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Suppression of effective noise in Hamiltonian simulations
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Simulating high-weight Hamiltonians can convert local noise on the original Hamiltonian into undesirable
nonlocal noise on the simulated Hamiltonian. Here we show how, starting from a two-local Hamiltonian in the
presence of non-Markovian noise, a desired computation can be simulated as well as protected using fast pulses,
while maintaining an energy gap against the errors created in the process.
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I. INTRODUCTION

The theory of quantum fault tolerance ensures that quantum
computers can operate reliably in the presence of decoherence
and noise [1,2]. The quantum accuracy threshold theorem, in
various incarnations [3–13], guarantees that arbitrarily long,
reliable quantum computation is achievable if the error rate
is below a threshold. Although in principle the existence of
this threshold means that scalable quantum computation is
possible, in practice the value of this threshold and the required
overhead are very important, as achieving them in experiments
remains extremely challenging.

One approach to reduce these requirements is to use
active quantum error correction in combination with other
methods that provide additional robustness against instability
or noise. Among such methods are holonomic quantum
computation [14] and topological quantum computation [15].
In [16,17] schemes have been proposed based on encoding the
information in the ground subspace of a Hamiltonian with a
constant energy gap and topological properties, such as the
surface code Hamiltonian, and performing the computation by
adiabatically deforming the Hamiltonian. The energy gap of
the Hamiltonian suppresses the thermal excitations induced
by the environment. Compatible active error correction is
performed frequently enough to prevent logical errors. As the
energy-gap protection from a Hamiltonian stabilizer code on
a two-dimensional lattice cannot increase with system size
[18], to sustain arbitrary long universal quantum computation
on such a lattice with stabilizer codes requires active error
correction.

Although this construction is appealing, the surface code
Hamiltonian and also the time-dependent Hamiltonian imple-
menting the deformation consist of up to four-local interac-
tions [16]. Implementing such interactions experimentally is
difficult (though not impossible and various proposals exist
[19–21]). One way to circumvent this is to simulate these
Hamiltonians using other available resources. For example,
simulation of stabilizer Hamiltonians at finite temperature is
discussed in Refs. [22] and [23]. But the noise of the original
system may be dramatically transformed by the simulation
procedure. It is important to investigate how the simulation
process converts realistic noise on the original resources to new
effective noise on the simulated Hamiltonian. For example,
local noise on the original Hamiltonian can be converted

into nonlocal noise on the simulated Hamiltonian, and this
could reduce the effectiveness of the simulated Hamiltonian
in suppressing errors. This is a general concern for various
simulation methods, including stroboscopic methods (see, e.g.,
[24,25]) and perturbative gadgets [26–28].

The question of the effect of a Markovian noise on simula-
tion has been partially studied [29], but despite its importance
[30], only a limited amount of attention has been devoted
to the effects of general noise on the simulation of high-
weight Hamiltonians. In this work we show how—starting
from an entangling Hamiltonian in the presence of a general
local non-Markovian environment—one can generate the
desired nonlocal Hamiltonian by the application of one-local
unitary operators. By combining simulation with schemes
for dynamical decoupling (DD) [2,31,32], we construct a
sequence of pulses that suppresses errors while simulating the
desired interactions. The relationship between the strength of
the simulated Hamiltonian and the strength of effective noise is
investigated. We also consider how far the transformed errors
spread, based on the locality (both geometric and algebraic) of
the bath Hamiltonian and the system-bath interaction.

We illustrate our construction with the Hamiltonians used in
Ref. [16] for fault-tolerant quantum computation in the surface
code, but it can easily be modified to simulate other, similar
Hamiltonians, including the Hamiltonians used for protection
of adiabatic quantum computation in Ref. [33]. In the latter, a
stabilizer code that can detect the effect of the environment on
the system is chosen; the system Hamiltonian is then encoded
using the logical operators, while a penalty Hamiltonian is
added to break the degeneracy. Again, the energy gap of the
constructed Hamiltonian suppresses the rate of excitation out
of the code space [34]. This scheme also requires four-body
interactions.

II. SUMMARY OF MAIN RESULTS AND ORGANIZATION
OF THE PAPER

Our main contributions in this work can be summarized as
follows:

(i) We provide a method to simulate Hamiltonians with
high-weight interactions on a grid, such as surface code
Hamiltonians, in a number of steps that is independent of the
size of the grid. We demonstrate this with detailed construction
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steps for surface code Hamiltonians, using two different
stroboscopic simulation techniques.

(ii) We provide a method to design new pulse sequences
that can simulate a desired Hamiltonian while pushing errors
(caused by the presence of the bath) to higher orders, by
combining DD and Hamiltonian simulation techniques.

To do so, we use two application of the symmetrization
procedure [32,35]. The first application shows how to protect
a Hamiltonian while averaging out all the errors. The second
application reduces the number of pulses needed to average
out local errors.

(iii) For local, but otherwise general, non-Markovian noise
on the original Hamiltonian we show how the effective
error on the simulated Hamiltonian becomes nonlocal. We
demonstrate that this effective noise is mostly suppressed
during the simulation of a surface code Hamiltonian because
of an effective gap.

This paper is organized as follows. In Sec. III we introduce
the resources and the goal of the simulation. In Sec. IV,
we describe two different methods to simulate the desired
high-weight Hamiltonian on a grid in the noise-free setting.
We also discuss how to simulate a time-dependent Hamiltonian
that, with the help of active error correction, can perform
universal quantum computation fault-tolerantly. In Sec. V,
we discuss the effects of general non-Markovian noise on
the simulation. We then show how using DD techniques in the
simulation procedure can reduce the strength of the effective
noise. We also discuss how the locality of the bath and system-
bath interaction Hamiltonian changes the spread of the noise
and also the resources required for a successful simulation.
In Sec. VI, we explicitly show that during the simulation
an effective gap against the strongest errors created in the
process is maintained. Section VII is devoted to conclusion
and discussion. Additional technical details are provided in
the appendices.

III. SETUP

Assume N qubits are placed on a two-dimensional square
lattice as depicted in Fig. 1. Let d(i,j ) denote the Euclidean
distance between qubits i and j ; we choose units such that
d(i,j ) = 1 if qubits i and j are nearest neighbors. A two-body
entangling Hamiltonian acts on nearest-neighbor and next-
nearest-neighbor qubits [with d(i,j ) = √

2]:

HX =
∑

d(i,j )�
√

2

XiXj , (1)

where Xi denotes the Pauli σx matrix acting on qubit i.
(An example of an alternative connectivity is provided in
Appendix A.)

Let us start with the toric code Hamiltonian; later we will
convert it to the surface code Hamiltonian with cuts. In this
case the Hamiltonian is

Hp =
∑

v

Av +
∑

p

Bp, (2)

with each vertex operator Av corresponding to an X⊗4 term
acting on the spins connected to the vertex v and each plaquette
operator Bp corresponding to a Z⊗4 term acting on the spins in

FIG. 1. Interacting qubits on a grid. Blue (gray) lines represent
XX interactions between qubits (circles). There is an interaction
between nearest-neighbor and next-nearest-neighbor qubits. For the
toric Hamiltonian, the goal is to simulate X⊗4 in the shaded areas and
Z⊗4 in the light areas.

the plaquette p; see Fig. 1 (Z denotes the Pauli σ z matrix). This
Hamiltonian is four-local, and as the first step we show how
to simulate it in the ideal case (no noise) using the two-local
Hamiltonian HX.

Having stroboscopic simulation in mind, for now we
assume that we can apply instantaneous, ideal unitary pulses
on each qubit. For simplicity we assume that the time interval
between pulses is fixed (more general schemes can improve
the results).

IV. SIMULATION: IDEAL CASE

Assuming there is no noise, here we show how to use the
commutator method to simulate the Hamiltonian Hp of Eq. (2)
using the Hamiltonian HX of Eq. (1). We set h̄ ≡ 1.

