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We propose a hybrid quantum repeater based on ancillary coherent field states and material qubits coupled
to optical cavities. For this purpose, resonant qubit-field interactions and postselective field measurements are
determined which are capable of realizing all necessary two-qubit operations for the actuation of the quantum
repeater. We explore both theoretical and experimental possibilities of generating near-maximally-entangled
qubit pairs (F > 0.999) over long distances. It is shown that our scheme displays moderately low repeater rates,
between 5 × 10−4 and 23 pairs per second, over distances up to 900 km, and it relies completely on current
technology of cavity quantum electrodynamics.

DOI: 10.1103/PhysRevA.96.052329

I. INTRODUCTION

Distribution of well-controlled entanglement over long
distances is essential for quantum communication [1,2]. In
practice, quantum channels connecting spatially separated
quantum systems are subject to information loss. For example,
direct transmission of photons via optical fibers, quantum
channels, is limited, at best, to a few hundred km [3,4]. In
the case of free space channels, there are new developments
in satellite-Earth-based entanglement distribution [5], which
go beyond 1000 km, though terrestrial free space quantum
communication has a limitation of a few hundred km due to the
curvature of Earth [6]. As straightforward amplification is not
an option in quantum communication due to the no-cloning
theorem [7,8], one possibility is to use the quantum repeater
protocol [9,10], which improves the low success rates. Here,
the total distance between the quantum systems is divided into
smaller distances, i.e., elementary links, with repeater nodes
in between. There are already various proposals for quantum
repeaters and impressive experimental efforts are being made
for their implementations [11].

An interesting proposal of van Loock et al. [12–14], a
hybrid quantum repeater, uses coherent states to distribute
entanglement between the nodes of the quantum repeater. This
scheme has the advantage that a high repetition rate can be
achieved, mainly due to almost unit efficiencies of homodyne
photodetection of coherent states, in contrast to low efficien-
cies of single-photon detectors. Furthermore, for this type
of quantum repeater every logical two-qubit gate is realized
with the help of qubit-field interactions within cavity quantum
electrodynamics (QED) scenarios [15,16]. These proposals are
based on far-off-resonant qubit-field interactions, which im-
pose limitations on the orthogonality of the field states involved
in postselective homodyne measurements, thus affecting the
fidelity of the entangled states. In order to have unit fidelities
in these approaches, long interaction times or high numbers of
mean photons are required. If the interaction times are much
longer than the characteristic times of dipole transitions, then
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the qubit-field interaction model has to be extend beyond
the dipole approximation. High numbers of mean photons
usually are not an experimental issue; however, to obtain better
fidelities one has to increase the mean photon number. In this
case, the justification of the far-off-resonant model requires
significantly increased difference between the frequency of
the qubit transition and the frequency of the single-mode field,
which means that the cavities in use have to have adjustable
frequencies. It has been demonstrated by us that this hurdle
can be overcome by resonant qubit-field interactions [17]. As
a continuation of this work, we have proposed building blocks
for a hybrid quantum repeater, which is completely based on
cavity QED and resonant qubit-field interactions [18–20].

In this paper, we go one step further and propose an entire
quantum repeater scheme by assembling all three building
blocks. These building blocks are based on two-level atomic
ensembles, single-mode cavities, postselective field measure-
ments, and input coherent states of the radiation field; hence,
they are compatible with each other. Besides assembling a
quantum repeater, we also extend our analysis to two building
blocks. In our previous article [17], we have studied entan-
glement generation between two spatially separated material
qubits, and now we augment this approach with the reflection
of photons from the surface of the cavities, a source of decoher-
ence, and we replace minimum-error field measurements with
balanced homodyne photodetection. We also review the en-
tanglement swapping protocol, because in our previously pro-
posed scheme the success probability is found to be less than
one [20]. In this paper, we present a new set of field measure-
ments, which postselect deterministically the four Bell states.
The purification protocol of Ref. [19] is applied straightfor-
wardly to output states of the entanglement generation block.

Another aim of this paper is to calculate the average rates
of near-maximally-entangled pairs per second between the
end points of the repeater chain. We focus on a standard
quantum repeater scheme [9] and avoid new generation of
schemes, for now [21]. As a result, the performance of the
presented quantum repeater it is expected to be moderate.
The rate analysis will be done in the context of some current
experimental setups with the following assumptions: Qubits
do not decay and detectors have unit efficiency.
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This paper is organized as follows. In Sec. II, we present
the scheme of the hybrid quantum repeater. In Subsec. II A,
we introduce the theoretical model for the building block
of entanglement generation and determine the form of the
entangled state generated between the repeater nodes. This
result is employed in Subsec. II B, where the entanglement
purification protocol and its theoretical model are discussed. In
Subsec. II C, we present the entanglement swapping protocol
and its theoretical model. In Sec. III, we collect some
experimental setups and data, which may play a role in
the future implementation of the proposal. Based on these
experimental setups, we determine the repeater rates of near-
maximally-entangled pairs separated by a distance of 100 km.

II. PROTOCOL

In this section, we discuss a quantum repeater, which is
based on models of cavity quantum electrodynamics. We
follow the seminal idea of Ref. [9], where entanglement
over distance L is created by dividing the distance into n

elementary links and inserting nodes at their intersection.
Thus, each node is connected by elementary links with length
L0 = L/n either to neighboring nodes or to the endpoints of
repeater chain. The quantum repeater presented here consists
of three building blocks: Entanglement is generated between
neighboring nodes, then with the help of an entanglement
purification one can purify the effects of any kind of de-
coherence, and finally entanglement swapping is applied to
increase the distance of shared entanglement. The physical
resources of this quantum repeater are atoms, optical conveyor
belts, optical or microwave cavities with initially prepared
coherent states, state-selective detectors for the qubits, and
postselective field measurements implemented by balanced
homodyne photodetection. The main physical mechanism for
the realization of two-qubit operations is the resonant qubit-
field interaction in dipole and rotating-wave approximation.
In this context, we employ the Jaynes-Cummings-Paul and
Tavis-Cummings models with an interaction time in the region
of the so-called collapse phenomena [22]. Furthermore, we
consider that the initial coherent states have large mean photon
numbers n̄ � 100.

In Fig. 1, we display the sketch of the setup. The status of
some current experimental settings, which are strongly related
to our proposed setup, is thoroughly discussed in Sec. III. In
the first step, the qubits (implemented by atoms) are loaded
from a magneto-optical trap (MOT) into a dipole trap, which
can be set into motion, thus realizing an optical conveyor
belt. These qubits interact with single-mode electromagnetic
fields in cavities denoted by C1, which are coupled by optical
fibers to neighboring nodes. The emerging fields propagate
to neighboring nodes, where they interact with the local
qubits and field measurements (D1 detectors) are performed in
order to postselect entangled states between qubits separated
by an elementary link. Afterward, entanglement purification
is implemented with the help of qubit-field interactions in
cavities denoted by C2, postselective field measurements (D1

detectors), and qubit measurements (D2 detectors). Finally,
two cavities (denoted by C2), where simultaneously two qubits
can interact with the single-mode of the radiation field, and
two postselective field measurements are used to generate

FIG. 1. Schematic representation of a cavity QED-based quantum
repeater protocol. The total distance between the end points A and
B is divided in n elementary links with length L0. At each node
there are four cavities: For the entanglement generation protocol
there are two C1 cavities, in which single qubits can interact with
single-mode electromagnetic fields; and for the implementation of
unambiguous Bell measurements there are two C2 cavities, in which
two qubits can interact symmetrically and simultaneously with the
single-mode electromagnetic fields. The entanglement purification
protocol is implemented with cavities C2, such that there is only
one qubit present in the cavity during the qubit-field interaction.
The atoms (black dots) implementing the qubits are collected from a
magneto-optical trap (MOT) and transferred into an optical conveyor
belt. The conveyor belt can move the qubits in and out of the cavities.
There are also two types of detectors: Four D1 detectors realize
postselective field measurements for all three building blocks of the
quantum repeater, and two D2 detectors measure the states of the
qubits for both the purification protocol and the Bell measurement.

unambiguous and noninvasive Bell measurements. These
Bell measurements realize entanglement swapping between
the nodes, and after applying them in every node we are
able to generate near-maximally-entangled pairs between the
endpoints of the repeater chain.

In the subsequent subsections, we discuss in more detail the
quantum electrodynamical models of all three building blocks.
The main aim is to explore the possibilities of generating near-
maximally-entangled pairs with high success probabilities.

A. Entanglement generation between neighboring nodes

An elementary link between two neighboring nodes is
modeled by two spatially separated cavities A, B and a long
optical fiber connecting them. The qubits in the nodes are two
atoms in conveyor belts with ground states |0〉i and excited
states |1〉i (i ∈ {A,B}). In the first step, the single-mode
radiation field of cavity A interacts with qubit A. This is
followed by the leakage of the single-mode field into the
optical fiber, the propagation of the radiation field inside the
fiber from system A to system B, and a leakage of the fiber’s
radiation field into cavity B. Finally, the single-mode radiation
field in cavity B, which is generated by the leakage of the
fiber into the cavity, interacts with qubit B. A postselective
measurement on the emerged radiation field in cavity B
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generates entanglement between the two remote qubits. In the
subsequent argumentation, we present a minimal model, which
is capable of effectively describing this physical setup, and we
analyze its efficiency with respect to the model’s parameters
in order to generate highly entangled qubit states with high
success probabilities.

