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The problem studied in this paper is, if the number of queries to unitary operations is fixed, say k, then when
do local operations and classical communication (LOCC) suffice for optimally distinguishing bipartite unitary
operations? We consider the above problem for two-qubit unitary operations in the case of k = 1, showing that
for two two-qubit entangling unitary operations without local parties, LOCC achieves the same distinguishability
as the global operations. Specifically, we obtain the following: (i) if such two unitary operations are perfectly
distinguishable by global operations, then they are perfectly distinguishable by LOCC also, and (ii) if they are
not perfectly distinguishable by global operations, then LOCC can achieve the same optimal discrimination
probability as the global operations.
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I. INTRODUCTION

Distinguishability, as a fundamental concept, lies at the
heart of quantum information theory, with a wide range of
applications in quantum information and computation. While
the distinguishability of quantum states has been intensively
and extensively studied, it has also been extended to quantum
evolution in various forms such as distinguishability of unitary
operations [1–10], measurements [11], Pauli channels [12],
oracle operators [13], and quantum operations [14–18]. In this
paper, we focus on the distinguishability of unitary operations.

The discrimination of unitary operations is generally trans-
formed to the discrimination of quantum states by preparing a
probe state and then discriminating the output states generated
by different unitary operations. Two unitary operations U

and V are said to be perfectly distinguishable (with a single
query) if there exists a state |ψ〉 such that U |ψ〉 ⊥ V |ψ〉. It
was shown that U and V are perfectly distinguishable if and
only if �(U †V ) � π , where �(W ) denotes the length of the
smallest arc containing all the eigenvalues of W on the unit
circle [1,2]. The situation changes dramatically when multiple
queries are allowed since any two different unitary operations
are perfectly distinguishable in this case. Specifically, it was
shown that for any two different unitary operations U and
V , there exist a finite number N and a suitable state |ϕ〉
such that U⊗N |ϕ〉 ⊥ V ⊗N |ϕ〉 [1,2]. Such a discriminating
scheme is intuitively called a parallel scheme. Note that
in the parallel scheme, an N -partite entangled state as an
input is required and plays a crucial role. The result was
further refined in Ref. [3] by showing that the entangled input
state is not necessary for perfect discrimination of unitary
operations. Specifically, the authors of Ref. [3] showed that
for any two different unitary operations U and V there exist
an input state |ϕ〉 and auxiliary unitary operations w1, . . . ,wN

such that UwNU, . . . ,w1U |ϕ〉 ⊥ V wNV, . . . ,w1V |ϕ〉. Such a
discriminating scheme is generally called a sequential scheme.
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Note that in the research mentioned above, it was assumed
by default that the unitary operations to be discriminated are
under the complete control of a single party who can perform
any physically allowed operations to achieve an optimal
discrimination. Actually, a more complicated case is that the
unitary operations to be discriminated are shared by several
spatially separated parties. In this case a reasonable constraint
on the discrimination is that each party can only make local
operations and classical communication (LOCC). Despite this
constraint, it has been shown that any two bipartite unitary
operations can be perfectly discriminated by LOCC when
multiple queries to the unitary operations are allowed [4–7].
More specifically, the authors of Refs. [4,5] independently
proved this result with tools from the universality of quantum
gates [19] and analysis of numerical range [20], respectively.
However, the authors of Refs. [4,5] generally required a
complicated network combining the sequential and the parallel
schemes to achieve a perfect discrimination, where one of the
two parties who share the bipartite unitary operations must
prepare a multipartite entangled state.

A further result was obtained by the authors of Ref. [6],
who asserted that any two bipartite unitary operations acting
on d ⊗ d (i.e., a two-qudit system) with multiple queries
allowed, in principle, can be perfectly discriminated by LOCC
with merely a sequential scheme. Note that a sequential
scheme usually represents the most economic strategy for
discrimination since it does not require any entanglement
and saves the spatial resources. Nevertheless, the result in
Ref. [6] has two limitations: (i) the unitary operations to
be discriminated were limited to act on d ⊗ d, and (ii)
the inverses of the unitary operations were assumed to be
accessible, although this assumption may be unrealizable
in the experiment. Therefore, the first author improved the
result in Ref. [7] by showing that any two bipartite unitary
operations acting on dA ⊗ dB can be locally discriminated
with a sequential scheme, without using the inverses of the
unitary operations.

