

i=1

−λi log2 λi

�
√

2

[
1 −

d∑
i=1

λ2
i

]
=

√
2
∑
i �=j

λiλj

�
√

2

d(d − 1)

⎛
⎝∑

i �=j

√
λiλj

⎞
⎠

2

=
√

2b2

d(d − 1)
,

where, in the last inequality, we have used the fact that, for
a d-dimensional vector x and for 0 < p < q < ∞, ‖x‖p �
d1/p−1/q‖x‖q .

One weakness of this bound is that equality holds for
incoherent states only. A lower bound on Cr , which is saturated
by all incoherent and maximally coherent states, can also be
derived easily. For example, using the following bound on
entropy [69]:

H (λ) � log2 d − 1

ln 2

[
d

(
d∑

i=1

λ2
i

)
− 1

]
,

we get

Cr � log2 d − (d − 1)2 − b2

(d − 1) ln 2
. (C2)

Note that this lower bound is useful only when b >√
(d − 1)[(d − 1) − ln d].
Now, to get the upper bound, we use concavity of logarithm,

Cr (|ψ〉) = H (λ) = 2
d∑

i=1

λi log2(1/
√

λi)

� log2

⎡
⎣( d∑

i=1

√
λi

)2
⎤
⎦

= log2(1 + b).

To prove inequality (C1), note that, for x ∈ (0,1), ln x =
ln[1 − (1 − x)] = −(1 − x) − (1 − x)2/2 − · · · � −(1 − x).
Multiplying by x/ ln 2 and noticing that 1/ ln 2 >

√
2, the

inequality follows. �
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APPENDIX D: PROOF OF THEOREM 5

To prove the bounds we will optimize the entropy function
with respect to the two equality constraints. The objective
function being continuous, bounded (over the probability
simplex �d , for a given dimension d), and the constraints
describing compact sets, there is a maximum and a minimum.
The optimum points should be either at interior or at the
boundary of �d . As λi = 0 neither affects the constraint
nor the objective function, if the optimum occurs on the
boundary of �d , it should occur in the interior of �n for
some n < d. So, without loss of generality, we can assume
that the optimum occurs in the interior of some �n, and use
Lagrange’s multiplier method to get the possible stationary
points. For simplicity, we can consider the natural-logarithm-
based entropy (as it is a constant multiple of the binary-based
entropy) and the Lagrange’s function is set to be

L(λ,μ,ν) := −
n∑

i=1

λi ln λi + μ

[
n∑

i=1

√
λi − √

1 + b

]

+ ν

[
n∑

i=1

λi − 1

]
.

Vanishing of the gradient (∇L = 0) gives

1 + ln λi − μ

2
√

λi

− ν = 0. (D1)

Solving Eq. (D1) analytically is difficult. Instead, let us
show that when seen as an equation in a particular λi ∈ (0, 1),
it can have at most two (non-negative) solutions. The equation
can be written as

z ln z = a, z =
√

λie1−ν, a = μ
√

e1−ν

4
.

The function z ln z is strictly convex in (0,∞) with a unique
global minimum at z = 1/e. So for any given a > 0, the
equation z ln z = a has a unique solution in (1,∞). However,
for any a ∈ (−1/e,0) there are two solutions, one in (0,1/e)
and the other in (1/e,1). Thus overall there are at most
two solutions to Eq. (D1) for each λi ∈ (0,1). Therefore, all
possible stationary points of L must have two distinct values
of λ’s, thereby potentially k number of λ1 and (n − k) number
of λ2 with 0 < λ1 < λ2, k = 1,2, . . . ,n, n � d. Note that we
could exclude the case k = n, as this is the case only when
b = n − 1, so there is only one pure state and no optimization
is required. For a (given) finite d, this gives finite number of

stationary points. However, as we will show below, we do not
need to check all these points. Writing x for λ1, we get from
normalization λ2 = (1 − kx)/(n − k) and x � 1/n. Thus the
problem becomes

Optimize f (x,k) := −kx ln x − (1 − kx) ln

[
1 − kx

n − k

]

such that g(x,k) := k
√

x +
√

(n − k)(1 − kx) = √
1 + b

over 0 < x � 1/n, k ∈ {1,2, . . . ,n − 1}, n � d. We will now
employ the approach from [[44], Lemma 15]. To show that
for a fixed g(x,k), f (x,k) is a decreasing function in k, let us
temporally remove the integral restriction on k and consider it
as a real variable in [0,n). Due to the constraint on g(x,k),
changing k will also change x. So, to keep g(x,k) fixed
(= √