We consider a model where both qubits and cavities are
similar. There are three main time scales in this system: the
qubit-field interaction time τ , the decay time of the cavities
τc, and the propagation time T in the fiber. We assume
that τ � τc � T , which also encodes our intention that the
distance between the two qubits is large. In order to avoid
spontaneous decay of qubit A during the long propagation
time, one can coherently transfer the population of the states
involved in the interaction to radioactively stable electronic
levels, which are assumed to not decay during the whole
process. Furthermore, we also consider that the frequency
of the a single-mode radiation field is in resonance with the
qubits’ transition frequency. In the dipole and rotating-wave
approximation, the Hamiltonian for the qubit-field interaction
is (h̄ = 1) [23,24]

Ĥ1 =
{

ωcσ̂
A
z /2 + gâσ̂ A

+ + gâ†σ̂ A
− , t ∈ [0,τ ],

ωcσ̂
B
z /2 + gb̂σ̂ B

+ + gb̂†σ̂ B
− , t ∈ [T ′,T ′ + τ ],

T ′ = τ + T + 2τc,

where σz = |1〉i〈1| − |0〉i〈0|, σ̂ i
+ = |1〉i〈0| and σ̂ i

− = |0〉i〈1|
(i ∈ {A,B}). The coupling constant g characterizes the
strength of the dipole interaction of the qubits with the
single-mode field, and thus 2g is the vacuum Rabi splitting. ωc

is the frequency of the single-mode fields in both cavities and
also the transition frequency of the qubits’ state. â and b̂ (â†
and b̂†) are the annihilation (creation) operators of the field
mode in cavitites A and B.

The optical fiber is considered to be a single-mode fiber
with frequency ω and its modes which can couple to the
cavities form a frequency band (ω − δω,ω + δω). This usually
means that there is only one wave function considered as
the solution of the Helmholtz equation in the cross section
of the fiber and many along the length of the fiber [25]. In
the rotating-wave approximation, i.e., δω � ω, the interaction
Hamiltonian between the single-mode cavities and the fiber
modes is

Ĥ2 =
{∑

i κi,Aâ
†
i â + κ∗

i,Aâ†âi , t ∈ [τ,τ + τc],∑
i κi,B â

†
i b̂ + κ∗

i,B b̂†âi , t ∈ [τ + T ,τ + T + τc],

where κi,A(κi,B) describes the coupling between the single-
mode of cavity A (B) and the ith mode of the fiber. âi (â†

i )
is the annihilation (creation) operator of the ith mode of the
fiber.

Another important phenomena is the photon loss during the
propagation of the radiation field through the optical fiber. We
consider a model, where each mode of the fiber is described
by a damped harmonic oscillator and the decay rates are equal.
The decaying mechanism is given by the master equation

dρ̂

dt
= −γ

2

∑
i

(â†
i âi ρ̂ − 2âi ρ̂â

†
i + ρ̂â

†
i âi) = Lρ̂,

for propagation times t ∈ [τ + τc,τ + T + τc]. γ is the damp-
ing rate, which characterizes the photon loss in the fiber.

The free Hamiltonian of the complete radiation field is

Ĥ0 = ωc(â†â + b̂†b̂) +
∑

i

ωi â
†
i âi ,

with ωi ∈ (ω − δω,ω + δω) being the frequency of the ith
fiber mode.

The first purpose of this subsection is to investigate the time
evolution of the whole setup described by

dρ̂

dt
= −i[Ĥ0 + Ĥ1 + Ĥ2,ρ̂] + Lρ̂. (1)

Our main strategy is to split the above evolution into parts
and the output state of one part is considered as input state for
the subsequent one. As we have already stated that τc � T , it
is reasonable to take the whole time evolution equal to 2τ + T

and thus considering the leakages as almost instantaneously
occurring effects in regard to the propagation time of the
radiation field inside the fiber. Therefore, the time evolution
can be split into three parts: the qubit-field interaction in cavity
A, the leakages and the photon loss during the propagation,
and the qubit-field interaction in cavity B.

First, we investigate the time evolution in cavity A with an
initial state

|	0〉 = |0〉A|α〉A, (2)

where the single-mode field is in the coherent state

|α〉 =
∞∑

n=0

e− |α|2
2

αn

√
n!

|n〉, α = √
n̄ eiφ. (3)

The other modes (fiber and cavity B) of the radiation field
are considered to be in the ground state. The initial state of
the qubit B is not taken into account yet, because it will be
prepared after the elapsed time τ + T and thus qubit B will
interact with the emerging field in cavity B right after its
preparation procedure. Time evolution of Eq. (1) for times
0 � t � τ and initial condition (2) is based on the solutions of
the resonant Jaynes-Cummings-Paul model:

|	(t)〉

= e− |α|2
2

∞∑
n=0

[
cos(g

√
nt)

αn

√
n!

|0〉Aeiωct/2

− i sin(g
√

n + 1t)
αn+1

√
(n + 1)!

|1〉Ae−iωct/2

]
e−iωcnt |n〉A.

In the following discussion, we focus on large mean photon
number n̄ 
 1 and interaction times τ such that the Rabi
frequency g

√
n can be linearized around n̄. Thus the obtained

joint state of qubit and single-mode field can be approximated
by

|	(τ )〉 ≈ |0〉Aeiωcτ/2 + |1〉Ae−iωcτ/2eiφ

2
e−ig

√
n̄τ/2|α(τ )e−iϕ〉A

+ |0〉Aeiωcτ/2 − |1〉Ae−iωcτ/2eiφ

2
eig

√
n̄τ/2|α(τ )eiϕ〉A,

ϕ = gτ

2
√

n̄
, α(τ ) = αe−iωcτ , (4)
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provided that the interaction time τ fulfills the condition
gτ/

√
n̄ � 16π . This is a time scale below the well-known

revival phenomena of the population inversion in the Jaynes-
Cummings-Paul model [26].

In the next step, qubit A moves out of cavity A and the
single-mode radiation field starts its leakage into the optical
fiber. In order to deal with the dynamics of the second part,
leakage out from cavity A, propagation in the fiber, and the
leakage out from the fiber into cavity B, we recall and make
full advantage of the results derived in Ref. [17]. The initial
condition for the leakage is given by (4), which we rewrite
in a more convenient form and we add the ground state of
the fiber:

|ψ(t = τ )〉 = (|	1〉A|α−〉A + |	2〉A|α+〉A)
∏

i

|0〉i ,

|	1〉A = |0〉Aeiωcτ/2 + |1〉Ae−iωcτ/2eiφ

2
e−ig

√
n̄τ/2,

|	2〉A = |0〉Aeiωcτ/2 − |1〉Ae−iωcτ/2eiφ

2
eig

√
n̄τ/2,

α− = αe−iωcτ−iϕ, α+ = αe−iωcτ+iϕ.

The solution to (1) for times τ � t � τ + τc is given by

|ψ(t)〉 = |	1〉A|α−(t)〉A
∏

i

|α−
i (t)〉i

+ |	2〉A|α+(t)〉A
∏

i

|α+
i (t)〉i

with

α±(t) = αe±iϕ−iωcτ e−iωct−κAt/2,

α±
i (t) = αe±iϕ−iωcτ κi,A

ωi − ωc + iκA/2

(
e−iωi t − e−iωct−κAt/2

)
,

and κA being the cavity A’s decay constant (see the appendix
in Ref. [17] for a detailed derivation). Provided that the leakage
time τc is sufficiently long, i.e., κAτc 
 1, and neglecting the
small exponential terms, we have that the depletion of the
cavity mode is perfect.