Following these works, we have a relatively comprehensive
understanding on local discrimination of unitary operations.
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The above results imply that LOCC and global operations
can achieve the same distinguishability for unitary operations,
that is, perfect discrimination for both cases, when the unitary
operations can be queried multiple times. However, note that
for achieving a perfect discrimination, the two situations may
require different numbers of queries to the unitary operations.
Let N be the optimal number of queries to U and V for a perfect
discrimination between them in the case of global operations
(similarly, N ′ is the one for the case of LOCC). Then it is
obvious that N

′ � N . However, what the condition for N
′ = N

is seemed unknown until now. Thus, this inspires us to consider
such a question: if the number of queries to unitary operations
is fixed, say k, then when do LOCC suffice for optimally
distinguishing bipartite unitary operations?

In this paper we consider the above problem for distinguish-
ing two-qubit unitary operations in the case of k = 1 (i.e., the
unitary operations can be queried only once). We show that
if two two-qubit entangling unitary operations without local
parties can be queried only once, then LOCC achieve the same
distinguishability as the global operations. More specifically,
we obtainthe following: (i) if the two unitary operations
are perfectly distinguishable by global operations, then they are
perfectly distinguishable by LOCC as well, and (ii) if they are
not perfectly distinguishable by global operations, then LOCC
can achieve the same optimal discrimination probability as
the global operations. We hope these discussions about this
elementary case shed some light on the more generalized cases.

The main idea of our method is described as follows. First,
the error probability of discriminating between U1 and U2 is
given by

PE(U1,U2) = 1
2 (1 −

√
1 − 4p1p2F (U1,U2)2),

where F (U1,U2) = min|ψ〉 |〈ψ |U †
1U2|ψ〉|. If U1 and U2 are

acting on a two-qubit system AB, and we want to discriminate
them by LOCC, then the probe state |ψ〉 should be a product
state, that is, |ψ〉 = |ψA〉 ⊗ |ψB〉. Note that for discriminating
two multipartite states, it has been shown that LOCC can
achieve the same distinguishability that the global operations
would have [22,23]. Therefore, if we can find a product
state |ψ〉 such that F (U1,U2) = |〈ψ |U †

1U2|ψ〉|, then it can
be asserted that LOCC is as powerful as the global operations
in discriminating U1 and U2. We will prove this point by using
some simple geometric knowledge. Note that the authors of
Ref. [9] obtained a similar result. However, if one carefully
checks the result there, it can be found that the result in this
paper seems more generalized and different ideas are used to
derive the results.

The rest of this paper is organized as follows. Section II
recalls the canonical decomposition of two-qubit unitary
operations. The main result is presented in Sec. III. A
conclusion is made in Sec. IV.

II. DECOMPOSITION OF TWO-QUBIT UNITARY
OPERATIONS

Concerning decomposition of two-qubit unitary operations
and related notations, one can refer to Ref. [21] and references
therein for details, and here we only recall some necessary
results. Any unitary operation U acting on two qubits A and

B has the following canonical decomposition:

U = (UA ⊗ UB)Ud (VA ⊗ VB), (1)

where UA, UB , VA, and VB are single-qubit unitary operations
and Ud has the following form:

Ud = e−i(αxσx⊗σx+αyσy⊗σy+αzσz⊗σz). (2)

Here, σx , σy , and σz are Pauli operators, and the vector d =
(αx,αy,αz) has real entries satisfying

0 ≤ αz ≤ αy ≤ αx ≤ π

4
.

If αx = αy = αz = 0, then Ud = I . Otherwise if αx =
αy = αz = π

4 , then Ud is the SWAP operation. Otherwise, it
is entangling, that is, it can create entanglement between
two qubits initially in a product state. Thus, Ud is called the
entangling part of U in this paper. Denote the Bell states
by |�±〉 = (|00〉 ± |11〉)/√2,|	±〉 = (|01〉 ± |10〉)/√2. The
following states form the so-called magic basis:

|�1〉 = |�+〉, |�2〉 = −i|�−〉,
|�3〉 = |	+〉, |�4〉 = −i|	−〉.

Then, Ud is diagonal in the magic basis, and it can be written
as

Ud =
4∑

j=1

e−iλj |�j 〉〈�j |, (3)

where

λ1 = αx − αy + αz, λ2 = −αx + αy + αz,

λ3 = −αx − αy − αz, λ4 = αx + αy − αz.

It is easily seen that λ4 � λ1 � λ2 � λ3.
Any two-qubit state |ψ〉 can be represented as |ψ〉 =∑
k uk|�k〉, where

∑
k |uk|2 = 1. We can use the so-called

concurrence C to measure the entanglement of a pure state of
two qubits, which is defined by

C(|ψ〉) = |〈ψ |σy ⊗ σy |ψ∗〉|,
where |ψ∗〉 denotes the complex conjugate of |ψ〉 in the
computational basis. Writing |ψ〉 in the magic basis, we get

C(|ψ〉) =
∣∣∣∣∣
∑

k

u2
k

∣∣∣∣∣.
Thus, C(|ψ〉) = 0, that is, |ψ〉 is a product state, iff

∑
k

u2
k = 0.