1 + b), let x(k) be the function of k implicitly given
by g(x(k),k) = √

1 + b. Then dg

dk
= 0 = ∂g

∂k
+ ∂g

∂x
· ∂x

∂k
gives

∂x

∂k
= −∂g

∂k

/
∂g

∂x
= x

k

[√
1 − kx

(n − k)x
− 1

]
.

Therefore,

df

dk
= ∂f

∂k
+ ∂f

∂x
· ∂x

∂k

= −1 − nx

n − k
+ x

√
1 − kx

(n − k)x
ln

[
1 − kx

(n − k)x

]

� −1 − nx

n − k
+ x

[
1 − kx

(n − k)x
− 1

]

= 0,

where in the inequality we have used the fact that
√

y ln y �
y − 1 for all y � 1. Thus f (x,k) is a decreasing function of
k, and the minimum of f is obtained for k = n − 1. Finally,
a global optimization over n � d is required. Similar to the
above method, we will show that for a fixed g(n − 1,x(n)),
f (n − 1,x(n)) is a decreasing function in n. Solving 0 = dg

dn
=

∂g

∂n
+ ∂g

∂x
· ∂x

∂n
,

∂x

∂n
= x(

√
x − 2

√
1 + x − nx)

(n − 1)(
√

1 + x − nx − √
x)

.

Substituting into df

dn
, we get

df

dn
= x

[√
1 + x − nx − √

x + √
1 + x − nx ln

(
x

1+x−nx

)]
√

1 + x − nx − √
x

�
x
[√

1 + x − nx − √
x + 2

√
1 + x − nx

(√
x

1+x−nx
− 1

)]
√

1 + x − nx − √
x

= −x,

where in the inequality we have used the fact that ln y � y − 1 for all y > 0. Thus f is a decreasing function of the dimension
d, and hence the minimum of f is attained at n = d. The minimum is obtained at λ all of whose (d − 1) components are equal
and the rest one is at least 1/d. Assuming this larger component to be α, the unique α � 1/d is obtained from the constraint
g(α,d) = √

1 + b as

α = 2 + (d − 2)(d − b) + 2
√

(b + 1)(d − 1)(d − 1 − b)

d2
.
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For easy verification of the constraint, we note that

√
α =

√
(d − 1)(d − 1 − b) + √

b + 1

d
,

√
1 − α =

√
(b + 1)(d − 1) − √

d − 1 − b

d
.

This gives the lower bound of Cr in Eq. (7). Since f (x,k)
is decreasing in k and n, for a given C�1 = b, if n − 2 <

b � n − 1 then the maximum of f occurs inside �n and the
corresponding λ will have one component β � 1/n and all the
other (n − 1) components larger than β. Solving the constraint
g(x,n) = √

1 + b then gives the unique β � 1/n as

β = 2 + (n − 2)(n − b) − 2
√

(b + 1)(n − 1)(n − 1 − b)

n2
.

We note that

√
β =

√
b + 1 − √

(n − 1)(n − 1 − b)

n
,

√
1 − β =

√
(b + 1)(n − 1) + √

n − 1 − b

n
. �

APPENDIX E: PROOF OF THEOREM 7

Let τ ∈ I be an optimal state for CR(ρ). Then from the
definitions in Eq. (1),

Cr (ρ) � S(ρ‖τ ) = Tr

[
ρ

(
log2 ρ − log2

(1 + s)τ

(1 + s)

)]

= log2(1 + s) + Tr[ρ(log2 ρ − log2(1 + s)τ )].

Since ρ � (1 + s)τ and log is operator monotone, the trace
term is nonpositive and the first inequality follows. The
last inequality follows from CR � C�1 [35,36], for which an
independent proof is given below.