In the following step, the propagation of the radiation field
from cavity A to cavity B is discussed. The initial condition
for Eq. (1) with respect to the propagation is

|ψ(τ + τc)〉 = |	1〉A
∏

i

∣∣α−
i

〉
i
+ |	2〉A

∏
i

∣∣α+
i

〉
i
,

α±
i = αe±iϕ−iωcτ−iωiτcκi,A

ωi − ωc + iκA/2
, (5)

which also means that we neglect to follow the evo-
lution of the empty cavity A. In order to calculate
eLt (|ψ(τ + τc)〉〈ψ(τ + τc)|) for times τ + τc � t � τ + τc +
T , we recall the results of Sec. III in Ref. [17]. Coherent states
and coherences between coherent states evolve as

eLt
∣∣αl

i

〉
i

〈
αk

i

∣∣ = e−fi (t)l,k
∣∣αl

ie
−γ t/2−iωi t

〉
i

〈
αk

i e
−γ t/2−iωi t

∣∣,
fi(t)l,k = (1 − e−γ t )

[∣∣αl
i

∣∣2 + ∣∣αk
i

∣∣2

2
− αl

i

(
αk

i

)∗
]
,

with l,k ∈ {+,−}. We observe that fi(t)+,+ = fi(t)−,− = 0
for all i. For the other two terms, we have

fi(t)+,− = (1 − e−γ t )|α+
i |2(1 − e2iϕ),

fi(t)−,+ = (1 − e−γ t )|α+
i |2(1 − e−2iϕ),

where we used the relation |α+
i | = |α−

i |. We can now conclude
that initial to the leakage out from the fiber into cavity B the
joint state of fiber modes and qubit A has the following form:

|	1〉A〈	1|
∏

i

|β−
i 〉i〈β−

i | + |	2〉A〈	2|
∏

i

|β+
i 〉i〈β+

i |

+ |	1〉A〈	2|
∏

i

e−fi (T )−,+|β−
i 〉i〈β+

i |

+ |	2〉A〈	1|
∏

i

e−f ∗
i (T )−,+|β+

i 〉i〈β−
i |, (6)

where

β±
i = αe±iϕκi,A

ωi − ωc + iκA/2
e−iωiT −iωcτ−γ T /2 (7)

and due to the relation T 
 τc, we have also considered that
T + τc ≈ T .

Equation (6) can be considered as an initial condition for
(1) and we introduce the decay constant κB for cavity B. We
assume that κBτc 
 1 and as described in Ref. [17] we have
the following conditions for perfect leakage into cavity B:
Choose the coupling constants between the fiber and cavity B

in such a way that

κi,B = κ∗
i,A = |κi |e−iϕi ,

e2iϕi = ωi − ωc + iκA/2

ωi − ωc − iκA/2
,

which also yields that κA = κB , and ωiT is an integer multiple
of 2π . If these conditions are not fulfilled, then many photons
are reflected from the surface of the mirror, which forms cavity
B and connects it with the optical fiber.

In general, these conditions are hard to realize in current
experimental setups and therefore we consider a simple yet
detailed enough model, such that it is able to describe effects
of photon reflection from the surface of the mirror. We set
κi,A = κi,B , i.e., κA = κB and ωiT is an integer multiple of
2π for all i. The last condition can be fulfilled if the relevant
modes of the fiber have approximately a frequency spacing of
c/L0, where L0 is the length of the fiber and c is the speed of
the light in the fiber. Thus, we can introduce (see Eq. A(19) in
Ref. [17])

√
η =

∑
i

|κi,A|2
(ωi − ωc + iκA/2)2 , (8)

the transmittance of the mirror and η quantifies the fraction
of photons which are not reflected back from the surface of
cavity B.

After τc time, a part of the propagating radiation field is
able to leak into cavity B and the reflected field we consider
as a lost information; hence we trace out the state of the fiber
after the reflection. By using the relation

Trfiber{|{αi}〉〈{βi}|} = e− ∑
i

|αi |2+|βi |2−2αi β
∗
i

2
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with |{αi}〉 = |α1〉1 ⊗ |α2〉2 ⊗ · · · , we obtain the following
joint state of qubit A and the single-mode of field in
cavity B:

ρ̂ = |	1〉A〈	1| |α′−〉B〈α′−| + |	2〉A〈	2| |α′+〉B〈α′+|
+F (T ,η,ϕ) |	1〉A〈	2| |α′−〉B〈α′+|
+F ∗(T ,η,ϕ)|	2〉A〈	1| |α′+〉B〈α′−|, (9)

with

α′± = √
ηe−γ T /2αe−iωc(τ+T )±iϕ,

F (T ,η,ϕ) = exp

{
−

∑
i

fi(T )−,+ + ∣∣βR
i

∣∣2
(1 − e−2iϕ)

}

= exp
{−|α|2(1 − e−2iϕ)

(
1 − ηe−γ T

)}
,

where we have used Eq. (5) for the relation
∑

i |α±
i |2 = |α|2

and Eq. (7) to approximate the reflected average photon
number

∑
i |βR

i |2 as (1 − η)
∑

i |β±
i |2 = (1 − η)|α|2e−γ T .

Finally, we consider the last part of the dynamics, where
we include the state of qubit B, which moves through cavity
B after the leakage from the fiber is considered to reach its
maximum. The initial condition for (1) is

ρ̂ ⊗ |1〉B〈1|,
where ρ̂ is defined in Eq. (9). In order to obtain the solution
for the density matrix of the two qubits and the single-mode
field, we separate the initial condition into four parts. We
make use of the resonant Jaynes-Cummings-Paul model for
the initial condition |1〉B |α′−〉B and obtain in the coherent
state approximation

|1〉Be−iωcτ/2 + |0〉Beiωcτ/2e−iφ

2
e−ig

√
n̄τ/2|α′−e−iϕ〉B

+ |1〉Be−iωcτ/2 − |0〉Beiωcτ/2e−iφ

2
eig

√
n̄τ/2|α′−eiϕ〉B,

where we have considered that φ + ϕ ≈ φ. In a similar way,
for the initial condition |1〉B |α′+〉B we get

|1〉Be−iωcτ/2 + |0〉Beiωcτ/2e−iφ

2
e−ig

√
n̄τ/2|α′+e−iϕ〉B

+ |1〉Be−iωcτ/2 − |0〉Beiωcτ/2e−iφ

2
eig

√
n̄τ/2|α′+eiϕ〉B.

In order to present a clear picture of the obtained density
matrix of qubits and single-mode field in cavity B, we
transform out the phases acquired during the qubit-field
interactions and the propagation phase through the optical fiber

ρ̂(2τ + T ) = Û (2τ + T )ρ̂ ′Û †(2τ + T ),

Û (2τ + T ) = e−iωcσ̂
A
z τ/2−iωcσ̂

B
z τ/2−iωcb̂

†b̂(2τ+T ). (10)

We introduce the Bell states

|	±〉 = 1√
2

(|0〉A|1〉B ± |1〉A|0〉B),

|�±
φ 〉 = 1√

2

(
e−iφ |0〉A|0〉B ± eiφ|1〉A|1〉B

)
, (11)

and the unnormalized states

|�1〉 = |	+〉 + |�+
φ 〉

2
√

2
e−ig

√
n̄τ

∣∣αF e−2iϕ
〉
B
,

|�2〉 = |	−〉 − |�−
φ 〉

2
√

2
|αF 〉B, |�3〉 = |	−〉 + |�−

φ 〉
2
√

2
|αF 〉B,

|�4〉 = |	+〉 − |�+
φ 〉

2
√

2
eig

√
n̄τ

∣∣αF e2iϕ
〉
B
,

where αF = √
ηe−γ T /2α. The state of qubits and single-mode

field in the interaction picture defined in (10) takes the form

ρ̂ ′ =
2∑

i,j=1

|�i〉〈�j | +
4∑

i,j=3

|�i〉〈�j |

+F (T ,η,ϕ)(|�1〉 + |�2〉)(〈�3| + 〈�4|) + H.c.

In the next step, we briefly investigate the possibility of a
field measurement which is capable of realizing conditionally
an entangled two-qubit state. First, we consider the overlaps

F∗ = ∣∣〈αF

∣∣αF e−2iϕ
〉
B

∣∣ = ∣∣〈αF e2iϕ
∣∣αF

〉∗
B

∣∣
= ∣∣ exp

{ − ηe−γ T |α|2(1 − e−2iϕ)
}∣∣ ≈ e−ηe−γ T g2τ2

2 ,

(12)

where we have used the relation ϕ = gτ

2
√

n̄
. The approximation

holds for gτ � √
n̄ and shows that the overlap nearly vanishes

for interaction times τ � 4
√

eγT /η/g. In order to ensure that
(12) is almost zero, i.e., |αF 〉B is orthogonal to |αF e2iϕ〉B and
|αF e−2iϕ〉B , and the coherent state approximation is still valid,
the interaction times have to fulfill the following condition:

4

√
eγT

η
� gτ � 50

√
n. (13)

This condition shows clearly the destructive effects of the
photon loss during propagation and the photon reflection from
the surface of cavity B; i.e., the left-hand side of Eq. (13)
is the smallest when γ T = 0 and η = 1, which correspond
to lossless propagation or no propagation and perfect leakage
into cavity B. Thus, for interaction times, which fulfill the
conditions in (13), there is a postselective field measurement
of |αF 〉 by means of balanced homodyne photodetection [27]
(see also our discussion in Ref. [18]), which is able to prepare
the two-qubit state

ρ̂AB = (1 + x)|	−〉〈	−| + (1 − x)|�−
φ 〉〈�−

φ |
2

,

x = exp{−n̄[1 − cos(2ϕ)](1 − ηe−γ T )}
× cos[n̄ sin(2ϕ)(1 − ηe−γ T )] (14)

with success probability

PGen = 0.5. (15)

In the case when x = 0, ρ̂AB is not an entangled state and
hence not purifiable. Furthermore, the introduced parameter x

is a good entanglement measure, because the concurrence of
the state in Eq. (14) is |x| [28].
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FIG. 2. Top panel: Concurrence x of the state in Eq. (14) as a
function of γ T . Bottom panel: The overlap of the field states, F∗ in
Eq. (12), as a function of γ T . The interaction time was set to τ =
4/g with mean photon number n = 100. Three curves are presented
for different values of η: 1.0 (full line), 0.85 (dashed line), and 0.7
(dotted line).