III. DISCRIMINATION OF ENTANGLING TWO-QUBIT
UNITARY OPERATIONS

Note that when considering discrimination of quantum
states or quantum operations, there are several discriminating
fashions such as minimum-error discrimination, unambiguous
discrimination, and minimax discrimination. Here we consider
minimum-error discrimination between two unitary operations
U1 and U2. The problem can be reformulated into the problem
of finding a probe state |ψ〉 such that the error probability
in discriminating between the output states U1|ψ〉 and U2|ψ〉
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is minimum. Denote by PE(U1,U2) the error probability of
discriminating between U1 and U2. Then we have

PE(U1,U2) = min
|ψ〉

1

2
(1 −

√
1 − 4p1p2|〈ψ |U †

1U2|ψ〉|2)

= 1

2
(1 −

√
1 − 4p1p2 min

|ψ〉
|〈ψ |U †

1U2|ψ〉|2)

= 1

2
(1 −

√
1 − 4p1p2F (U1,U2)2),

where p1 and p2 are the a priori probabilities for U1 and U2,
respectively. Here the minimum value is taken over all states
|ψ〉 with |||ψ〉|| = 1, and

F (U1,U2) ≡ min
|ψ〉

|〈ψ |U †
1U2|ψ〉|

is called the fidelity of U1 and U2. If F (U1,U2) = 0, then
PE(U1,U2) = 0, and in this case U1 and U2 are said to be
perfectly distinguishable. Otherwise, they can be distinguished
with some error probability.

Now suppose that U1 and U2 are acting on a two-qubit
system AB, and consider how to discriminate them by
LOCC. In this case, the probe state |ψ〉 should be a product
state, that is, |ψ〉 = |ψA〉 ⊗ |ψB〉. Note that for discriminating
two multipartite states, it has been shown that LOCC can
achieve the same distinguishability that the global operations
would have. In other words, if two multipartite states are
perfectly distinguishable by global operations, then they
are also perfectly distinguishable by LOCC [22]; if they are
distinguishable with some error probability, then they can
be distinguished by LOCC with the same error probability
[23]. Therefore, if we can find a product state |ψ〉 such that
F (U1,U2) = |〈ψ |U †

1U2|ψ〉|, then it can be asserted that LOCC
is as powerful as the global operations in discriminating U1

and U2.
In the following, we consider discrimination between two

entangling unitary operations in Eq. (3) [equivalently, in
Eq. (2)]. Given two unitary operations U1 and U2 in Eq. (3),
the product U

†
1U2 also has the diagonal form of Eq. (3):

U
†
1U2 =

4∑
j=1

e−iωj |�j 〉〈�j |. (4)

Note that it does not necessarily hold that ω4 � ω1 � ω2 � ω3.
Let |ψ〉 = ∑

k uk|�k〉 with
∑4

k=1 |uk|2 = 1. Then we get

F (U1,U2) = min
|ψ〉

|〈|ψ |U †
1U2|ψ〉|

= min

{∣∣∣∣∣
4∑

k=1

|uk|2e−iωk

∣∣∣∣∣ :
4∑

k=1

|uk|2 = 1

}
.

We will show below that the value of F (U1,U2) can be
achieved by a product state |ψ〉 (that is, |ψ〉 satisfies

∑
k

u2
k = 0). First, by letting S = {e−iωk }4

k=1, we get

conv(S) =
{

4∑
k=1

|uk|2e−iωk :
4∑

k=1

|uk|2 = 1

}
, (5)

where conv(S) denotes the convex hull of S. Then, F (U1,U2)
corresponds to the minimum distance from the original point

FIG. 1. The convex hull of Eq. (5). Pk corresponds to e−iωk with
i = 1, . . . ,4, where without loss of generality, we assume these points
on the unit circle are P1,P2,P3,P4 in the counterclockwise order. Mi

denotes the midpoint of Pi and P(i+1) mod 4 for i = 1, . . . ,4. In (a),
the convex hull contains the original point O, which implies that
F (U1,U2) = 0, and then a perfect discrimination is achievable. In
(b), the convex hull does not contain O. Then F (U1,U2) is equal to
the distance between O and M2.