A. Commutator method

One way to build a three-local Hamiltonian using two-local
Hamiltonians is to use the identity

�τ (A,B) ≡ eiBτ eiAτ e−iBτ e−iAτ

= e−iτ 2(i[A,B]) + O(τ 3), (3)

valid for any pair of operators A and B. This allows us
to generate an effective three-local Hamiltonian iδt[Ha,Hb]
using appropriate two-local Hamiltonians Ha and Hb:

�δt (Ha,Hb) = e−iδt2(i[Ha,Hb]) + O(δt3). (4)

Note that in order to neglect the higher-order terms, obviously
‖Ha‖δt and ‖Hb‖δt must be small. Also, the effective
Hamiltonian contains δt , and so is much weaker than the
Hamiltonians we started with.

The same method can be used iteratively to increase the
locality of the effective Hamiltonian. To generate a four-local
Hamiltonian we notice that by negating Hb or Ha , the term
[Ha,Hb] is also negated. So we repeat the procedure with Ha ,
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FIG. 2. Depiction of Hx = ∑
1�i<j�4 XiXj for four qubits in a

plaquette.

−Hb, and a new Hamiltonian Hc:

U = eiHcδt�δt (Ha, − Hb)e−iHcδt�δt (Ha,Hb)

= e−iδt3([[Ha,Hb],Hc]+[[Ha,Hb],Hb]) + O(δt4). (5)

Considering δt as the duration that the simulated Hamiltonian
is implemented, the term δt2[[Ha,Hb],Hc] is the desired four-
local Hamiltonian. The extra term, δt2[[Ha,Hb],Hb], is the
result of the third-order error from Eq. (4) which becomes
relevant now:

�δt (Ha,Hb) = e−iδt2(i[Ha,Hb])−iδt3[[Ha,Hb],Ha+Hb]

+O(δt4), (6)

where the third-order error is not negated by the replacement
Hb �→ −Hb; the term [[Ha,Hb],Hb] remains. Using the
operator identity

ueAu† = euAu† =
{
eA [u,A] = 0
e−A {u,A} = 0

, (7)

valid for unitary u and arbitrary A, one can apply a pulse u that
commutes with the desired Hamiltonian and anticommutes
with the extra term to eliminate it:

UuUu† = e−2iδt3[[Ha,Hb],Hc] + O(δt4). (8)

This process takes time 20δt . This type of simulation is
stroboscopic, so we obtain the desired effective Hamiltonian
at a specific time (here at t = 20δt).

In the above discussion we used three different Hamiltoni-
ans Ha,b,c. For the actual simulation, we will assume that HX

is always on, and then apply pulses (not generated by HX) to
generate the effective Hamiltonians H{a,b,c}.

B. Simulating one plaquette operator

Let us now show how to use the Hamiltonian

Hx =
∑

1�i<j�4

XiXj (9)

(not to be confused with HX) to simulate the Hamiltonian
X1X2X3X4 on the qubits of a plaquette (see Fig. 2).

We will repeatedly use some basic identities, which are
listed next for convenience, as they will be used throughout
the remainder of this work:

WXW = Z, WYW = −Y, WZW = X,

SXS† = Y, SYS† = −X, SZS† = Z, (10)

where W is the Hadamard gate and S is the phase gate.
Let the system evolve with the Hamiltonian Hx for a time

2δt , and apply W1W2,u = Z1Z2 and W1W2u pulses at times
t = 0, δt , and 2δt respectively, where Wi is a Hadamard pulse
on the ith qubit:

W1W2(ue−iHxδtu)e−iHxδtW1W2 = e−i2(Z1Z2+X3X4)δt . (11)

The resulting Hamiltonian is Ha = 2(Z1Z2 + X3X4).
We generate Hb = 2(Y1X4 + X2X3) by first applying the

inverse phase gate S
†
1 to the first qubit, then applying u = Z1Z4

at time δt , and finally S1u at time 2δt :

S1(ue−iHxδtu)e−iHxδtS
†
1 = e−i2(Y1X4+X2X3)δt . (12)

We also generate Hc = 2(Y2X3 + X1X4) by applying pulses
S
†
2, u = Z1Z4, and S2u at times 0,δt and 2δt :

S2(ue−iHxδtu)e−iHxδtS
†
2 = e−i2(X1X4+Y2X3)δt . (13)

Generating any of −Ha,b,c is almost the same as generating
Ha,b,c, but with a few additional pulses. For example, for Ha

we notice that

(X1Z3)e−i2(Z1Z2+X3X4)δt (X1Z3) = ei2(Z1Z2+X3X4)δt . (14)

In the same way one can generate −Hb by conjugating Hb with
X1Z2 pulses, and −Hc by conjugating Hc with Z1Z2 pulses.

Having all the ingredients needed for Eq. (5), the effective
Hamiltonian at order δt3 contains the desired four-body
Hamiltonian with some extra terms that can be removed with
only one extra step. To see this, note that

[[Ha,Hb],Hc] = 32(X1X2X3X4 + Y1Y2X3X4), (15a)

[[Ha,Hb],Hb]] = 64(Z1Z2 + X1Y2X3X4). (15b)

One then follows Eq. (8) with an extra pulse u = Z1Y2, which
commutes with the desired term (X1X2X3X4) and anticom-
mutes with all the other terms. The effective Hamiltonian
becomes 64δt2X1X2X3X4, as desired.

Therefore, in NX = 40 steps we can convert the always-
on Hamiltonian Hx (after a time NXδt) to 64δt2X1X2X3X4,
with errors of order δt4, which is the same as saying that
the original Hamiltonian is stroboscopically converted to a
four-local Hamiltonian at the price of making it 64δt2/NX

times weaker.

C. Simulating all the plaquette operators on the grid

We assume that simultaneous pulses on all the qubits of the
grid can be applied in parallel. Using this we can simulate all
the plaquette operators on the grid. To do so, we start with
the Hamiltonian HX and repeat the steps provided for one
plaquette operator, while ensuring that no unwanted terms are
created in the process.

We start by creating patterns similar to Hx by letting HX

evolve and apply Z pulses on the qubits that are colored in
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FIG. 3. Generating plaquette operators. (a) The location of Z pulses is shown in blue (light gray). (b) The remaining XX interactions after
(a) are shown in red (dark gray). Their sum defines Htemp. (c) Labelling of qubits according to Fig. 2. (d) The result after applying pulses as in
Sec. IV B to (c). This achieves the first goal of generating plaquette operators in the green (shaded) areas.

blue (light gray) in Fig. 3(a) at times δt and 2δt , but leave
alone the qubits that are colored in black (dark gray). (More
precisely, we conjugate by Z pulses all the qubits of a plaquette
if the plaquette is in both an odd row and an odd column of
the grid, counting from the top left corner.) Every pair of
neighboring blue (light gray) and black (dark gray) qubits is
thus decoupled, since Z anticommutes with XX, while every
pair of neighboring blue (light gray) qubits is unaffected,
since ZZ commutes with XX. This results in an effective
Hamiltonian, called Htemp, shown in Fig. 3(b) by red lines as
the surviving XX interactions (the plaquettes in an odd row
and an odd column, or plaquettes in an even row and an even
column of the grid.) Now we use Htemp and apply pulses similar
to Sec. IV B on the labeled qubits in Fig. 3(c) in parallel to
generate plaquette operators in half of the grid, as shown in
Fig. 3(d). The steps of this procedure and the corresponding
components H{a,b,c} are presented in Figs. 4 and 5.

As discussed in Sec. IV B, by applying Z1Y2 (but now
in parallel on the whole grid) one can remove all the
extra unwanted terms, and all that remains are the plaquette
operators shown in Fig. 3(d).

Up to now, the effective Hamiltonian only contains half of
the plaquette operators needed. The other half can be generated
by repeating the same procedure, but shifting the locations of
the pulses by one qubit. In this case plaquette operators in the
shaded area of Fig. 3(d) are generated. The combined process
gives all the plaquette operators needed:

e−ihδt3 ∑
v Av + O(δt4), (16)

where hδt2 is strength of the effective Hamiltonian, and h

accounts for various numerical factors (such as 64/NX in
Sec. IV B).