The dual of CR from Eq. (1) gives

1 + CR(ρ) = max
T �0, diag(T )=1

Tr[ρT ]

=
∑

Tijρji = 1 + 2
∑
i<j

Re(Tijρji)

� 1 + 2
∑
i<j

|Tijρji | = 1 + C�1,

where we have used the inequality |Tij | � 1 which follows

from ( 1 T̄ij

Tij 1 ) � 0. �

APPENDIX F: EVIDENCES FOR THE CONJECTURE
Cr (ρ) � C�1 (ρ)

Here we present two propositions to support our conjecture
that Cr (ρ) � C�1 (ρ) also holds for C�1 (ρ) � 1. Let us consider
ρ = r + δ, with diagonal r and off-diagonal δ, and the family
of states ρ(ε) = r + εδ for 0 � ε � 1. Then both Cr [ρ(ε)] and
C�1 [ρ(ε)] are analytic functions of ε.

Proposition 10. For a given ρ, consider the family of states
ρ(ε). For ε → 0,

Cr [ρ(ε)] = O(ε2) � C�1 [ρ(ε)] = εC�1 [ρ(1)] = O(ε).

This shows that the conjecture holds when the coherences are
infinitesimally small.

Proof. We have Cr [ρ(0)] = C�1 [ρ(0)] = 0. Moreover,

d

dε
C�1 [ρ(ε)]|ε=0 = C�1 [ρ(1)] > 0,

since we assume δ �= 0. Denoting the eigenvectors and
eigenvalues of ρ(ε) by |λi(ε)〉 and λi(ε), respectively, we
have Cr [ρ(ε)] = H (r) − H [λ(ε)]. The Hellmann-Feynman
theorem [70,71] states

d

dε
λi(ε) =

〈
λi(ε)

∣∣∣∣ d

dε
ρ(ε)

∣∣∣∣λi(ε)

〉
= 〈λi(ε)|δ|λi(ε)〉, ∀i.

(F1)

Since Tr[ρ(ε)] = 1, we also have∑
i

d

dε
λi(ε) = 0. (F2)

Using Eqs. (F1) and (F2) we get

d

dε
Cr [ρ(ε)]|ε=0 =

∑
i

〈λi(0)|δ|λi(0)〉 log2[λi(0)]

= 0. �
We now give a rough bound on allowed ε.
Proposition 11. If∫ ε

0
log2

[
λmax(ε′)
λmin(ε′)

]
dε′ � C�1 [ρ(ε)] = εC�1 [ρ(1)],

then Cr [ρ(ε′)] � C�1 [ρ(ε′)] for all 0 � ε′ � ε. This shows that
the conjecture is correct for some states, even if their C�1 [ρ(ε)]
is smaller than one.

Proof. As in the previous proposition,

d

dε
Cr [ρ(ε)] =

∑
i

〈λi(ε)|δ|λi(ε)〉 log2[λi(ε)].

We observe that 〈λi(ε)|r + δ|λi(ε)〉 � λmin(1) and
log2[λi(ε)] � 0, so that

d

dε
Cr [ρ(ε)] �

∑
i

[λmin(1) − 〈λi(ε)|r|λi(ε)〉] log2[λi(ε)]

� dλmin(1) log2[λmax(ε)]

−
∑

i

〈λi(ε)|r|λi(ε)〉 log2[λmin(ε)]

� log2

[
λmax(ε)

λmin(ε)

]
. (F3)

The proposition follows by integrating over ε′ from
zero to ε. �

Examples. To illustrate usefulness of the above proposi-
tions, let us consider families of states with r = 1/d. Then

λmax(ε) = max
|ψ〉

〈ψ |(1 − ε)r + ε(r + δ)|ψ〉

= (1 − ε)/d + ελmax(1) � λmax(1),

as 1/d � λmax(1). Similarly, λmin(ε) � λmin(1). Substituting
the bounds in Eq. (F3) and integrating over ε′ from zero to ε,
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we get Cr [ρ(ε)] � ε log2[λmax(1)/λmin(1)]. Thus

C�1 [ρ(1)] � log2

[
λmax(1)

λmin(1)

]
⇒ Cr [ρ(ε)] � C�1 [ρ(ε)], ∀0 � ε � 1. (F4)

The set of states fulfilling condition (F4) is not empty—in
particular, all matrices for which log2[λmax(1)/λmin(1)] � 1,
i.e., λmax(1)/λmin(1) � 2, typically fulfill this condition if
C�1 (ρ(1)) is not too large. Examples of such matrices are easily
constructed with all off-diagonal elements equal.