O to the convex hull conv(S), that is,

F (U1,U2) = min
P∈conv(S)

||O − P ||,

where it is readily seen that O ∈ conv(S), iff F (U1,U2) = 0,
which means a perfection discrimination is achievable.

In geometry, each e−iωk stands for a point on the unit circle
in the complex plane. As shown in Fig. 1, let Pk denote the point
e−iωk with k = 1, . . . ,4. Without loss of generality, assume
the counterclockwise order of these points on the unit circle
is P1,P2,P3,P4. Denote by �P1P2P3P4 the region enclosed
by the convex polygon with endpoints P1,P2,P3,P4. Then
�P1P2P3P4 is the convex hull conv(S).

In the following we show that the value of F (U1,U2) is
always achievable by a product state, by discussing two cases.

Case (i): F(U1,U2) = 0. In this case, we have O ∈ conv(S),
or equivalently, O ∈ �P1P2P3P4 as shown in Fig. 1(a).

Let Mi denote the midpoint of Pi and P(i+1) mod 4 with
i = 1, . . . ,4, that is,

M1 = 1
2 (P1 + P2) = 1

2 (e−iω1 + e−iω2 ),

M2 = 1
2 (P2 + P3) = 1

2 (e−iω2 + e−iω3 ),

M3 = 1
2 (P3 + P4) = 1

2 (e−iω3 + e−iω4 ),

M4 = 1
2 (P4 + P1) = 1

2 (e−iω4 + e−iω1 ).

First, it is not difficult to show that O ∈ �P1P2P3P4 implies
O ∈ �M1M2M3M4, according to some geometric properties.
As a result, there exist a set of positive coefficients α1,α2,α3,α4

satisfying
∑

j αj = 1 such that
∑

αjMi = O, that is,

α1
(e−iω1 + e−iω2 )

2
+ α2

(e−iω2 + e−iω3 )

2

+ α3
(e−iω3 + e−iω4 )

2
+ α4

(e−iω4 + e−iω1 )

2
= 0.
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It can be rewritten as

(α1 + α4)

2
e−iω1 + (α1 + α2)

2
e−iω2

+ (α2 + α3)

2
e−iω3 + (α3 + α4)

2
e−iω4 = 0. (6)

Let

u1 =
√

(α1 + α4)/2, u2 = i
√

(α1 + α2)/2,

u3 =
√

(α2 + α3)/2, u2 = i
√

(α3 + α4)/2.

Then Eq. (6) means
∑

k |uk|2e−iωk = 0, and one can check
that

∑
k u2

k = 0. Therefore, we have shown that there exists
a product state |ψ〉 = ∑

k uk|�k〉 such that 0 = F (U1,U2) =
|〈ψ |U †

1U2|ψ〉|.
Case (ii): F(U1,U2) �= 0. In this case, O /∈ conv(S), or

equivalently, O /∈ �P1P2P3P4 as shown in Fig. 1(b). Then the
minimum distance from the original point O to �P1P2P3P4

is the distance from O to the line P2P3, which is equal to
the distance between O and the midpoint M2 of P2 and P3.
Therefore, we obtain

F (U1,U2) = |OM2| = ‖ 1
2 (e−iω2 + e−iω3 )‖.

Now let

u1 = 0, u2 = 1√
2
, u3 = i

1√
2
, u4 = 0.

Then we have F (U1,U2) = |〈ψ |U †
1U2|ψ〉| for |ψ〉 =∑

k uk|�k〉 with
∑

k u2
k = 0, that is, F (U1,U2) is achieved by

a product state.
In summary, we show that for any two entangling two-qubit

unitary operations U1 and U2 in the form of Eq. (3), their
fidelity F (U1,U2) ≡ min|ψ〉 |〈ψ |U †

1U2|ψ〉 can be achieved by

a product state |ψ〉 = |ψ〉A ⊗ |ψ〉B , and as a result, U1 and U2

can be optimally discriminated by LOCC.

IV. CONCLUSION

In this paper we show that LOCC are as powerful as the
global operations in discriminating two two-qubit entangling
unitary operations without local parties, when they can
be queried only once. More specifically, we obtained the
following: (i) if such two unitary operations are perfectly
distinguishable by global operations, then they are perfectly
distinguishable by LOCC also, and (ii) if they are not
perfectly distinguishable by global operations, then LOCC
can achieve the same optimal discrimination probability as
the global operations. Therefore, LOCC suffice for optimally
distinguishing the mentioned unitary operations with only
one query allowed. We hope these discussions about this
elementary case will shed some light on the following general
problem: if the number of queries to unitary operations is fixed,
say k, then when do LOCC suffice for optimally distinguishing
bipartite unitary operations?
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