The last part of this section is devoted to the analysis of
x as a function of η and γ T . Figure 2 shows the limitations
of entanglement generation between the two remote qubits.
We require in general that the absolute value of x in Eq. (14)
to be close to unity and on the other hand that the overlap
between components of the field state are zero, which is a
necessary condition for successful postselection of (14). These
two requirements are hard to hold for cases when the photon
loss in the fiber is high and there is a big reflection rate from
the surface of cavity B. The separation angle ϕ between the
coherent state during the qubit-field interactions cannot be too
large (≈π/4), because then |x| is too small, but when ϕ is too
small then the overlap between the field states is not vanishing.
This is an optimization problem with competing objectives
and the ideal ϕ, which is determined by the interaction time
[see Eq. (4)], has to be found for every experimental scenario
independently.

We conclude at the end of this subsection that entanglement
generation between two nodes connected by a optical fiber is
obtained. The resulting two-qubit states are not perfect Bell
states, but they are entangled unless the parameter x is equal
to zero. In the following subsection, we investigate these states
as input states for the entanglement purification protocol.

B. Entanglement purification

In this subsection, we present an entanglement purification
protocol, which is capable of increasing the degree of entan-
glement of the state obtained in Sec. II A [see Eq. (14)]. The
protocol we have in mind is a recurrence protocol [29,30],
which works in a recursive way; i.e., it uses two copies
of the same state for the next purification step. Thus, it is
assumed that the entanglement generation procedure have
resulted in a presumably large ensemble of similarly entangled
states between the repeater nodes. In our previous work [19],
we have discussed an implementation and here we briefly
recapitulate it.

We consider two qubits A1 and A2 in one node with ground
states |0〉i and excited states |1〉i (i ∈ {A1,A2}). These qubits
move sequentially through a cavity and interact resonantly with
single-mode field prepared initially in a coherent state |α〉 [see
Eq. (3)]. We take a general initial state with no correlations
between the field and the qubits

|	0〉 = (c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉)|α〉,
with the basis |ij〉 = |i〉A1 |j 〉A2 (i,j ∈ {0,1}). The Hamiltonian
in the dipole and rotating-wave approximation reads

Ĥ =
{

ωcσ̂
A1
z /2 + ωcâ

†â + gâσ̂
A1+ + gâ†σ̂ A1− , t ∈ [0,τ ],

ωcσ̂
A2
z /2 + ωcâ

†â + gâσ̂
A2+ + gâ†σ̂ A2− , t ∈ [τ,2τ ],

where σ i
z = |1〉i〈1| − |0〉i〈0|, σ̂ i

+ = |1〉i〈0| and σ̂ i
− = |0〉i〈1|

(i ∈ {A1,A2}). 2g is the vacuum Rabi splitting and ωc is the
frequency of the single-mode field in the cavity and also
the transition frequency of the qubits’ state. â (â†) is the
annihilation (creation) operator of the field mode in the cavity.

By solving the Jaynes-Cummings-Paul model in sequence
for interaction times characterizing the collapse phenomena
[26] and projecting onto the field state contribution |α〉 in the
full solution by means of balanced homodyne photodetection
[19], one is able to generate the probabilistic two-qubit
quantum operation at each node,

M̂A1,A2 = |	−〉〈	−| + |�−
φ 〉〈�−

φ |, (16)

where these Bell states are defined by Eq. (11) with the indices
A1 = A and A2 = B. This probabilistic quantum operation
takes over the role of the controlled-NOT gate employed in the
seminal protocols of Refs. [29,30].

We have demonstrated in Ref. [19] that for large mean
photon number n̄ = 500, cavity damping, and spontaneous
emission of the qubits (parameter values based on Ref. [31]),
the following protocol is very robust:

(I) The quantum operation M is applied locally at each node
A and B to the initial state

ρ̂ = ρ̂A1,B1 ⊗ ρ̂A2,B2 ,

where both ρ̂A1,B1 and ρ̂A2,B2 have the form of Eq. (14). After
successful applications of the quantum operations at each node
A and B, we get the following four-qubit state:

ρ̂(1) = M̂ρ̂M̂†

Tr{M̂†M̂ρ̂} , M̂ = M̂A1,A2M̂B1,B2 .

(II) One of the pairs is measured, where the choice of the
measured pair is unimportant. There are four possible states
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in which one can find, for example, the pair (A2,B2). The
measurement of one of the states |ij〉A2,B2 with i,j ∈ {0,1}
results in the two-qubit state

ρ̂
i,j

A1,B1
= TrA2,B2

{|ij〉A2,B2〈ij |ρ̂(1)}. (17)

(III) In the next step, we apply the unitary operator Û i
A1

Û
j+1
B1

at each node to the state ρ
i,j

A1,B1
, where

Û i = (|1〉〈1| + i|0〉〈0|)(|1〉〈0| + |0〉〈1|)j .
The final two-qubit state is obtained after a measurement-
dependent (A2 and B2 qubits found in the states |ij〉A2,B2 )
unitary transformation

ρ̂
(1)
A1,B1

= (
Û i

A1
Û

j+1
B1

)
ρ̂

i,j

A1,B1

(
Û i

A1
Û

j+1
B1

)†
.

Now, we recall the result of Sec. II A on the state generated
between two spatially separated qubits. For simplicity, we set
the phase φ in (14) equal to zero and we apply a local unitary
transformation at both nodes A and B such that |	−〉 picks up
a global phase and |�−〉 → |�+〉. Substituting this state into
the purification protocol, we get

ρ̂
(1)
A1,B1

= (1 + x)2

2 + 2x2
|	−〉〈	−| + (1 − x)2

2 + 2x2
|	+〉〈	+|,

with a success probability (1 + x2)/4. After repeating the
protocol for N times, i.e., 2N qubit pairs were used to get
a single two-qubit state, we obtain

ρ̂(N) = f(N)(x)|	−〉〈	−| + g(N)(x)|	+〉〈	+|, (18)

with success probability

PPur = [P(0)]
2N−1

[P(1)]
2N−2

. . . [P(N−2)]
2P(N−1),

P(k) = f 2
(k)(x) + g2

(k)(x)

2
, (19)

where

f(k+1)(x) = f 2
(k)(x)

f 2
(k)(x) + g2

(k)(x)
, f(0)(x) = 1 + x

2
,

g(k+1)(x) = g2
(k)(x)

f 2
(k)(x) + g2

(k)(x)
, g(0)(x) = 1 − x

2
.

Equation (19) shows the overall success probability of N

purification rounds, provided that in the first iteration 2N−1

qubits, in the second iteration 2N−2 qubits, and so on, are
successfully purified.

It is worth noticing that we purify in the case of x > 0
toward the Bell state |	−〉 and for x < 0 toward the other
Bell state |	+〉. In Fig. 3, we show the tradeoff between the
entanglement of the state and the overall success probability
after several iterations of the purification protocol. The figures
demonstrate that the purification protocol is successful only at
the expense of the qubit resources due to the low probabilities
involved [32]. For example, N = 4 iterations with 16 qubit
pairs can purify a wide range of badly entangled states
toward a Bell state; however, the overall success probability is
approximately 10−8 to 10−9. For lower number of iterations,
we can cover a smaller range of badly entangled states, but
with higher overall success probability and better resource
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FIG. 3. Top panel: The coefficient f(N) in Eq. (18) as a function
of x after N iterations of the purification protocol. Bottom panel:
Semilogarithmic plot of the overall success probability PPur [see
Eq. (19)] as a function of x. The value of x, concurrence of the
state in Eq. (14), is considered to be not larger than 0.5 due to the
findings in Fig. 2. Three curves are presented for different values of
iterations N : 4 (full line), 3 (dashed line), and 2 (dotted line).

management. We presented a figure only for the coefficient
f(N), because g(N) is nothing else than the reflection of f(N)

about the y axis. The absolute value of x, i.e., concurrence of
(14), is limited by a value of 0.5 due to our findings in the
Sec. II A.

C. Entanglement swapping

In an entanglement swapping, the goal is to increases the
distance of the shared entanglement. In other words, take three
repeater nodes, labeled by the letters A, B, and C, where
A-B and B-C are neighboring nodes which share a Bell
pair. Thus, B has two qubits, and by performing a projective
Bell measurement on these two qubits and communicating the
results to A and C, one can generate a Bell pair between A and
C. Applying the swapping protocol to all intermediate nodes
results in a Bell pair between the endpoints of the repeater
chain.