APPENDIX G: PROOF OF THEOREM 9

First note that the following two optimization problems are
equivalent (solving one equally solves the other):

t(b) = min Cr (ρ) such that CR(ρ) � b, (G1)

b(t) = max CR(ρ) such that Cr (ρ) � t. (G2)

Due to convexity of the functions involved, in each case the
optimum will occur on the equality condition.

Now, using dual form of CR [35,36],

1 + CR(ρ) = max Tr[D] such that ρ � D, D = diag(D)

= max Tr[ρB] such that B � 0, diag(B) = 1

� Tr[ρJ ], (G3)

where J = d|�〉〈�| is the matrix having all entries 1. Invoking
Eqs. (G1) and (G2), our problem reduces to finding

1 + b(t) � max Tr[ρJ ] such that Cr (ρ) � t. (G4)

Note that both quantities Tr[ρJ ] and Cr (ρ) in Eq. (G4)
remain invariant under permutations of rows and columns of
ρ. Replacing

ρ �−→ 1

d!

∑
π

UπρU †
π ,

where the sum runs over the permutations, shows that
the maximum is achieved at ρ = p|�〉〈�| + (1 − p)1/d.
The value of p is determined by the condition CR =
C�1 (ρ) = b. �

Our numerical study indicates that the same state may have
minimum Cr for a given C�1 as well. Unfortunately, the above
method is not applicable in this case.

APPENDIX H: COULD C�1 BE SMALLER THAN ITS
CONVEX ROOF?

As usual, let us define the convex roof extension of C�1 as
(see also [50,51])

C1(ρ) := min
{pi , |ψi 〉}

{∑
i

piC�1 (|ψi〉) | ρ =
∑

i

pi |ψi〉〈ψi |
}

.

(H1)

Then C�1 (ρ) � C1(ρ). Note that if equality occurs for a state
ρ, then by convexity of Cr and Proposition 2, it must satisfy
Cr (ρ) � C�1 (ρ). The result below gives another proof that all
qubits fulfill our conjecture.

Proposition 12. All qubit states ρ satisfy C�1 (ρ) = C1(ρ).
Proof. It suffices to show that for given a,b there are p,λ,μ,

such that

(
a b

b 1 − a

)
= p

(
λ

√
λ(1 − λ)√

λ(1 − λ) 1 − λ

)

+ (1 − p)

(
μ

√
μ(1 − μ)√

μ(1 − μ) 1 − μ

)
,

where we may assume without loss of generality a ∈ (0,1/2],
b ∈ (0,1/2), with a(1 − a) > b2. This (positivity) demands
that (1 − √

1 − 4b2)/2 < a � 1/2. Since we require each of
the pure states to have C�1 = 2b, λ,μ are necessarily the
two roots of x(1 − x) = b2. Setting λ = (1 + √

1 − 4b2)/2,
μ = 1 − λ, and comparing the first diagonal element we get a
unique solution

p = 1

2
− 1

2

1 − 2a√
1 − 4b2

.

Since (1 − 2a)2 = 1 − 4a(1 − a) � 1 − 4b2, hence p ∈
(0,1/2]. Note that the standard spectral decomposition
does not help, as each of the eigenprojectors have C�1 =
2b/

√
1 − 4[a(1 − a) − b2] > 2b. �

As mentioned in the proof of Theorem 7, C�1 (ρ) is exactly
double of the negativity of the corresponding maximally
correlated state σ :

C�1 (ρ) = 2N (σ ),

where ρ =
∑

aij |i〉〈j |,

and σ =
∑

aij |ii〉〈jj |.

Therefore, denoting the convex roof of negativity by Nc,

C�1 (ρ) = C1(ρ) (H2)

⇔ N (σ ) = Nc(σ ). (H3)

It is known [72] that equality occurs in Eq. (H3) for isotropic
states while strict inequality for Werner states (in d > 2).
Unfortunately, none of those states is maximally correlated
for d > 2; hence we cannot browse the results directly into
the coherence scenario. It was observed in Ref. [50] that
equality holds in Eq. (H2) for all pseudopure states defined
in Proposition 6. Also, it was shown in Ref. [[51], Theorem 3]
that strict inequality occurs for a similar quantity.
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