D. Simulating all the vertex operators on the grid

Noticing, using Eq. (7), that

W1W2W3W4e
−iX1X2X3X4δtW1W2W3W4

= e−iZ1Z2Z3Z4δt , (17)

the process to create the vertex operators on the grid is similar
to the process for plaquette operators. One can just shift the
location of pulses and then conjugate the whole effective
Hamiltonian with Hadamard pulses on all the qubits of the
grid.

E. Strength of the effective Hamiltonian

By simulating the plaquette operators and the vertex
operators consecutively, we can effectively simulate the toric
code Hamiltonian in Nsim = 320 steps,1 and so in time Nsimδt ,
independent of size of the grid.

The generated four-body operator on the grid is 29δt3Hp.
Taking the strength of HX as 1, the strength of each H{a,b,c}
is 4. Inserting these into the commutators, [[Ha,Hb],Hc]]
has strength 44. Another factor 2 is added when we remove
the error term. Thus 42 × 2δt3 = 29δt3. That is, we use
HX to generate the toric code Hamiltonian while making it
29δt3/320δt = 1.6δt2 times weaker. As expected, decreasing
δt makes the ratio smaller.

F. Boundaries and the surface code

The toric code is defined on a torus, without boundaries.
We are also interested in the surface code, which has
boundaries [36]. To simulate the boundaries for the surface
code Hamiltonian, whether outer boundaries or the inner cuts
representing qubits, two other procedures are also needed.
The first is generating holes (either Z cut or X cut), which
is straightforward. For example, wherever it is necessary to
create a hole one can choose H ′

c such that it commutes
with [Ha,Hb]. To accomplish this, rather than applying S2

in Eq. (13), if we apply the Hadamard pulse W2, then
H ′

c = Z2X3 + X1X4, which commutes with [Ha,Hb], and so
the effective Hamiltonian is zero to order δt3. Thus, simply by
using a Hadamard pulse rather than phase gate on a specific
qubit we can generate a hole.

The second procedure needed is the simulation of three-
body interactions. One approach is to simulate them using
Eq. (6) at order δt2, while eliminating errors of order δt3. Using
the same pattern as Sec. IV C, starting from Hx in Fig. 2 we can
choose Ha = Z1X2 + X3X4 and Hb = Y1X4 + X2X3. This
results in an effective Hamiltonian X1X2X4δt

2 + (Y1X4 +
Z1X2)δt3 + O(δt4). By decoupling using one extra pulse X1,
we can remove the terms proportional to δt3. Also, if in Fig. 2
the third qubit and the terms it involves are missing (these are

110 × 2 comes from the commutator method, a factor of 4 comes
from generating each of H{a,b,c} from the original Hamiltonian HX . A
factor of 2 is needed to generate the other half of the plaquettes, and
another factor of 2 is needed to generate the vertex operators. Thus
Nsim = 10 × 2 × 4 × 2 × 2 = 320.
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FIG. 4. Generating Ha on the grid. (a) Evolving under Htemp [Fig. 3(b)], we apply Z pulses on the blue (light gray) qubits at times δt and
2δt . (b) The effective Hamiltonian at time 2δt . (c) Ha is generated by conjugating the Hamiltonian in Fig. 4(b) with Hadamard pulses. The
effective Hamiltonian becomes patterns of Z1Z2 + X3X4, depicted as green (light gray) coupled pairs (ZZ) and black (dark gray) coupled
pairs (XX).

edges of the Hamiltonian, corresponding to outer boundaries),
then again we can generate Ha = Z1X2 and Hb = Y1X4, and
then apply X1 with the same final result.

To balance the different strength of the generated terms
(boundaries are proportional to δt2 while the rest of the
construction is proportional to δt3), the proportion of time
slices implemented from each of these terms (in Trotterization
of the evolutions) can be chosen to be δt . Another approach is
to implement these boundaries together with the other terms,
but with flipping the signs of some of the Hamiltonians so
that all but a fraction δt of the three-body terms cancel out.
(In our example, we could use Z1 pulses: Z1e

−iX1X2X4δt
2
Z1 =

eiX1X2X4δt
2
.)

An alternative approach to avoid the complicated schedul-
ing described above is to apply pulses such as e−iY δt to
implement single-body Hamiltonians. For example, starting
from Hx in Fig. 2 we can repeat the procedure in Sec. IV B to
generate Ha = Z1X2 + X3X4 and Hb = Y1X4 + X2X3, but
now generate Hc = X1X4 + X3X4 + X1X3 + Y2. If so, the
effective Hamiltonian to order δt3 (after applying Z1Y2 pulses
to remove the extra terms, as mentioned in Sec. IV B) would
become X1X2X4 as desired. To generate such an Hc we can
follow this procedure:

Z2e
−iHxδtZ2e

−iHxδt e−i2Y2δt

= e−i2(X1X4+X3X4+X1X3+Y2)δt . (18)

G. π/4-conjugation method

An alternative method for simulating high-weight Hamilto-
nians is based on the π/4-conjugation identity (see, e.g., [24]).
This identity for Pauli operators A,B with {A,B} = 0 is

e−iπ/4AeiθBeiπ/4A = eiθ(iAB), (19)

which is exact. Obviously if [A,B] = 0 then we have

e−iπ/4AeiθBeiπ/4A = eiθB. (20)

Assume the entangling Hamiltonian is cHx =
c
∑

i<j XiXj with c being a constant representing the
strength of the entangling Hamiltonian:

e−i(π/4c)(cHx )e−iθY1ei(π/4c)(cHx ) = eiθZ1X2X3X4 . (21)

Using this we can show that

W1[e−i(π/4c)(cHe)ei�tY1 (Y1e
−i(π/4c)(cHe)Y1)]W1

= ie−i�tX1X2X3X4 . (22)

So we apply three fast pulses while having Hx on for a length
of time 2π/4c. It is important to notice that in this method the
simulation time, here 2π/4c, is independent of �t , the time
over which we wish to simulate the evolution.

To simulate plaquette operators we again can conjugate this
with Hadamard pulses:

W1W2W3W4e
−i�tX1X2X3X4W1W2W3W4

= e−i�tZ1Z2Z3Z4 . (23)

FIG. 5. Generating Hb and Hc on the grid. (a) Evolving under Htemp [Fig. 3(b)], we apply Z pulses on the blue (light gray) qubits at times δt

and 2δt . (b) The effective Hamiltonian at time 2δt . (c) Hb is generated by conjugating the Hamiltonian in Fig. 5(b) with S pulses on the orange
(light gray) qubits. The effective Hamiltonian becomes patterns of Y1X4 + X2X3, depicted as orange-black (light gray–dark gray) coupled pairs
(YX) and black (dark gray) coupled pairs (XX). (d) Hc is generated by conjugating the Hamiltonian in Fig. 5(b) with S pulses on the orange
(light gray) qubits. Now the effective Hamiltonian becomes patterns of X1X4 + Y2X3, depicted as black (dark gray) coupled pairs (XX) and
orange-black (light gray–dark gray) coupled pairs (YX).
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Implementation of the Hamiltonian on the grid can be done
similarly to Sec. IV C, with slight modifications.

Using this procedure there is no error in simulation (as
the identity is exact) and it takes a time proportional to π/c

independent of �t .
In contrast to the commutator method, where using the

entangling Hamiltonian for a short time produces a weak
effective Hamiltonian, here the entangling Hamiltonian has
to evolve for the fixed time π/4c to produce the desired
effective Hamiltonian. For an experimental setup that can only
generate weak entangling Hamiltonian (small c), this method
requires a large time which may make the implementation
more prone to noise. For experiments with access to strong
entangling Hamiltonians compared to the single-body gates
and measurements, this method is beneficial as it is exact and
the simulation time is independent of the time over which we
wish to simulate a Hamiltonian. See [29] for a comparison of
the π/4-conjugation method to the commutator method in a
Markovian environment.