The most important ingredient here is the realization of
Bell measurements. We have already introduced and discussed
such a scenario, where we have analyzed the realization
of a noninvasive unambiguous Bell measurements [18,20].
A noninvasive Bell measurement means that the qubits are
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projected on a Bell state without destroying them. Therefore,
measuring later these two-qubit states one can demonstrate
that they are indeed in a Bell state. Our proposal is compatible
with the other two protocols presented in Secs. II A and II B,
because it is based on the Tavis-Cummings model [33], i.e.,
two material qubits interact simultaneously with the single-
mode radiation field inside a cavity, and postselective field
measurements. However, the proposed scheme in Ref. [20]
requires special conditions on the mean photon number of
the single-mode fields. In the subsequent discussion, we
briefly present the scheme proposed in Refs. [18,20] with a
different postselective field measurement scheme, based also
on balanced homodyne photodetection.

Let us consider that two qubits A and B simultaneously
move through a cavity and resonantly interact with the single-
mode radiation field, where the path of the qubits is designed
such a way that the dipole couplings g are equal. Thus, the
Hamiltonian in the dipole and rotating-wave approximation
reads

Ĥ = ωcâ
†â + gâ(σ̂ A

+ + σ̂ B
+ ) + gâ†(σ̂ A

− + σ̂ B
− )

+ωc

(
σ̂ A

z /2 + σ̂ B
z /2

)
,

where σ i
z = |1〉i〈1| − |0〉i〈0|, σ̂ i

+ = |1〉i〈0| and σ̂ i
− = |0〉i〈1|

(i ∈ {A,B}). ωc is the frequency of the single-mode field in
the cavity and also the transition frequency for qubits A and B.
â (â†) is the annihilation (creation) operator of the single-mode
field.

The field is prepared initially in a coherent state and
after the interaction it is postselected by balanced homodyne
photodetection. In the next step, the two qubits move through
the second cavity and interact with the single-mode radiation
field, prepared also in a coherent state. The emerged state of
the field is again postselected. If each of the two postselections
has two outputs, then there are four possible two-qubit states
which are generated in the protocol. The main task is to find
those conditions which allow that these four postselected qubit
states are the Bell states.

The initial condition before the first interaction is

|	0〉 = (a−|	−〉 + a+|	+〉 + b−|�−〉 + b+|�+〉)|α〉,
(20)

where α = √
n̄, and the Bell states are defined in Eq. (11) with

the following adopted notation:

|�±〉 = ∣∣�±
φ=0

〉
.

By solving the resonant Tavis-Cummings model for inter-
action times characterizing the collapse phenomena [26] and
approximating the field contributions one order beyond the
coherent state approximation, one obtains (see the appendix in
Ref. [20])

|	(τ )〉 ≈ (a−|	−〉 + b−|�−〉)|α〉
+ a+ − b+

2
(|	+〉 − |�+

2πτ 〉)|α+〉

+ a+ + b+
2

(|	+〉 + |�+
−2πτ 〉)|α−〉, (21)

where τ is a dimensionless parameter of the interaction time
equal to gt

π
√

4n̄+2
and we have introduced the field states

|α±〉 =
∞∑

n=0

αne− |α|2
2√

n!
e±i2πτ [n̄+1+n− (n−n̄)2

4n̄+2 ]|n〉. (22)

The collapse phenomena occurs when 1/4 � τ � 3/4. If τ =
1/2, then the field states |α±〉 have made half a rotation in
phase space and lie on the opposite site to the initial coherent
state |α〉, i.e., 〈α|α±〉 ≈ 0. This is a special case because the
qubit states has the following relation:

|�+
π 〉 = |�+

−π 〉 = −|�+〉. (23)

Furthermore, |α−〉 (|α+〉) rotates clockwise (counterclock-
wise) during the interaction time on the circle with radius√

n̄ and at τ = 1/2 〈α−|α+〉 �= 0.
In the next step, a postselective measurement on the field

state ρ̂ = Tr{|	(τ )〉〈	(τ )|} is performed with the help of
balanced homodyne photodetection. Here, we briefly recapit-
ulate the basics of this measurement, because the arguments
presented in this subsection differ from our former study
in Ref. [20]. So, the quantum state of the field, which we
want to measure, interferes with an intense coherent state
||αL|eiφL〉 of a local oscillator on a 50:50 beam splitter. The
two modes emerging from the beam splitter are directed to two
photodetectors, which generate an electric current proportional
to the photon number. The two photocurrents are subtracted
and thus by the difference of photon numbers n− is measured.
Provided that the local oscillator state is intense, i.e., |αL| 
 1,
and the photodetectors have unit efficiency, the measurement
is equivalent to a projective von Neumann measurement [27].
If a and a† are the annihilation and creation operator of the
mode to be measured, then a quadrature state |xφL

〉 is defined
by the relation

1√
2

(âe−iφL + â†eiφL )|xφL
〉 = xφL

|xφL
〉. (24)

A balanced homodyne measurement projects onto the quadra-
ture eigenstate |xφL

〉 according to the probability distribution

PφL
(xφL

) = Tr{ρ̂|xφL
〉〈xφL

|}, (25)

where xφL
= n−/

√
2|αL|2. For the case τ = 1/2, we consider

the following projective measurement,

P̂1 =
∫ ∞

0
|xπ/2〉〈xπ/2|dxπ/2, (26)

with properties

P̂1|α〉 = |α〉, P̂1|α±〉 = 0. (27)

The projector P̂1 represents a postselective balanced
homodyne measurement where the right side of the phase
space is measured only.

In the case when the detectors are signaling, we postselect
from the joint state of field and qubits (21) the state

a−|	−〉 + b−|�−〉 = a−|	−〉 − b−|�+
π/2〉. (28)

Hence, the initial state before the second interaction reads

|	0〉 = (a−|	−〉 − b−|�+
π/2〉)|αeiπ/2〉. (29)
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After τ = 1/2 interaction time, we get the state

a−|	−〉|α′〉 + b−|�+
−π/2〉(|α′

+〉 + |α′
−〉)

+ b−|	+〉(|α′
−〉 − |α′

+〉), (30)

where α′ = αeiπ/2 and we have used the relation |�+
−π/2〉 =

|�+
3π/2〉. The field of the second cavity is measured with the

help of the following projector,

P̂2 =
∫ ∞

0
|x0〉〈x0|dx0, (31)

with properties

P̂2|α′〉 = |α′〉, P̂2|α′
±〉 = 0. (32)

The projector P̂2 represents a postselective balanced homo-
dyne measurement where the upper side of the phase space is
measured only. If the detector signals, then we postselect the
two qubit state |	−〉 with success probability |a−|2 [compare
with the initial condition in (20)]. Otherwise, we have

(Î − P̂2)|α′〉 = 0,

(Î − P̂2)(|α′
−〉 − |α′

+〉) = 0, (33)

(Î − P̂2)(|α′
+〉 + |α′

−〉) = (|α′
+〉 + |α′

−〉),

where Î is the identity operator. Thus, in the case of no
signaling we postselect the two-qubit state |�+

−π/2〉 with
success probability |b−|2.

Let us turn back to the case when the detectors which
postselect the field of the first cavity do not signal. In this
case, we obtain the following two-qubit state:

a+|	+〉 + b+|�+
π 〉 = a+|	+〉 − b+

∣∣�−
π/2

〉
. (34)

Thus, before the second interaction, the initial state reads

|	0〉 = (a+|	+〉 − b+|�−
π/2〉)|αeiπ/2〉, (35)

and after τ = 1/2 interaction time, we have the following joint
state of field and qubits:

−b+|�−
π/2〉|α′〉 + a+|�+

−π/2〉(|α′
−〉 − |α′

+〉)
+ a+|	+〉(|α′

+〉 + |α′
+〉). (36)

In case of successful signaling when P̂2 is applied, the protocol
postselects the state |�−

π/2〉 with success probability |b+|2;

otherwise, i.e., Î − P̂2 is applied, we get |	+〉 with |a+|2
success probability.

Let us apply these results to the three-node scheme (A,
B, and C) explained at the beginning of this subsection. The
initial state we consider is

|	0〉 = |	−〉AB1 ⊗ |	−〉B2C

= − 1
2 |	−〉AC |	−〉B1B2 − 1

2 |�+〉AC |�+〉B1B2

+ 1
2 |	+〉AC |	+〉B1B2 + 1

2 |�−〉AC |�−〉B1B2 . (37)

It is immediate that each of the Bell measurements occurs with
25% probability and toward A and C the following classical

communication protocol is applied:

{P̂1,P̂2} → −|	−〉AC,

{P̂1,Î − P̂2} → eiπ/2|�−〉AC,

{Î − P̂1,P̂2} → e−iπ/2|�+〉AC,

{Î − P̂1,Î − P̂2} → |	+〉AC.

III. PERFORMANCE AND LIMITATIONS

In the subsequent discussion, we compare the prerequisite
of our proposal with the status of current developments in
experimental physics. In view of these experimental setups
and their parameters, we give the performance of our proposed
quantum repeater.

A. Experimental considerations

In our proposal, each repeater node requires four cavities
as explained in Sec. II, where two of the cavities are coupled
one sided to fibers. In order that the cavities couple efficiently
to the fiber links, they may be built with asymmetric mirror
transmissions. If mirrors with high transmission rates are
coupled to the single-mode optical fiber, then this leads
to a highly directional single-mode output [34]. In this
configuration together with 87Rb atoms, the whole setup
operates in the intermediate-coupling regime of cavity QED
{g,κ,�} ≈ 2π × {5,3,3} MHz. The other requirement is that
these cavities are also coupled to outer lasers which prepare
the coherent states inside them and to balanced homodyne
measurement setups. A possible solution is to pierce a small
hole in the center of the mirror with low transmission rate,
thus allowing a good in and out coupling. This experimental
technique has already been reported for microwave cavities
[35]. The other two cavities, which are used in the entangle-
ment purification protocol and in the generation of complete
Bell measurements, have to be able to couple strongly and
symmetrically the supported single-mode radiation field to two
atoms. This implementation of the two-atom Tavis-Cummings
model has been experimentally reported for neutral Cs atoms
with {g,κ,�} ≈ 2π × {18.0,0.4,5.2} MHz [36], for 40Ca+

ions with {g,κ,�} ≈ 2π × {1.0,0.05,11.5} MHz [37], and for
87Rb atoms with {g,κ,�} ≈ 2π × {7.6,2.8,3.0} MHz [38].
Furthermore, these cavities have to have a good in and out
coupling with external radiation fields, such that the prepara-
tion of coherent state and the postselective field measurements
via balanced homodyne photodetection can effectively be
carried out.

Another critical step in our proposal is that the atoms,
implementing the qubits, can be transported through the
cavities. The transport has to be highly controllable and a
possible solution is the use of optical conveyor belts. Cs
atoms can be captured from a vapor, cooled down, and
trapped in a high-gradient magneto-optical trap [39]. A dipole
trap is formed with help of two counterpropagating laser
beams and the atoms are transferred without loss from the
magneto-optical trap into the dipole trap [40]. By detuning
the frequencies of the laser beams, one can set into motion
the standing wave which acts as a optical conveyor belt and
transports the atoms with high position precision into the
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cavities. Furthermore, the speed of the conveyor belts defines
the interaction time between the atoms and the radiation field
inside the cavities. Because of the purification protocol, we
also require that the number of atoms loaded in the optical
conveyor belt is high as possible (2N with N iterations) and a
decade ago it was reported that it is possible to load 19 atoms
efficiently into the dipole trap [41]. The atoms in the dipole
trap can be subject to coherent manipulations as imposed in
the purification protocol, in which measurement-dependent
transformations have to be carried out (see Sec. II B). After
the qubit-field interactions, information on the internal atomic
state have to be extracted. This can be done by applying
push-out lasers on the conveyor belt and depending on the
internal atomic state the Cs atom either remain in the trap or
get pushed out [42]. In experiments without conveyor belts, one
may use state-selective field ionization detectors for rubidium
atoms [31].

Postselective field measurements are at the core of our
proposed quantum repeater. These measurements are carried
out via balanced homodyne photodetection. Here, the purpose
is not to perform a complete state tomography on the
radiation field emerging from the qubit-field interactions, but
instead to measure a specific field state component and by
thus conditionally postselect qubit states. All three protocols
presented in Sec. II depend on the realization of such a
measurement, which is capable of discriminating a coherent
state from the rest of the field states, where all states are
well separated from each other in the phase space. There
are already investigations for such situations. For example,
Ref. [43] has shown that the error probability of a scheme,
where |−α〉 and |α〉 are to be discriminated, is small also for
the small mean number of photons involved, i.e., n̄ ≈ 0.4–1.4.
We have considered in our scheme n̄ ≈ 100, so we believe
that the implementation of our proposal with postselective
field measurements is in the range of current experimental
technologies and furthermore due to the large number of mean
photons involved detector inefficiencies can also be overcome.
The duration time of performing a quadrature measurement
depends on the setup. Here, we estimate it to be equal to
5.5 ns [43–45].

Optical fibers are the key elements defining the distance
between the nodes of a quantum repeater. The critical
parameter defining this distance is the attenuation length,
which is maximal at telecom wavelengths around 1.5 μm [4].
The only issue here is that most of the atomic transitions of
typical cavity QED atoms, which couple resonantly to the
single-mode radiation field, are not at telecom wavelength
and therefore the field state is not suitable for long-distance
transmission over optical fibers due to high losses. There are
two possible approaches: realizing cascade transitions [46,47]
or using wavelength conversion [48]. These experiments are
subject to the generation or conversion of single photons. We
remind the reader that our scheme is based on multiphoton
field states and therefore further experimental developments
are required by our proposal in order to use optical fibers with
telecom wavelength. Otherwise, resonant photons with atomic
transitions will suffer high attenuation in optical fibers with
frequencies equal to the atomic transitions. Provided that we
are able to use optical fibers with telecom wavelength, then
the photon loss in our theoretical proposal can be considered

to be approximately 0.2 dB/km. Thus, the propagation time
T and the damping rate γ can be translated into a length L0,
which characterizes the distance between two repeater nodes,
by the relation L0 = 20(γ T )/(0.2 log 10).

B. Rate analysis

In this subsection, we compute the rates at which near-
maximally-entangled pairs are generated between the end-
points of the repeater chain. An important parameter is the time
Tlink which is required to purify a near-maximally-entangled
state between two neighboring repeater nodes and the overall
success probability P of this process. We are going to estimate
these parameters depending on the number of elementary links
n, the number of iterations N required in purification protocol,
and the success probabilities obtained in Sec. II.

First, we analyze the repeaterless entanglement generation
between two points separated by a distance L0. The total
time T1 attempting to generate an entangled qubit between
these two points has the following parts: the time required for
the two qubit-field interactions 2 × 1/(2g) (characteristic time
of the collapse phenomena in the Jaynes-Cummings model);
the leak-in and leak-out processes 2 × 1/κ; the propagation
time L0/c where c ≈ 2 × 108 m/s is the speed of light in
a telecom optical fiber; the time required for the balanced
homodyne measurement Tdet; and the time L0/c of classical
communication in order to confirm or deny the success of
the procedure. We consider a case where the reinitialization
of the cavities and the detectors is done during the classical
communication. Thus, we obtain

T1 = 1

g
+ 2

κ
+ L0

c
+ Tdet + L0

c
. (38)

Provided that at least two entangled qubit pairs are generated,
the purification protocol may start and the total time T2

attempting to purify a state out of these two states has
the following parts: time required for the two qubit-field
interactions 2 × 1/(2g); the time Tdet required for the balanced
homodyne measurements and the qubit measurements; and
the time of classical communication. Here, the classical
communication is required both to confirm the success of the
protocol and to postprocess the obtained state depending on
the results of the qubit measurements. These considerations
yield

T2 = 1

g
+ Tdet + L0

c
. (39)

Now, taking into account the experimental parameters dis-
cussed in the previous section, we realize that for distances by
means of L0 > 2 km both T1 and T2 have L0/c as the dominant
time, because Tdet is mainly determined by the leaking out of
the fields from the cavity into the measurement setups, whereas
the quadrature measurements are very fast. We consider that
qubit measurements are also fast. These considerations yield
that T1 ≈ 2L0/c and T2 ≈ L0/c.

If the distance L0 is below 2 km then 1/κ is the dominant
term in the duration of the process. In this case, the reinitial-
ization of the cavities and the leaking of the fields toward the
detectors must be taken into consideration and we estimate the
whole time to be at least 2/κ . Thus, for small distances both
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T1 and T2 are considered to be approximately equal to 10 μs
(κ = 2π × 0.05 MHz from Ref. [37]).

Thus, for a distance L0 (later an elementary link in the
repeater chain), the time required to generate 2N entangled
pairs and obtain a highly entangled pair by N purification
rounds is given by

Tlink = 2NT1 + (2N − 1)T2, (40)

where 2N − 1 is the number of the purification protocols
applied. During this time, the overall success probability is

P = [PGen]2N

PPur. (41)

According to the purification protocol in Sec. II B, we purify
toward |	−〉 or |	+〉 depending on the sign of x in Eq. (14).
Therefore, we define the fidelity

F = max{f(N),g(N)}, (42)

where f(N) and g(N) are given in Eq. (18), i.e., the general
form of a purified state after N purification rounds. Applying
our protocols of entanglement generation and purification to
a point-to-point situation, one may talk about the rate of
entangled pairs generated across a distance L0 only if the
achievable fidelities are also displayed as well. In this case, we
are able to compare the performance of our scheme to a recent
results of Ref. [49], where the ultimate rate of repeaterless
quantum communication is given by − log2(1 − χ ). This
formula gives the rate of Bell pairs per channel use, which
results in the rate of Bell pairs per second by multiplying it with
the repetition rate c/(2L0); i.e., entanglement generation over
the quantum channel is assisted by a classical communication.
The parameter χ quantifies the fraction of photons surviving
the channel, i.e., the transmissivity of the channel, which in our
case yields χ = η exp{−γ T }. η and γ have been introduced in
Sec. II A to characterize the fraction of photons not reflected
from the surface of the second cavity and the decay rate of the
optical fiber.