H. Applying the scheme to fault-tolerant holonomic quantum
computation in surface codes

Using adiabatic deformation of the surface code Hamilto-
nian in combination with active error correction it is possible
to achieve fault-tolerant universal quantum computation [16].
In such a scheme, a gapped Hamiltonian protects the ground
space from the deleterious effects of thermal noise, and the
gates are applied by slowly deforming the Hamiltonian, such
that the desired gate is applied to the ground state of the
new Hamiltonian (holonomic quantum computation [14]).
Explicit constructions to implement all the gates needed for
universal quantum computation were proposed in [16] for such
deformations.

The Hamiltonians needed for these schemes can be made
geometrically local [16], but in practice it is challenging to
implement them as they consist of up to four-local interactions.
Using the methods we proposed above, it is straightforward
to simulate these Hamiltonians as well. For the purpose of
illustration we choose a few examples from [16] and explain
the needed procedure, but the constructions for the remaining
needed interactions are similar.

As the first example, we note that the creation of a |+〉 state
for an X-cut double qubit (and of a |0〉 state for a Z-cut double
qubit) is done by just turning off two stabilizer terms (Sec.
IV A in [16]). As explained in Sec. IV F, this can be done by
changing a pulse such that the O(δt3) effective Hamiltonian
vanishes.

We also need the ability to enlarge a hole. The proposed
time-dependent Hamiltonian implementing the deformation is
of the form

H (t) = −J

⎡
⎣(

1 − t

t1

)
B2 + t

t1
X1 +

∑
p 
=1,2

Bp +
∑

v

Av

⎤
⎦,

(24)

for t ∈ [0,t1] [see Eq. (37) in [16], with a specific choice of
the monotonic function].

To simulate the time-dependent Hamiltonian, we can use
Trotter-Suzuki expansions (see, e.g., [37]), and simulate each

piece by applying the appropriate pulses. To do so, we define
�t = t1

Ntr
and approximate the evolution generated by the time-

dependent Hamiltonian with ordered evolutions consisting of
several time-independent Hamiltonians:

Ntr∏
m=0

e−i[(1−m/Ntr )B2+
∑

p 
=1,2 Bp]J�t

×e−i(m/Ntr )X1J�te−iJ
∑

v Av�t . (25)

To simulate these terms, one can generate the weakest four-
body interaction in this expansion using the building blocks
we constructed in Sec. IV C, setting J�t

Ntr
= hδt3:

Ntr∏
m=0

(
e−iB2hδt3)Ntr−m(

e−i
∑

p 
=1,2 Bphδt3)Ntr

×(
e−iX1hδt3)m(

e−ih
∑

v Avδt
3)Ntr

. (26)

Each four-body term in this expansion can be simulated as
described in Sec. IV C. We notice that B2 can be constructed in
parallel with the rest of the plaquette operators. Also, e−iX1hδt3

is just a single qubit rotation applied using a pulse.
The error in the Trotterization procedure scales as �t2, and

is independent of the system size (the only noncommuting
term is X1; see [37]).

The same procedure works for the other Hamiltonians
needed, such as another Hamiltonian needed to enlarge a
hole [Eq. (39) in [16]], or the Hamiltonian needed for moving
logical qubits [Eq. (47) in [16]].

The Z̄ and X̄ logical operators of the surface code are
just strings of Z and X operators that connect appropriate
boundaries (or holes). Thus any product thereof can be formed
by applying parallel Z and X pulses (in practice one may avoid
applying them and instead keep track of updates in software).

V. EFFECT OF NOISE

So far we have considered only the noise-free case. In this
section we study the effect of noise on the simulation, and
propose methods to suppress the effective noise of this process.

Again we use the entangling Hamiltonian HX [Eq. (1)],
but now we assume the presence of a general non-Markovian
bath with Hamiltonian HB , interacting with the system via the
Hamiltonian HSB . For now we assume that this interaction
Hamiltonian is one-local:

HB = I ⊗ B0, (27)

HSB =
∑

i

∑
α∈{x,y,z}

σα
i ⊗ Bα

i , (28)

where i labels the the system qubit (when it is clear from the
context, we will combine this index and the Pauli operator
index into a single index: HSB = ∑

β σβ ⊗ Bβ). The total
Hamiltonian is

H = HX + HB + λHSB, (29)

with the dimensionless parameter λ being the strength of the
system-bath coupling.
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As the effective four-body interactions constructed in
previous sections appear in order δt3, our strategy is to choose
a series of DD pulses that commute with the Hamiltonian HX

but suppress the errors. This use of DD pulses that commute
with the Hamiltonian is an example of the general idea of
using the stabilizer generators of a quantum error correction
(or detection) code to perform a decouple-while-compute
operation, which is possible since the Hamiltonian is a sum
of the logical elements of the same code [38–40]. We will
show how to protect the Hamiltonian HX against the noise
at least up to order δt3, so that the simulated Hamiltonian
is not overwhelmed by the noise. To simulate the desired
interactions, we combine the pulses designed for simulation
with these DD pulses.

Note that DD schemes are effective when the time scale
of the bath is long compared to the time scales of the pulses,
and in fact DD can be shown to fail in the Markovian limit
[41]. Therefore the method proposed here is only effective for
non-Markovian environments.

We begin by first finding pulses that can suppress the errors
in a general non-Markovian environment, and then discuss
how further assumptions on the locality of the bath and the
system-bath interaction allow for more efficient schemes.

To analyze the effects of DD pulses, and the corresponding
effective Hamiltonian, it is handy to use the Magnus expansion
(see Appendix B). Here we choose the simplest DD schemes
to illustrate the main ideas, but there is much room to use more
sophisticated DD schemes (see, e.g., Ref. [2] for a review).

A. Protecting against noise at first and second order in δ t

To remove the first-order noise terms, we conjugate the
Hamiltonian HX with pulses I⊗N,X⊗N,Y⊗N,Z⊗N in four
steps. These pulses all commute with the Hamiltonian but
remove the noise from the effective Hamiltonian to first order,
via symmetrization [35,42].

Then, using the fact that all the even-order terms of the
Magnus expansion vanish for time-symmetric Hamiltonians
[12], we simply append another four steps, conjugating with
the same four pulses but in reverse order. This removes the
first- and second-order terms of the noise from the effective
Hamiltonian:

Usec = (I⊗Ne−iHδt I⊗N )(X⊗Ne−iHδtX⊗N )

× (Y⊗Ne−iHδtY⊗N )(Z⊗Ne−iHδtZ⊗N )

× (Z⊗Ne−iHδtZ⊗N )(Y⊗Ne−iHδtY⊗N )

× (X⊗Ne−iHδtX⊗N )(I⊗Ne−iHδt I⊗N )

= e−i(HX+HB )8δt+O(δt3). (30)

Note that the middle Z⊗N terms cancel, and that we can
simplify this sequence to

Usec = e−iHδtX⊗Ne−iHδtZ⊗Ne−iHδtX⊗Ne−2iHδt

×X⊗Ne−iHδtX⊗Ne−iHδtX⊗Ne−iHδt

= e−i(HX+HB )8δt+O(δt3). (31)

At this point, having evolved for 8δt (independent of the
grid size), we have protected the HX Hamiltonian from the
effect of noise to first and second order in δt .

B. Third-order error terms

First using a lemma we describe a general approach to
protect a Hamiltonian while averaging out all other errors at a
fixed order of time. It can be understood as an application of
the symmetrization schemes proposed in [32,35].

Lemma 1. (Symmetrization lemma: Protecting interaction)
Let P1, . . . ,Pn be commuting Pauli operators, and let P be the
group generated by these Pauli operators. Denote the set of all
Pauli operators that commute with all the Pis by N (P) (the
normalizer of P). Then for any Pauli operator s,

∀s /∈ P :
∑

g∈N (P)

gsg† = 0, (32)

∀s ∈ P :
∑

g∈N (P)

gsg† = s|N (P)|. (33)

As a special case, if P only includes the identity operator
we recover the usual Pauli twirling lemma (see, e.g., [43]).

Proof. See Appendix C.
Using this lemma for the particular plaquette operator dis-

cussed in Sec. IV B, choosing P1 = X1X2, P2 = X2X3, P3 =
X3X4 we need 44/23 = 32 pulses to cancel out all the
third-order errors. (Again, by symmetrization and doubling
the number of pulses we get can get rid of fourth-order error
as well.)

But to protect the whole grid, without additional assump-
tions about the locality of the bath part of the interaction
Hamiltonians (the {Bα} operators), the number of pulses
needed to cancel the terms at third order may grow with the grid
size. The reason is that at higher orders, multiqubit error terms
begin to appear without a locality assumption. To average out
these terms by DD methods, the number of pulses must grow
with the number of qubits (see Appendix D).

Later we will consider the case where the terms {Bα} are
geometrically local, but here we show that even without this
assumption it is possible to protect the Hamiltonian against
the dominant noise terms appearing at third order in δt using a
few pulses. To see this, we note that at order δt3, the terms that
are first order in the coupling strength λ have a specific form:
they are nested commutators of σα

i ⊗ Bα
i with two HX terms:

[[
HX,σα

i ⊗ Bα
i

]
,HX

]

=
[[

Xi ⊗
∑

〈〈i,i ′〉〉
Xi ′ ,σ

α
i ⊗ Bα

i

]
,HX

]

=
[[

Xi,σ
α
i

] ⊗
∑

〈〈i,i ′〉〉
Xi ′ ⊗ Bα

i ,HX

]

= [[
Xi,σ

α
i

]
,Xi

] ⊗
( ∑

〈〈i,i ′〉〉
Xi ′

)2

⊗ Bα
i . (34)

These terms are either Yi,Zi,YiXi ′Xi ′′ or ZiXi ′Xi ′′ , and are
thus decoupled away by conjugating the evolution in Eq. (31)
with I⊗N and X⊗N pulses:

(I⊗NUsecI
⊗N )(X⊗NUsecX

⊗N )

= e−i(HX+HB )16δt+O(λ2δt3)+O(δt4). (35)
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In fact, these two pulses not only remove the λ1 terms at order
δt3, but at any order of δt . This is expected, as the first-order
terms in λ are the result of the system Hamiltonian spreading
the noise across more qubits. As the system Hamiltonian terms
are all local and commuting, the noise to first order in λ can
only have the form of either YiX . . . X or ZiX . . . X, and so
conjugating with the proposed pulses can remove them.

Assuming that the system is weakly coupled to the
environment (small λ), the dominant terms in the expansions
are the lower powers of λ, so using just two additional pulses
can cancel out all errors to first order in λ.

To sum up, we obtain this DD protection for HX on the
grid by evolving for time 16δt , without any assumptions about
geometric locality of the interaction Hamiltonian. With the
noise removed by this DD procedure to order δt3, we can use
our earlier constructions to produce the effective Hamiltonian
without it being overwhelmed by noise.

C. Strength of the simulated Hamiltonian vs effective noise

The effective noise process on the system depends on
the particular schemes used for simulation and for DD. The
ratio between this effective noise strength and the strength
of the simulated Hamiltonian is important. If this ratio is
small enough, the energy gap protection of the simulated
Hamiltonian can be effective against the effective noise. Here
we give estimates of the strength of each of these terms, but
we also expect that for specific systems with more knowledge
about the form of the noise, better bounds can be achieved.

We assume δt is the time interval between pulses. This
is most likely determined by the physical limitations of the
experiment. As described earlier, we choose NDDNsim pulses
to simulate a building block of the desired Hamiltonian at order
δt3, with the effective noise at second order in λ and third order
in δt (Fig. 6).

We first find a bound on the effective noise strength in
each DD interval, and then add the effect of simulation on it.
Following [12], we define the effective noise strength as

η = ‖U (NDDδt) − Uideal(δt)‖, (36)

with U being the unitary generated by HX + HB + HSB with
the DD pulses applied in between. The operator

Uideal(t) ≡ e−i(HB+HX)NDDt (37)

is the ideal case, with HSB absent. We denote the cumulative
unitary generated by all pulses at each time (not including the
Hamiltonian terms) by Upulse(t). We assume that the pulses all
commute with the system Hamiltonian HX and also assume
that the product of all pulses in one cycle gives identity:
Upulse(NDDδt) = I . Moving to the interaction picture defined

δt

N δt

δt

N δt

N (N δt)

FIG. 6. Timing of the pulses: combining a DD scheme with NDD

pulses and a simulation with Nsim steps.

by the pulses we have

η = ‖Ũ (NDDδt) − Uideal(δt)‖, (38)

with

Ũ (NDDδt) = Texp

[
−i

∫ NDDδt

0
HX + HB + H̃SB(t)dt

]
,

(39)

and

H̃SB (t) = U
†
pulse(t)HSBUpulse(t). (40)

The Magnus expansion can be used to approximate Ũ (NDDδt)
with an effective Hamiltonian Heff up to arbitrary order. Denot-
ing Ũ (NDDδt) = exp(−iHeffNDDδt), the Magnus expansion
gives each term in Heff (see Appendix B):

Heff =
∑
k=0

H
(k)
eff . (41)

Using this we have an upper bound on η as

η � NDDδt

∥∥∥∥∥
∑
k=0

H
(k)
eff − (HB + HX)

∥∥∥∥∥. (42)

Assuming that the pulses achieve complete decoupling for first
and second order, we have H

(0)
eff = HB + HX and H

(1)
eff = 0. So

we have

η � NDDδt

⎛
⎝∥∥H

(2)
eff

∥∥ +
∥∥∥∥∥∥
∑
k�3

H
(k)
eff

∥∥∥∥∥∥
⎞
⎠. (43)

Now we can use the bounds on Magnus terms derived in
[12], but a slight modification is needed. First is the addition
of the HX Hamiltonian, and the other is taking into account the
effect of the two extra pulses we used to remove the first-order
terms in λ.

For the first term in Eq. (43), adding the terms correspond-
ing to λ2,λ3 [adding Eqs. (112) and (113) in [12]: changing
β to ‖HB + HX‖ and replacing ε with ‖HB + HX + λHSB‖],
we have∥∥H

(2)
eff

∥∥
� (Nδt)2λ2‖HSB‖2(c0λ‖HSB‖ + c1‖HB + HX‖), (44)

where c0 and c1 are some small constants. For the second term
we have [using Eqs. (119) and (125) in [12]]∥∥∥∥∥∥

∑
k�3

H
(k)
eff

∥∥∥∥∥∥
� (Nδt)3λ‖HSB‖(λ‖HSB‖ + ‖HB + HX‖)3

×[c2 + c3(λ‖HSB‖ + ‖HB + HX‖)NDDδt)], (45)

where c2 and c3 are some small constants. Denoting this
upper bound by η′ [the right-hand side of Eq. (43)], the upper
bound on the effective error strength of the combined DD
and simulation procedure becomes Nsimη′ plus the error we
get from the simulation. The strongest of these errors is at
order δt4, and a bound on these terms is c(NsimNDDδt)4‖HX‖.
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(This comes from counting the number of terms in the Magnus
expansion and considering the locality of HX, so rather than
having ‖HX‖4, we have a constant times ‖HX‖.) Similarly,
higher-order error terms of the simulation can also be included
up to any desired accuracy.

The strength of the Hamiltonian itself, after the pulses,
becomes NDDHX, and so after the simulation the desired
Hamiltonian shows up at order (NDDδt)3. Increasing NDD

makes the simulated Hamiltonian stronger, but the error
associated with DD can become worse, as can be seen from
the bound.

D. Locality and strength of noise

Local noise on the original Hamiltonian can act as effective
nonlocal noise on the simulated Hamiltonian. This is true for
the DD process, and also for the simulation process. Here,
starting from the Hamiltonian in Eq. (29), we investigate how
the locality and strength of the effective noise changes after
applying pulses. For generality, we assume that the system
Hamiltonian is k-local and the system bath interaction HSB

consists of l-local terms on the system (for our construction
k = 2,l = 1).