In Fig. 4, average rates of generated entangled pairs over a
distance L0 are analyzed for different numbers N ∈ {1,2,3,4}
of purification rounds and η ∈ {0.8,1}. These figures clearly
demonstrate that there is a tradeoff between average rates and
the fidelity of the pairs with respect to a Bell state (|	−〉
or |	+〉). If η = 1, then near-maximally-entangled pairs are
either generated on very short distances L0 ≈ 500 m with
an average rate ≈2625 pairs per second or larger distances
L0 ≈ 4 km with an average rate ≈10−2 pairs per second. If
η = 0.8, then we require at least N = 4 purification rounds
and for a distance of L0 ≈ 2.5 km we obtain a very low
average rate ≈10−11 pairs per second. These distances and
average rates define also the possible elementary links of
the repeater chain, because applying entanglement swapping
procedure to low-fidelity pairs reduces the fidelity of the
output pairs even further. Now, if we compare our results
with the ultimate rate of Ref. [49], it becomes clear that our
protocol has a low performance unless η ≈ 1 and L0 � 0.5 km.
However, the result in Ref. [49] is an upper bound for rates
assuming arbitrary local operations and unlimited classical
communication, thus being a benchmark rate for quantum
repeater proposals.

In the next step, we are going to discuss several scenarios
where the quantum repeater protocol is in use. Let us denote
by L = nL0 the length of the repeater chain with L0 being
the length of an elementary link and consequently n being
the number of the links. We calculate the average number
of attempts of preparing one near-maximally-entangled pair
between all the repeater nodes. The best strategy here is to
use memories and implement n parallel processes. As soon as
one near-maximally-entangled pair has been generated along
one elementary link, its state is saved in a quantum memory,
while between the other nodes the process is repeated until we
succeed. Provided that we are successful along all the links,
the average number of attempt is [50]

An =
n∑

i=1

(
n

i

)
(−1)i+1

1 − (1 − P )i
(43)

with P given in Eq. (41).
Another characteristic time of a quantum repeater, which is

Tswap, stands for the overall time required to entangle the two
endpoints of the repeater chain with the help of entanglement
swapping procedures. Based on our proposal in Sec. II C, the
swapping procedure is deterministic and the characteristic time
of a single swap contains the following processes: the time
required for the two subsequent qubit-field interactions 2 ×
1/(

√
2g) (characteristic time of the collapse phenomena in the

two-qubit Tavis-Cummings model); the time Tdet required for
the two balanced homodyne measurements; and the time of
classical communication between the nodes in order to inform
the parties about which state has been swapped. In order to
speed up the whole swapping process, parallel entanglement
swappings are carried out for intermediate nodes. For example,
n = 100 elementary links are reduced in the first round to
n = 50 links, in the second round to n = 26 links, and so on,
until we have n = 1 link, which means that we reached the
endpoints of the repeater chain. Hence,

Tswap = �log2 n�
(√

2

g
+ 2Tdet + L0

c

)
, (44)

where �.� is the ceiling function. The time Tswap has the
dominant term L0/c unless L0 < 2 km, when we consider
Tswap = 10 μs, where g = 2π × 1.0 MHz and Tdet ≈ 1/κ with
κ = 2π × 0.05 MHz (see Ref. [37]).

An interesting feature arises when we apply the swapping
procedure to ρ̂A,B1 ⊗ ρ̂B2,C with Bell measurements on qubit
systems B1 and B2 and the shared state between the nodes
being the output state of the purification protocol [see Eq. (18)]

ρ̂ = p|	−〉〈	−| + (1 − p)|	+〉〈	+|.
We have iterated the entanglement purification until either p

or 1 − p is larger than 0.999; however, the equality p = 1
or p = 0 in principle cannot be reached in finite numbers of
purification rounds. During the applications of the swapping
procedure, this is an issue, because the fidelity F introduced
in Eq. (42) reduces after k rounds of parallel swapping
procedures as

F (k) = f (F (k−1)), F (0) = F,

f (x) = 1 − 2x + 2x2. (45)
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FIG. 4. Entanglement generation in repeaterless scenarios. Top panels: Achievable fidelities F [see (42)] of entangled pairs generated
between two points separated by the distance L0. N is the number of purification rounds. Bottom panels: Semilogarithmic plot of average rates
of entangled pairs with the same purification rounds as in the same (right or left) top figure. Left panels: The rate 1 − η of reflected number
of photons from the surface of the second cavity (see Sec. II A) is taken to be zero. Right panels: 1 − η = 0.2. The red (gray) curves are the
ultimate rates of Bell pairs per second in repeaterless quantum communication [49], where the transmissivity of the channel with length L0 is
defined by pure fiber loss in the left panel and fiber loss and η in the right panel. Note that not all rate values are accompanied by high fidelities
in the respective top figure and for isolated cases when F = 0.5 the pairs are not even entangled. The interaction time has been set to τ = 4/g

with mean photon number n = 100.

As an example, consider a repeater chain with n = 60
elementary links, which means that the number of parallel
swapping procedures k = �log2 60� = 6. If the fidelity of the
pairs between the nodes is F = 0.999, then the fidelity of the
final pair between the end points is F (6) = 0.939. Therefore,
in order that we can talk about near-maximally-entangled
pairs (F > 0.999), two more purification rounds have to be
performed at the end points of the repeater chain. In numbers,
an average of 41 pairs have to be postprocessed. Therefore,
we introduce the average number of pairs N̄ = 2j /PPur [see
Eq. (19) for j purification rounds] involved in the final
purification procedure, where j depends on F (k) [see Eq. (45)]
with k = �log2 n� and n is the number of elementary links.

Finally, the average rate is given by

R = 1

N̄ (TlinkAn + Tswap)
. (46)

We have already mentioned that the number of qubits
available at the nodes is limited due to the current stage
technology of conveyor belts. As this number is 19 (see
Ref. [41]), we will consider no more than four iterations of the
entanglement purification procedure. Although this number is

small, Fig. 5 shows that four iterations decrease extremely
the average rate R of generated near-maximally-entangled
pairs. This results clearly reflects the very expensive nature
of purification protocols and shows that increasing the number
of purification rounds leads to unrealistic demands of quantum
memory. In the case of N = 4, this means that we require a
quantum memory which is capable of protecting the coherency
of the states for 108 s, i.e., more than 3 years. In the N = 2 case,
we have much higher average rates; however, the fidelity of the
states (still larger than 0.999) obtained after two purification
rounds is affected by the swapping procedures and a few more
purification rounds have to be carried out at the endpoints of
the repeater chain. Here, we have considered an ideal scenario
where η = 1 [see Eq. (8)] and x = −0.5, which according to
Fig. 2 yields an elementary link length L0 ≈ 3.5 km.

As we increase the number of elementary links in order
to obtain larger distances L, we are facing a situation where
the fidelities of the pairs are more reduced by the swapping
procedures. Thus, extra purification rounds are required at
the end points of the repeater chain and this postprocess
results in the decrease of the average rates. For example, let us
consider that across all links we have purified pairs with fidelity
F = 1 − ε, where ε is a threshold number defining what we
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FIG. 5. Semilogarithmic plot of average rates of near-maximally-
entangled (F > 0.999) pairs between two end points separated by the
total distance L. The elementary link between two nodes is 3.5 km.
Two scenarios are presented for different number of iterations of the
purification protocol: N = 2 (points displayed as squares) and N = 4
(circles). Drops in the average rate are due to the destructive effects
of the swapping procedure on the fidelities, according to Eq. (45),
and therefore extra entanglement purification is required at the end
points of the repeater chain. 1 − η = 0; i.e., there are no photons
reflected back from the surface of the second cavity (see Sec. II A),
and the elementary link length determines accordingly the fidelity of
the repeater protocol’s input pairs in Eq. (14).

call a near-maximally-entangled pair (ε < 0.001 in this paper).
If we have n elementary links, then the fidelity after the
swapping procedures is approximately equal to 1 − 2�log2 n�ε.
Therefore, strategies for large distances and with lower number
of purification rounds may not generate pairs with sufficiently
high fidelity, such that these fidelities do not drop way below
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FIG. 6. Semilogarithmic plot of average rates of near-maximally-
entangled (F > 0.999) pairs between two end points separated by the
total distance L. Two cases are presented for different elementary link
lengths: L0 = 3.5 km (points displayed as squares), and L0 = 7 km
(circles). Both cases are depicted for N = 3 purification rounds. For
a brief explanation for the drops in the average rates, see Fig. 5.
1 − η = 0; i.e., there are no photons reflected back from the surface
of the second cavity (see Sec. II A), and the elementary link lengths
determine accordingly the fidelities of the repeater protocol’s input
pairs in Eq. (14).
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FIG. 7. Semilogarithmic plot of average rates of entangled pairs
between two end points separated by the total distance L. Top panel:
The scenario (black dots) with L0 = 0.3 km long elementary links
and N = 1 purification round is depicted up to 18 km, where near-
maximally-entangled (F > 0.999) pairs are generated. Bottom panel:
The 18-km-long repeater chain of the top figure is considered now as
an elementary link and with N = 1 purification round is depicted up
to 900 km. 1 − η = 0; i.e., there are no photons reflected back from
the surface of the second cavity (see Sec. II A), and the elementary link
length determines accordingly the fidelity of the repeater protocol’s
input pairs in Eq. (14). The solid lines with η = 1 are the ultimate
rates of pure fiber loss in repeaterless quantum communication [49].

the threshold fidelity 1 − ε after the swapping procedures
are applied. Depending how much they have dropped, more
purification rounds have to be carried out at the end points of
the repeater chain, which yield significantly reduced average
rates. These reduced rates may be comparable with other
strategies with high number of purification rounds.