Using the Magnus expansion it is evident that the terms in
δtm are in the form of m − 1 nested commutators (basically,
products of m Hamiltonians).

1. Growth of nonlocality of noise in higher-order terms

First, let us assume that the bath part of the interaction
Hamiltonian can be arbitrarily nonlocal: ∀i 
=j :[Bi

α,B
j

β ] 
= 0.
Conjugating a segment of the evolution with ua pulses,
is equivalent to having an evolution with an effective
Hamiltonian Hi = Ha,X + HB + λHa,SB , where

uae
−iHδtu†

a = e−i(Ha,X+HB+λHa,SB ). (46)

The pulses do not change the locality of the system
Hamiltonian or the interaction Hamiltonian (i.e., the locality
of Ha,X and Ha,SB is the same as that of HX and HSB).
The effective Hamiltonian at order δtm would be the result
of m − 1 nested commutators of these Ha segments. At this
order in δt , for any q, the terms of order λq are at most
[ql + (m − q)(k − 1)]- local. The most nonlocal terms are
ml-local, and they appear at order λm (which is quite weak).
We can have a [m(k − 1) + 1]-local term at order λ0, which
we use for the simulation.

In the case of DD, if we choose the {ua} pulses to
commute with the system Hamiltonian we get Ha = HX +
HB + λHa,SB . In this case, all the HB and HX terms commute
with each other and the λ0 term vanishes.

2. The case of our construction

For the case where the system Hamiltonian is two-local and
the interaction Hamiltonian is one-local (k = 2,l = 1), errors
of order λq for ∀q � 1 are [ql + (m − q)(k − 1)] = m-local,
and at order λ0 the simulated Hamiltonian is (m + 1)-local.
So at order δt3 (m = 3) we have three-local noise and the
four-body simulated Hamiltonian. (See Appendix E for an
estimate of the number of error terms.)

In our construction, we use NsimNDD pulses to simulate
hHp at order δt3 with errors also at order δt3, with the errors of
leading order λ2. [These terms are at most three-local, and there
are at most Nsim × N3

DD × (3N )2 such terms.] The leading-
order terms in the simulation error are of order δt4 and of
order λ0. [These terms are at most five-local, and there are
O(N4

sim) such terms.]

3. Geometrically local bath

It is reasonable to assume that the dynamics of the bath and
the way it interacts with the system can be characterized by
some local Hamiltonians. Assuming locality for the bath part
of the interaction Hamiltonian and also the bath Hamiltonian,
one can show that the stronger noise terms (lower powers of λ)
are more geometrically local. For example this means that the
three-local errors showing up in δt3 are more concentrated in
a geometrically local region of the lattice, rather than showing
up in any three locations. The surface code Hamiltonian (and
topological codes in general) are expected to perform better if
the errors are more geometrically correlated.

Now we assume locality for the bath part of the interaction
Hamiltonian. We assume that the terms Bα

i and B
β

j from
the interaction Hamiltonian commute with each other if the
corresponding system qubits are at least distance r from each
other,

∀i,j d(i,j ) � r ⇒ [
Bi

α,B
j

β

] = 0. (47)

Again, looking at the nested commutators (we will add the
effect of the bath Hamiltonian later), we see that errors of
order λ consist of a single term from HSB commuted with one
or more terms from the system Hamiltonian. This error term
therefore can be [l + (m − 1)(k − 1)]-local, but all the qubits it
acts on are neighbors. In general, [ql + (m − q)(k − 1)]-local
errors in λq can appear with the qubits separated by a distance
of at most (q − 1)r , and the geometrically local terms coming
from the system Hamiltonian can only grow from this base of
qubits.

We need to also include the effects of the bath Hamiltonian.
HB does not itself increase the nonlocality of the interaction
Hamiltonian terms, but it can connect terms in different local
regions and so affect the spread of error. One can separately
assume geometric locality for the bath Hamiltonian and repeat
the argument above to bound the spread of errors. Namely,
we may assume that HB = ∑

hB , where each term can have
a nontrivial effect on the bath part of HSB corresponding to
qubits separated by a distance of at most r ′:

∀hB, d(i,j ) � r ′ :

⇒ [
Bi

α,hB

] = 0 or
[
Bj

α,hB

] = 0. (48)

If there are b copies of HB in the m nested commutators, at
order λd this results in at most [dl + (m − d − b) − (k − 1)]-
local term that can spread up to a distance of br ′ + (d − 2)r
with d � 2.

E. DD pulses for a local bath

Suppose we want to protect N qubits on a line from any
possible multiqubit error. The usual twirling lemma would
suggest applying all 4N possible pulses. One can ask what if
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each error term is supported on at most l neighboring qubits?
Here we discuss another symmetrization lemma to lower the
number of pulses to just 4l multiqubit pulses, independent of
N (benefiting from the parallelism in applying pulses).

The construction of the pulses is as follows: list all 4l

possible Pauli operators on the first l qubits. Now extend each
pulse by periodically repeating the Pauli operator on each
successive set of l qubits such that each of the pulses has the
same Pauli on qubits i and i + l.

A special case is one-local noise on N qubits (l = 1, so the
period is 1). As we saw we can average out all the errors by
considering just four pulses: I⊗N,X⊗N,Y⊗N,Z⊗N .

Clearly we can similarly generalize this construction to
higher dimensional lattices:

Lemma 2. (Symmetrization lemma: Local noise) Assume
that the support of each error term on a D-dimensional regular
lattice is contained in a hypercube of size lD qubits. Then with
4lD pulses, independent of the size of the lattice, all the error
terms can be averaged out.

Applying this result to our two-dimensional square lattice,
we only need to construct the sequences by considering all
possible Pauli operators on the qubits in squares of length l

(there are 4l2
corresponding pulses), and then cover the lattice

with parallel use of these patterns.
For example, for r = 1 (bath operators from the interaction

Hamiltonian, Bα
i and B

β

j , commute unless qubits i and j

are nearest neighbors) all the errors of order δt3 are strings
of three Pauli operators. We can define a square of 3 × 3
qubits, and apply all Pauli operators that commute with
all the XX interactions in that square (eight independent
interactions of such type). At most 49/28 steps are needed
(all the possible Pauli operators on nine qubits that commute
with eight independent Pauli terms).

Therefore, assuming locality for the bath, all error terms of
order δt3 can be removed with a number of pulses independent
of the size of the grid. Of course this is a worst case analysis
(assuming that any kind of three-Pauli error can be generated),
but when needed one can work out the details of the generated
errors and find the pulses to remove them, resulting in much
shorter sequences.

VI. ERROR SUPPRESSION

Now we analyze the effect of the simulated energy gap on
the noise. For simplicity, rather than adding the simulation
of the desired computation to this picture, we just repeat the
process of simulating hHpδt3 a total of k times (a quantum
memory). Each repetition of the simulation represents a time
step �t = δt3. We recall that the combination of DD and
simulation described earlier generates the following effective
Hamiltonian in one cycle:

e−i[hHp+HB/δt2−gV (δt)]�t , (49)

where h is the strength of the simulated Hamiltonian and
V (δt) = ∑∞

a=0 Vaδt
a is the effective error Hamiltonian. Each

term Va can be decomposed according to the location of
the system part: Va = ∑

i,a V a
i , and g is the overall scale

[normalizing V (δt)]. The ratio between h and g quantifies
the energy penalty as we will see later.

We can think of the effective Hamiltonian as a constant
Hamiltonian hHp + HB/δt2 − gV (δt), that is on for time k�t .
The goal is to see how much error suppression we get from
this process, assuming that we start in the ground subspace.
To do so we bound the quantity

‖U (k�t)P − Uideal(�t)P ‖, (50)

where P is the projector onto the code space, and U (t) is
the evolution generated by H (t) = hHP (t) + HB/δt2 + V (t).
This difference bounds how much the noisy evolution can
make the state deviate from the ideal evolution represented by
Uideal(t) ≡ e−i(hHp+HB/δt2)kt .

To bound this difference, we start by moving to the
interaction picture defined by the base Hamiltonian hHP +
HB/δt2. We denote the evolution corresponding to this base
Hamiltonian by UP (t). Moving to the interaction picture with
respect to the base Hamiltonian we have

VI (t) = U
†
P (t)V (t)UP (t), (51)

UI (t) = U
†
P (t)U (t), (52)

where

iU̇I (t) = VI (t)UI (t). (53)

Integrating this we have

U
†
I (k�t) = I + i

∫ k�t

0
U

†
I (t)VI (t)dt. (54)

We note that ∥∥U (k�t)P − UP (k�t)P ‖
= ∥∥(I − U

†
I (k�t))P

∥∥
=

∥∥∥∥∥
∫ k�t

0

dU
†
I (t)

dt
dtP

∥∥∥∥∥
=

∥∥∥∥
∫ k�t

0
U

†
I (t)VI (t)dtP

∥∥∥∥. (55)

Following [44], we can define

F (t) =
∫ t

0
VI (τ )dτP. (56)

Integrating by parts, Eq. (55) becomes

‖U (k�t)P − UP (k�t)P ‖

=
∥∥∥∥U

†
I (k�t)F (k�t) − i

∫ k�t

0
U

†
I (τ )VI (τ )F (τ )dτ

∥∥∥∥
� ‖F (k�t)‖ +

∥∥∥∥
∫ k�t

0
U †(τ )V (τ )UP (τ )F (τ )dτ

∥∥∥∥
� ‖F (k�t)‖ +

∫ k�t

0
‖V (τ )‖‖F (τ )‖dτ , (57)

where we used the triangle inequality and the unitary invari-
ance of the operator norm.

F (t) quantifies the averaging out of the interaction
Hamiltonian by the rotations induced by the penalty Hamil-
tonian (in the interaction picture), and the reduction of this
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term implies that the total evolution becomes closer to the
ideal evolution (the difference between the actual and ideal
evolutions goes to zero if ‖F‖ goes to zero [44,45]).

To bound this term, we can evaluate

F (t ′) = g

∫ t ′

0
U

†
P (τ )

∑
i,a

V a
i δtaUP (τ )Pdτ. (58)

We denote by ca
i the number of stabilizer generators in the

simulated Hamiltonian Hp that anticommute with the error
V a

i . Using this, and also the fact that HpP = ε0P , we have

F (t ′) = g

∫ t ′

0
e+i(HB/δt2)τ (59)

×
∑
i,a

V a
i δtae−i(HB/δt2)τ e−i2hε0c

a
i τ P dτ.

Breaking this sum into two parts depending on whether c
j

i

is zero or nonzero, and then integrating by parts, we get

‖F (k�t)‖
� g

h

∑
i,a

ca
i 
= 0

1

ca
i (2ε0)

(
2
∥∥V a

i δta
∥∥ + k�t

∥∥[
V a

i ,HB

]
δta−2

∥∥)

+ gk�t

∥∥∥∥∥∥∥∥∥
∑
i,a

ca
i = 0

V a
i δta

∥∥∥∥∥∥∥∥∥
. (60)

It is important to note that the first term, with the detectable
errors (with ca

i � 1), is suppressed by a factor of g/h. So
for large values of h, we get error suppression, and the total
evolution becomes closer to the one with no error. This error
suppression is similar to the error suppression we get from an
ideal implementation of Hp (rather than its simulation). This
becomes clearer when we perform a similar calculation for the
Hamiltonian Hp with energy penalty Ep, in the presence of a
local system-bath interaction Hamiltonian λHSB for a duration
of T0. Similar to the simulation case, using Eq. (57), we can
bound

‖e−i(EpHp+HB+λHSB )T0P − e−i(EpHp+HB )T0P ‖

� ‖Fideal(T0)‖ +
∫ T0

0
‖λHSB‖‖Fideal(τ )‖dτ , (61)

where we have defined Fideal(t) as

Fideal(t) =
∫ t

0
e+i(EpHp+HB )τ

× (λHSB)e−i(EpHp+HB )τP dτ. (62)

Decomposing the interaction Hamiltonian according to the
location of the system part, HSB = ∑

i h
i
SB, we get

‖Fideal(t)‖
� λ

Ep

∑
i

1

ei(2ε0)

(
2
∥∥hi

SB

∥∥ + t
∥∥[

hi
SB,HB

]∥∥)
, (63)

where ei denotes the number of stabilizer generators in the
ideal Hp that anticommute with the error term hi

SB. In this
case, by construction, we always have ei 
= 0.

This shows that the bound in Eq. (61) actually contains
a suppression factor of λ/Ep. Clearly, in the simulated case,
g/h plays the role of λ/Ep.

In contrast to the ideal case where ∀i : ei 
= 0, in the
simulation not all the terms of the effective error are suppressed
by the effective Hamiltonian. For the chosen Hp, the only
errors that commute with all the stabilizers (and so have
ca
i = 0) are (I) loops of X around Av operators and loops of

Z around Bp operators; and (II) logical operators, i.e., chains
connecting boundaries. These errors are not suppressed by this
mechanism, as can be seen from the second term in the bound.

Fortunately, the type-I errors are not (too) destructive, as
they are just a product of the stabilizers of the code. So, these
terms in the effective error do not cause logical errors. The only
effect they can have is changing the strength of each simulated
stabilizer slightly (changing h to h ± δh). The first error of this
type is four-local and so occurs at order O(δt4). Comparing to
the Hamiltonian itself, which occurs at order O(δt3), it is at
least a factor of order δt weaker. Also, the effect of these errors
is expected to average out, as the sign of the errors changes,
and so the effective δh should be small.

The situation is different for the logical errors. If the
distance of the code is d, these errors happen in O(δtd ) or
higher, which is small for large d. While this error is small, to
have an arbitrary long computation it is necessary to correct
possible errors before they accumulate into logical errors. This
is done by active error correction.

VII. SUMMARY AND CONCLUSIONS

High-weight Hamiltonians are frequently used in designing
quantum algorithms, especially when the goal is to provide
protection against noise. Implementing such high-weight
Hamiltonians is experimentally challenging. One approach is
to simulate such interactions using resources that are easier
to implement. However, this simulation procedure itself can
spread the noise and convert it to some effective geometrically
correlated noise on the simulated system.

In this work we proposed combining techniques from
dynamical decoupling and quantum simulation to simulate
high-weight Hamiltonians such that the simulated Hamilto-
nians are stronger than the new effective noise. The ratio
of the strength between the simulated Hamiltonian and the
effective noise depends on the strength of the original noise
on the resources used and also on the specific type of DD
and simulation techniques applied. The spread of the effective
noise on the simulated system depends on the locality of
the bath and the system-bath interaction Hamiltonians. The
reasonable assumption that these Hamiltonians are geometri-
cally local guarantees that the dominant terms in the effective
noise Hamiltonian spread in a geometrically local region.
Topological codes are expected to perform well in the presence
of these types of geometrically correlated errors. For this
reason we chose the surface code Hamiltonian and showed
how to simulate the time-dependent deformation of this
Hamiltonian to perform universal quantum computation. Our
analysis provided the details specific to this Hamiltonian, but
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the method is general. Similar to any other scheme performing
universal quantum computation on a 2D grid, active error
correction is necessary to guarantee fault tolerance. But as
we showed explicitly, an energy gap is maintained during the
simulation against the strongest errors generated in the process.
The presence of this energy gap reduces the number of cycles
of active error correction necessary during the simulation of
the computation.

We expect that the methods proposed in this work can also
be used to simulate the Hamiltonians that use subsystem codes
to reduce the nonlocality, either for surface code Hamiltonians
[46] or general Hamiltonian-based quantum computation [45].

An interesting problem for future work is to consider other
types of resources and simulation methods. One example
is to consider simulation using perturbative gadgets and
investigating methods to reduce the effect that local noise
on a Hamiltonian has on the effective Hamiltonian in the
low-energy spectrum.