In Fig. 6, we compare two quantum repeaters with the
only difference being the elementary link length. We have
considered a scenario where η = 1 and we have taken for
x −0.5, i.e., L0 ≈ 3.5 km, and 0.3, i.e., L0 ≈ 7 km (see
Fig. 2). Despite the longer distance of the elementary link
length, low probabilities of purifying the state characterized
by x = 0.3 reduce the average rate R of generated near-
maximally-entangled pairs at the two end points separated
by the total distance L. Furthermore, the destructive effects of
the swapping procedures affect both strategies. The scenario
with shorter elementary links is less affected, because here we
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generate higher fidelity pairs between the repeater nodes than
in the scenario with 7-km-long elementary links.

In the last case, we set η = 1 and L0 = 0.3 km, which
yield x = 0.913. This means that the fidelity of the generated
pairs [see Eq. (14)] is high enough to obtain a near-maximally-
entangled pair after only one round of the purification protocol.
In the top panel of Fig. 7, we compare this scenario with the
ultimate rate of Bell pairs per second in repeaterless quantum
communication [49] and we see that the average rate of the
quantum repeater protocol starts with lower values, but it seems
that scales with L better. In this scenario, we are bound in
our numerics to 18 km, because we have 60 elementary links
and the binomial

(
n

i

)
in (43) may take extremely large values

which are multiplied with very small numbers. Above 18 km or
60 elementary links, the numerical instabilities are increasing
and they lead to meaningless average rate numbers. It is also
worth mentioning that in this case with 60 elementary links
one must build 59 intermediate repeater nodes, which is an
expensive procedure in regards to physical resources of cavity
QED. In order to show that this repeater scenario exceeds the
ultimate limit of Ref. [49], we embed the above discussed of
an 18-km-long repeater chain into a longer repeater chain as
an elementary link. Therefore, we determine the probability
of generating an entangled pair with x = 0.8769 over 18 km,
which yields 0.026. This approach circumvents the use of large
valued binomials

(
n

i

)
. In the bottom panel of Fig. 7, we see that

this longer repeater chain crosses the ultimate repeaterless rate
around 500 km and for a total distance of L = 900 km the
rate is found to be 3.6 × 10−3. This achievement is contrasted
with the required number of repeater nodes, which turns out to
be 2999.

We therefore conclude that for a realistic implementation
of our proposal, the generation of high-fidelity entangled
states between the nodes is the most crucial ingredient.
Entanglement purification is a very expensive procedure which
cannot be properly compensated for by high repetition rates
and the best strategy would be to generate entangled states
which can be purified in one step [51]. Our numerical
investigations shows that the parameter η [defined in Eq. (8)]
quantifying the fraction of photons entering from the optical
fiber into the cavity is the most crucial hurdle for obtaining
high average rates, because the photon loss rate γ can be
recompensated by choosing shorter elementary links. There
exists experiments, which are able to obtain η ≈ 1; however,
they operate with single photons on short distances [34]. In
scenarios where η = 1, we obtained an average rate R = 23
with 60 elementary links for L = 18 km and R = 3.6 × 10−3

with 3000 elementary links for L = 900 km. Furthermore,
this scenario from a theoretical point of view outperforms
the ultimate rate of repeaterless quantum communication [49].
A much lesser average rate R = 5 × 10−4 is found for 30
elementary links and a total distance L = 105 km. In summary,
large distances and high repetition rates require a lot of repeater
nodes at the expense of physical resources.

IV. CONCLUSIONS

We have presented a hybrid quantum repeater based on
resonant qubit-field interactions. In our scheme, all two-qubit
operations required for the building blocks are generated via

qubit-field interactions and postselective field measurements,
thus making our proposal a good candidate for experimental
implementation.

In the context of entanglement generation between the
repeater nodes, we have investigated a system of two spatially
separated material qubits coupled to single-mode cavities.
In addition, these cavities are connected by an optical fiber.
For the description of qubit-field interactions, we have used
the resonant Jaynes-Cummings-Paul model and entanglement
is generated between the distant qubits by a postselective
balanced homodyne photodetection. Our model is subject
to two type of decoherence, namely the photon loss in the
optical fiber and the photon reflection from the surface of
the cavity, an effect of the fiber-cavity coupling inefficiencies.
These considerations extend former studies on hybrid quantum
repeaters. Within this model, we have found that the quality
of entangled qubit states, quantified via the concurrence,
is very sensitive to the the photon reflection, which has a
strong impact on the orthogonality of field states involved
in postselective field measurements. In the case of small
reflectivity and several-km-long optical fibers, we have shown
that high-fidelity entangled states can be created with 50%
success probability, which is an improvement of our former
result in Ref. [17].

In the next step, entangled state obtained in the first building
block of the quantum repeater have been considered as input
states for an entanglement purification protocol, a recurrence
protocol, introduced by us [19,51]. The theoretical model
consists of two qubits, which sequentially interact with a
single-mode cavity, and postselective field measurements. We
have used the Jaynes-Cummings-Paul model and its solutions
for the description of the interactions. These interactions
and the field measurements generate a probabilistic two-
qubit quantum operation, which takes over the role of the
controlled-NOT gate used in standard purification protocols.
We have found that the overall success probability of purifying
near-maximally-entangled pairs is very low, and the results for
four steps of iterations are already unrealistic. Therefore, it is
more beneficial to use as few purification rounds as possible;
otherwise the entanglement protocol becomes very expensive
in regard to physical resources.

For the final building block of the quantum repeater,
the entanglement swapping, we have considered two qubits,
which interact simultaneously with single-mode cavities. We
have employed the Tavis-Cummings model and its solutions.
The Bell measurement are generated by postselecting the
emerged cavity fields. This study, which is based on our
former results [18,20], has been extended by a new set of field
measurements, which are able to project on field states lying
on the opposite side of phase space’s axes. These postselective
field measurements allow for deterministic realization of
unambiguous Bell measurements, an improvement of our
result in Ref. [20] and an important ingredient in the effective
actuation of quantum repeaters.

As all three building blocks consists of the same cavity
QED elements, we have collected some recent experimental
developments with respect to these components. We have
presented the parameters of these experiments and discussed
the pros and cons of an implementation. A comprehen-
sive analysis of the quantum repeater’s rate of generating
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near-maximally-entangled pairs per second has been given.
In particular, we have found that moderately low rates can be
achieved in the context of current experimental technologies
for distances up to 100 km. This result is mainly due to
the request that we purify near-maximally-entangled pairs
(0.999 < F < 1) between the neighboring nodes. In addition,
these purified pairs cannot reach in principle F = 1 and
therefore the swapping procedures have destructive effects
on the fidelities. This may result in extra purification rounds
for the entangled pairs between the end points of the
repeater chain. If the purification protocol is required at
the end points, then the average rates are further reduced.
We have also compared our results with the ultimate rate
of repeaterless quantum communication [49] and we have
shown that the average rates of our proposal with very
high number of nodes exceeds this benchmark value around
500 km. This occurs in cases where the elementary links are
a few hundred meters long and we use only one purification
round.

In summary, the strength of our proposal is in the com-
patible and cavity-QED-based building blocks, which can
easily augment each other. The main idealistic assumptions
throughout this paper are the following: nondecaying qubits,
i.e., perfect quantum memories, and unit efficiency detectors.
In future work, we aim to relax one or both of these

assumptions. In view of these considerations, our proposal
gives a better understanding of the influence of the building
blocks on each other and shows its own limitations on
the achievable repeater rates on moderate distances. These
limitations may be surpassed only if in the first building
block we generate such type of entangled states, which can
be purified into a Bell state (F = 1) in one purification round
[51]. Hence, this scenario is able to avoid the low success
probabilities of several purification rounds and the destructive
effects of swapping procedures.

We hope that our work is a step forward to an experimental
realization of the first hybrid quantum repeater. In addition,
the proposed scheme mainly relies on current technology
and thus offers a clear perspective on a future experimental
demonstration.
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