In all the constructions in this work, we only used the
simplest form of DD and simulation techniques. One can
expect to gain performance improvements by using more
complex DD pulses and simulation techniques. It then becomes
more important to consider the effect of the imperfection and
noise on the pulse sequences and their timing.

More generally, it is interesting to design methods that are
natively optimized to generate the largest ratio between the
strength of the simulated system Hamiltonian and the strength
of the effective noise.
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APPENDIX A: ALTERNATIVE CONNECTIVITY

An alternative connectivity for the Hamiltonian on the
square grid is when there is only nearest-neighbor coupling.
In this case the Hamiltonian would become

HX =
∑

d(i,j )=1

XiXj . (A1)

Here we show how to use the Hamiltonian Hx = (X1 +
X3)(X2 + X4) to simulate the Hamiltonian X1X2X3X4 on
qubits connected to a vertex, for an effective time �t . (See
Fig. 7.) We denote the Hadamard gate by W , and the phase
gate by S.

Now,

(S1S2)e−iHXδt (S1S2) = e−i(Y1+X3)(Y2+X4)δt (A2)

generates Ha = (Y1 + X3)(Y2 + X4). Likewise,

(W1S2)e−iHXδt (W1S2) = e−i(Z1+X3)(Y2+X4)δt (A3)

generates Hb = (Z1 + X3)(Y2 + X4), and

(W2)e−iHXδt (W2) = e−i(X1+X3)(Z2+X4)δt (A4)

generates Hc = (X1 + X3)(Z2 + X4).

1

2

3

4

FIG. 7. Labeling of qubits connected to a vertex.

All of these Hamiltonians can be negated using X2Z4

pulses. Using the commutator method given in Eq. (5), we
will have the the desired Hamiltonian 8X1X2X3X4 plus some
extra terms. Again, by doubling the number of pulses and
conjugating the new ones by Z1Y2, we can get rid of all the
extra terms, and so the desired Hamiltonian becomes

e−i16X1X2X3X4δt
3 + O(δt4).

So using NX = 20 pulses, and applying the Hamiltonian
Hx for a time NXδt we can simulate 16X1X2X3X4 at order
δt3 with errors of order δt4.

Generating this Hamiltonian on a grid can be done using
the methods from Sec. IV with slight modifications.

APPENDIX B: MAGNUS EXPANSION FOR PIECEWISE
CONSTANT HAMILTONIAN

A good reference introducing the Magnus expansion is
[12]. Here are a few low-order terms for piecewise constant
Hamiltonians [47]:

e−iHnδt · · · e−iH2δt e−iH1δt = e−iTnHeff(Tn). (B1)

Here Tn = nδt and Heff = ∑∞
k=0 H

(k)
eff , with

H
(0)
eff (Tn) = δt

Tn

n∑
k=1

Hk, (B2)

H
(1)
eff (Tn) = − i(δt)2

2Tn

n∑
l=2

l−1∑
k=1

[Hl,Hk], (B3)

H
(2)
eff (Tn)

= − (δt)3

6Tn

{
n∑

m=3

m−1∑
l=2

l−1∑
k=1

[Hm,[Hl,Hk] + [Hm,Hl],Hk]

+ 1

2

n∑
l=2

l−1∑
k=1

[Hl,[Hl,Hk] + [Hl,Hk],Hk]]

}
. (B4)

APPENDIX C: PROOF OF LEMMA 1

Lemma 1. (Symmetrization lemma: Protecting interaction)
Let P1, . . . ,Pn be commuting Pauli operators, and let P be the
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group generated by these Pauli operators. Denote the set of all
Pauli operators that commute with all the Pis by N (P) (the
normalizer of P). Then for any Pauli operator s,

∀s /∈ P :
∑

g∈N (P)

gsg† = 0, (C1)

∀s ∈ P :
∑

g∈N (P)

gsg† = s|N (P)|. (C2)

Proof. The s ∈ P case is trivial. Assume s /∈ P and s /∈
N (P), which means that s anticommutes with at least one
element of P and of N (P). Denoting a set of independent
generators of P by {Pi}mi=1, there exists a (nonidentity) P∗ in
this set such that {P∗,s} = 0. Obviously ∀g ∈ N (P) ⇒ P∗g ∈
N (P). From this we conclude that g and P∗g are two distinct
elements ofN (P) such that one commutes with s, and the other
one anticommutes with it.2 Going through all the elements of
N (P) (and using P 2

∗ = I ), half the elements commute with
s while the other half anticommute with s, and so the result
holds in this case.

For the case that s /∈ P and s ∈ N (P), elements of N (P)
can be generated using {Pi} and n − m extra pairs of conjugate
generators, where n is the number of qubits. Let us call these
pairs (X̂j ,Ẑj ), where 1 � j � n − m. Note that s /∈ P and
s ∈ N (P) means that s contains at least one element from
these pairs, let us say an element from the j∗th pair. Now we
notice that ∀g ∈ N (P) ⇒ {g,gX̂j∗ ,gẐj∗ ,gX̂j∗Ẑj∗ } ∈ N (P).
All these elements are distinct, and two of them commute
with s while two anticommute. Therefore, again the elements
of N (P) can be partitioned into half commuting and half
anticommuting, which completes the proof. �

APPENDIX D: THE NUMBER OF PULSES TO AVERAGE
OUT MULTIQUBIT ERRORS GROWS WITH THE

NUMBER OF QUBITS

A simple example showing that the number of pulses to
average out multiqubit errors grows with the number of qubits

2There are two cases depending on whether s commutes or anticom-
mutes with g. If {s,g} = 0,{s,P∗} = 0 then P∗gs = −P∗sg = sP∗g,
i.e., [s,P∗g] = 0. Likewise, [s,g] = 0,{s,P∗} = 0 ⇒ {s,P∗g} = 0.

is the following set of two-qubit errors:

{YiYj : 1 � i < j � N}. (D1)

A simple lower bound on the number of pulses needed to
average out all of these errors can be derived by noticing
that each Yi has to have a distinct pattern of commutation-
anticommutation with the pulses: if Yi and Yj have the same
pattern, then all the pulses will commute with YiYj , so applying
pulses will leave this term unchanged. From this we conclude
that the number of distinct patterns has to be greater than N ,
which means that the number of pulses needed to average out
all the error terms has to increase with the number of qubits.
If |P | is the number of pulses, this means that 2|P | � N , and
so |P | � log2 N . For combinatorial approaches using O(N )
pulses to achieve first-order decoupling see Refs. [48,49] and
Chap. 15 of Ref. [2].

APPENDIX E: ESTIMATING THE NUMBER
OF ERROR TERMS

We provide a worst-case estimate of the number of error
terms that occur at order δtm while having the simulated
Hamiltonian appear at order δtm+1.

Using our construction, we first apply NDD pulses to protect
the system Hamiltonian and push the errors to order δtm. At
this order there will be roughly Nm

DD terms of m − 1 nested
commutators, with each term of the form Hi = HX + HB +
λHi,SB . At order λ0 there is no error, as all terms of HX and
HB commute with each other. At order λ1 there are 3N terms
(N being the number of qubits, and 3N being the number of
terms), multiplied by a constant depending on the connectivity
degree of HX, as the entangling Hamiltonian can only expand
an existing string of errors locally to neighboring qubits. (The
same argument is true for higher powers of λ.) Thus, at order
λ1 the total number of terms is of order Nm

DD × 3N . Notice
the growth with the number of qubits. At order λq there are
Nm

DD(3N )q terms. (Recall that we can remove all the errors of
order λ1 by doubling the number of pulses.)

Therefore, to simulate the desired nonlocal Hamiltonian at
order δtm

′
, we apply Nsim of these sequences of pulses consec-

utively. The number of error terms generated by the simulation
process at order δtm

′+1 is Nm′
sim, which as we saw earlier can

be [m′(k − 1) + 1]-local at order λ0. Also, the number of error
terms resulting from DD will be multiplied by Nsim.
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